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Abstract 

The conventional derivation of Planck’s distribution of black-body radiation is based on the 

quantization in 1-D of the energy  ε=nκε0  of each descrete standing mode  κ  of the field into n 

photons of energy  κε0  where  ε0=hc/2ℓ ; ℓ~length of system. Considering interactions between 

radiation and matter in equilibrium  T,  it is accepted that the energy ε of each mode is governed by 

Boltzmann’s law  so that the conditional probability that there are  n  photons in the mode  κ  is 

𝑔(𝑛/𝜅) = 𝐴 𝑒
 

      ;         θ = T/𝜀        ;       A =  1 −  𝑒
  

              

In the present article we derive alternatively  g(n/κ)  by quantizing the total energy  E=sε0  of a 

closed 1-D system into  s  quanta that in turn form a random total number  N=1, 2,…, s  of photons 

of various energies. The number of states describing this photon gas is equal to the number  p   of 

integer solutions of the equation   n1 + 2n2 + 3n3 +….+ sns = s   where  n1≥0  ;  n2≥0  ; ….  ; ns≥0  are 

the numbers of photons occupying the energy levels  κ=1,2,…,s respectively. Since photons are 

indistinguishable particles obeying Bose statistics, we assume that all above quantum states occur 

with equal probabilities  1/p .  As  p   represents also the number of partitions of the integer  s,  we 

express exactly  the conditional probability  g(n/κ)  of each level  κ  in terms of partitions by 

introducing diagrams and then we study its behaviour for large  s  using the Hardy-Ramanujan  

formula. Thus, Planck’s distribution is derived without resorting to Boltzmann’s law and to 

interactions between radiation and matter. 

 

 

1. Introduction 

 

In the title of his important review article [1],   Peter Enders is asking the question:  

Why Boltzmann did not arrive at Planck’s distribution. Apart from its historical 

perspective, this question shows how essential is Boltzmann’s law in its quantized form for 

the derivation of Planck’s distribution of black-body radiation. The conventional theory in 

this case is well known. The allowed standing wave spatial variation of the electromagnetic 

field in the cavity  -  identical in both classical and quantum theories [2] -  creates in 1-D a 
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descrete spectrum of frequencies:  ν0, 2ν0, 3ν0, …where  ν0 = c/2ℓ ; ℓ ~ length of system. 

Then, Planck’s hypothesis of  ε = hν  and energy quantization implies the occurrence of 

descrete energy levels  ε0, 2ε0, 3ε0, … corresponding respectively to these frequencies, 

where  ε0 = hc/2ℓ  is the energy of each quantum constituting the total energy  E = sε0  of 

the system. Further, each level  κ=1,2,3,… may be occupied by a mode which has frequency  

ν = κν0  and quantized energy  ε = nhν = nκε0 where n is the number of photons  of energy  

κε0  contained in the mode. 

The essence of today’s quantum theory of radiation of the black-body system is based on 

the following two assumptions [2]:  

I. For every mode at the energy level  κ  we introduce a separate sub-system 

containing a random number  n  of photons forming the mode, where each photon 

has energy  κε0. 

II. Thermal equilibrium in each sub-system occurs through interactions between 

matter and radiation by the association of a quantum harmonic oscillator with each 

mode of the field. 

Accordingly, in 1-D the probability density of the energy  ε  of a mode is given classically by 

Boltzmann’s law :  

                                                                    𝛲(𝜀) =  
1

𝛵
𝑒                                                                             (1) 

where the average energy of all modes is   〈𝜀〉 = ∫ 𝜀𝛲(𝜀)𝑑𝜀 = 𝛵 

By quantizing the energy  ε = nκε0  of a mode located at level  κ ,  Eq.(1) transforms into the 

conditional probability that there are  n  photons in energy level  κ  i.e. that there are  n  

photons in the system, each having  κ  quanta: 

                                      𝑔(𝑛/𝜅) = 𝛢 𝑒
  

           ;   𝑛 = 0,1,2, …                                                         (2) 

where   θ = Τ/ε0   and   A =1 −  𝑒      so that  g(n/κ) is normalized: 

                                   𝑔(𝑛/𝜅) =  1 − 𝑒
 

  𝑒
  

 = 1                                                        (3) 

The derivation of Planck’s distribution from Eq.(2) is straightforward. The average number 

of photons in 1-D occupying level  κ  is given according to Eq.(2) by 

                    〈𝑛 〉 =  𝑛 𝑔(𝑛/𝜅) =  1 − 𝑒
 

  𝑛 𝑒
  

 =
1

𝑒 − 1
                                      (4) 
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and the average number of quanta existing in level  κ  in  1-D  reads 

                                           〈𝑞 〉 = 𝜅 〈𝑛 〉 =  
𝜅

𝑒 − 1 
                                                                                (5) 

where  θ = Τ/ε0  ;  ε0 = hc/2ℓ. Transforming Eq.(5) by using  ε = ε0 κ  ; dε = ε0 dκ ,   

we obtain the energy/cm within dε : 

                                       𝜌(𝜀)𝑑𝜀 =  
1

ℓ
 [〈𝑞 〉] /  𝜀  𝑑𝜅                                                                         (6) 

so that  

                                           𝜌(𝜀) =  
2

ℎ𝑐
 

𝜀

𝑒 − 1
                                                                                           (7) 

and the 1-D energy/cm is given by 

                              𝑢 =  𝜌(𝜀)𝑑𝜀 = 
2

ℎ𝑐
 𝑇  

𝑥

𝑒 − 1
 𝑑𝑥 =  

  𝜋

3
 
  𝛵

ℎ𝑐
                                             (8) 

Introducing  u = E/ℓ ; E = sε0 ; ε0 = hc/2ℓ into Eq.(8) we also get the important 1-D 

relation 

                                                 𝜃 ≡
𝛵

𝜀
=

√6𝑠

𝜋
                                                                                            (9) 

In 3-D,  〈𝑞 〉 given by Eq.(5) should be multiplied [3]  by the Rayleigh-Jeans  coefficient  πκ2 

containing the 1/8 positive shell correction of the frequency grid and the factor 2 regarding 

polarization: 

                                                  〈𝑞 〉 =
𝜋𝜅

𝑒 − 1
                                                                                        (10) 

where  θ = Τ/ε0 , ε0 = hc/2ℓ. Transforming Eq.(10) by using  ε = ε0κ ; dε = ε0dκ, the 

energy/cm3  within  dε  reads: 

                                                         𝜌(𝜀)𝑑𝜀 =  
1

ℓ
 [〈𝑞 〉] /   𝜀  𝑑𝜅                                                  (11) 

so that we obtain Planck’s distribution  for the energy/cm3 per unit energy within the 

cavity: 

                                                             𝜌(𝜀) =  
8𝜋

ℎ 𝑐
 

𝜀

𝑒 − 1
                                                                  (12) 

 

and the energy/cm3 given by Stephan’s law: 
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                              𝑢 =  𝜌(𝜀)𝑑𝜀 = 
8𝜋

ℎ 𝑐
 𝑇  

𝑥

𝑒 − 1
 𝑑𝑥 =  

8𝜋

15
 

𝛵

ℎ 𝑐
                                   (13) 

We observe that the derivation of the conditional probability g(n/κ) [Εq.(2)]  from 

Boltzmann’s law  [Eq.(1)],  presents some conceptual difficulties:  

The first problem is that separation into different sub-systems corresponding to modes of 

various frequencies (assumption I) is not a global approach to the construction of statistics 

for a closed system. However, in the conventional theory this separation into sub-systems 

is necessary because, although the number  s  of quanta of the closed system is fixed, the 

total number  N  of photons formed from these quanta is random.  Therefore, Boltzmann’s 

method of distributing  s  quanta into  N  fixed particles [4] cannot be used globally in the 

present case. 

The second problem is that photons are indistinguishable particles obeying Bose statistics. 

Therefore, even separation of the system into sub-systems, cannot justify the use of 

Boltzmann’s law for each sub-system since the derivation of this law [4] is based on 

distinguishable particles. This is why, additional consideration of interactions between 

radiation and matter becomes necessary in the conventional theory (assumption II). 

Note that apart from the above problems, a photon differs from a classical particle because 

the latter exists as a statistical entity at zero energy whereas the former does not. 

In the present paper, the conditional probability  g(n/κ)  [Eq.(2)] will be derived 

without resorting to Boltzmann’s law. Instead, the statistical foundations of black-body 

radiation will be based on the number theory of partitions. In particular, in section 2 a 

global approach is considered for a closed system containing  s  quanta of energy  ε0  and 

described by a single conservation equation. Also, the principle of equal probabilities of 

quantum states [4] is introduced and its relation to the number of partitions  ps  of  s  is 

outlined. In section 3 the states of the system are represented by diagrams containing all 

statistical information of the problem. Also it is shown that the conditional probabilities 

g(n/κ) calculated from the above diagrams as well as the average number of photons  〈𝑛 〉  

and quanta  〈𝑞 〉  occupying the energy level  κ, can be expressed exactly in terms of 

partitions. In section 4 a general theory valid for arbitrary  s  is developed and the 

behaviour of  g(n/κ)  is studied for large  s  using the Hardy-Ramanujan formula. Hence, 
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Eq.(2) leading to Planck’s distribution is obtained explicitly without resorting to 

Boltzmann’s law.  

 

 

2. The principle of equal probabilities of quantum states 

 

We consider a 1-D system of total energy  E = sε0  containing  s  quanta of energy  ε0= hc/2ℓ  

where  ℓ~length of system. These quanta imply the existence of energy levels  κ=1, 2, …, s 

and form N  photons where the number  N=1, 2, …, s  is random.
 †

 If a photon consists of  κ  

quanta, then it occupies the energy level  κ  and has energy  κε0. 

The number of states describing the photons is equal to the number  ps  of integer solutions 

of the equation  

 

                            n1+2n2 +3n3 + … + sns = s             (14) 

 

where  n1 ≥ 0  ;  n2 ≥ 0 ; … ; ns ≥ 0  are the numbers of photons occupying the energy levels  

κ=1, 2, …, s  respectively. Assuming photons are  indistinguishable particles  obeying  Bose 

statistics,  it is the states (n1, n2, …, ns) defined by Eq.(14) that consist the statistical basis of 

the 1-D photon gas. Thus, we introduce the main principle [4] of the present theory:  

 

All quantum states defined by Eq.(14) occur with equal probability 1/ps 

 

Now since  ps  as defined by Eq.(14), represents also the number of partitions of the integer 

s , we will further study the problem of black-body radiation using the number theory of 

partitions. In particular,  ps  is given exactly [5] by 

                       𝑝 =
2

𝜋

𝑠𝑖𝑛[(𝑠 + 𝜅)𝑥]

𝑠𝑖𝑛(𝜅𝑥)
 𝑐𝑜𝑠[(𝑠 − 2𝑠)𝑥]𝑑𝑥                                             (15)

/

 

                                                           
† Note here the difference between the present theory where the total number of photons  
N=n1+n2+…+ns  is random, and Boltzmann’s method [4] where the total number of particles 
N=n1+n2+…+ns  is fixed and together with Eq.(14) defines the states and the configurations of the system. 
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and its asymptotic behaviour for large  s  can be expressed by the Hardy-Ramanujan 

formula [6]:  

                         𝑝 =
𝑎

𝑠
 𝑒  √      ;      𝑎 =

1

4√3
    ;        𝑏 = 𝜋 2/3                                             (16)  

 

Also, a very important expansion of  ps  that relates to the present problem is the following 

                                                       𝑝 = 𝛾 (𝑁)                                                                          (17) 

where  γs(N)  ;  N=1, 2, …, s  is the number of partitions of s that have N terms in their sum.  

Up to s=10,  Eq.(17) is represented by the following table: 

 

s ps γs(1) γs(2) γs(3) γs(4) γs(5) γs(6) γs(7) γs(8) γs(9) γs(10) 

1 1 1 
         

2 2 1 1 
        

3 3 1 1 1 
       

4 5 1 2 1 1 
      

5 7 1 2 2 1 1 
     

6 11 1 3 3 2 1 1     

7 15 1 3 4 3 2 1 1    

8 22 1 4 5 5 3 2 1 1   

9 30 1 4 7 6 5 3 2 1 1  

10 42 1 5 8 9 7 5 3 2 1 1 

    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Table 1: Apart from the terms  γs(1)=1,  s=1, 2, 3, … all other terms can be derived  

                from the symplectic relation: 

               𝛾 (𝑁) = 𝛾 (𝑁 − 1) + 𝛾 (𝑁)    ;        2 ≤ 𝑁 ≤ 𝑠   ;   𝑠 = 2, 3, …       

Table 1 has been previously introduced in number theory by H. Griffin [7] and was later 

extended by J. Leach [8]. 

In the present work we observe that according to the principle of equal probabilities of 

quantum states introduced above, the probability  Ψs(N) ;  N= 1, 2, …, s  that  N photons are 

formed in a 1-D system consisting of  s  quanta, is given by 

                                          𝛹 (𝑁) =
𝛾 (𝑁)

𝑝
                                                                            (18) 
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where  γs(N)  are defined in Eq.(17) and given in Table 1 so that  Ψs(N)  is normalized. 

According to distribution (18), the average number of photons  formed in a 1-D system 

consisting of  s  quanta reads 

                                           〈𝑁〉 = 𝑁 𝛹 (𝑁)                                                                   (19) 

 

and the average quanta/photon in a 1-D system consisting of  s  quanta can be expressed as 

                                           〈𝜅〉 = 𝑠
𝛹 (𝑁)

𝑁
                                                                    (20) 

Note that the conditional  average quanta / photon given that the system has  N  photons is 

 〈𝜅/𝑁〉 = 𝑠/𝑁. The above averages will be calculated explicitly for various values of  s  

together with the conditional probabilities  g(n/κ)  in the next section. 

 

 

3. Diagrammatic representation of quantum states 

 

The states defined by Eq.(14) describing a 1-D closed system containing  s  quanta of 

energy  ε0  and a random number  N=1, 2, …, s  of photons formed by these quanta, can be 

represented by diagrams. 

For example, the diagram of Fig.1 represents a state of a 

system containing  s=7 quanta forming  N=3  photons. There 

are  n2=2 photons located at the energy level 2 (i.e. each 

photon has 2 quanta) and  n3=1 photon located at the energy 

level 3 (i.e. this photon has 3 quanta). 
 

Fig. 1 

In this section the conditional probability  g(n/κ)  that there are  n photons in the energy 

level  κ :   

I. will be calculated directly from the diagrams according to the principle of equal 

probabilities of quantum states  i.e.   

g(n/κ) = number of states where level  κ  has  n photons / total number of states  ps  

II.  will be expressed exactly  in terms of partitions (new idea of present article). 

0 1 2 3 4 5 6 7
κ



 
8 

Also, the average number of photons occupying level κ : 

                                 〈𝑛 〉 = 𝑛 𝑔(𝑛/𝜅)                                                                           (21) 

as well as the average number of quanta existing in level κ : 

                                  〈𝑞 〉 = 𝜅 〈𝑛 〉                                                                                        (22) 

will be also expressed exactly in terms of partitions. 

It becomes clear that always we have  

                                  〈𝑛 〉 = 〈𝑁〉                                                                                      (23) 

where the average number of photons  〈𝑁〉   existing in a 1-D system of  s  quanta is defined 

by Eq.(19). Also, as expected  

                                 〈𝑞 〉 = 𝑠                                                                                            (24) 

is always valid. 

Let us consider next in detail the cases  s = 2, 3, … , 9. 

   s = 2 quanta ;     p2 = 2 states 

Eq.(14) reads 

n1+2n2 = 2                      (25) 

Diagrams 

    

    Ν=1         Ν=2 

 

From Eqs (19, 20) we have 

                              〈𝑁〉 = 1 ∙
1

2
+ 2 ∙

1

2
=

3

2
 (𝑝ℎ)                                                                                  (26) 

 

                              〈𝜅〉 = 2
1

1
∙

1

2
+

1

2
∙

1

2
=

3

2
 (𝑞𝑢/𝑝ℎ)                                                                     (27) 

0 1 2 0 1 2

1/2 1/2 

0 1 2 3

Ψ2 (Ν)

N
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Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2   and express the results in terms of 

partitions: 

 

κ=1 

g (0 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

2
               g (1 1⁄ ) =  

𝑝 − 𝑝

𝑝
= 0             g (2 1⁄ ) =  

𝑝

𝑝
=

1

2
   

Norm.  g(0 1⁄ ) +  g(1 1⁄ ) +  g(2 1⁄ ) =  1                                                                                           (28) 

〈𝑛 〉  =  0 ∙ 𝑔(0 1⁄ ) + 1 ∙ 𝑔(1 1⁄ ) + 2 ∙ 𝑔(2 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) = 1                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 ) = 1                                                                      

 

κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

2
           g (1 2⁄ ) =  

𝑝

𝑝
=

1

2
           Norm.  g(0/2) + g(1/2) = 1     

〈𝑛 〉 = 0 ∙ 𝑔(0/2) + 1 ∙ 𝑔(1/2) =  
𝑝

𝑝
=

1

2
                 〈𝑞 〉 = 2 ∙ 〈𝑛 〉 =  

2𝑝

𝑝
= 1                     (29)  

 

Also, we obtain the average number of photons existing in a system of   s=2  quanta, given 

also by Eq.(26), as  

                                        〈𝑁〉 = 〈𝑛 〉 + 〈𝑛 〉 =
1

𝑝
(𝑝 + 2𝑝 ) =

3

2
(𝑝ℎ)                                          (30) 

and as expected, the sum of the average number of quanta existing in energy levels 1,2 

according to Eq.(24) reads 

                                              𝑠 = 〈𝑞 〉 + 〈𝑞 〉 =
1

𝑝
(𝑝 + 3𝑝 ) = 2(𝑞𝑢)                                            (31) 

   s = 3 quanta ;     p3 = 3 states 

Eq.(14) reads 

n1+2n2 +3n3 = 3                    (32) 

       

  N=1        N=2       N=3 

0 1 2 3 0 1 2 3 0 1 2 3
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From Eqs (19,20) we have 

                                〈𝑁〉 = 1 ∙
1

3
+ 2 ∙

1

3
+ 3 ∙

1

3
= 2 (𝑝ℎ)                                                                   (33) 

 

                                〈𝜅〉 = 3
1

1
∙

1

3
+

1

2
∙

1

3
+

1

3
∙

1

3
=

11

6
 (𝑞𝑢/𝑝ℎ)                                                   (34) 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3   and express the results in terms of 

partitions: 

 

κ=1 

𝑔(0/1) =  
𝑝 − 𝑝

𝑝
=

1

3
         𝑔(1/1) =

𝑝 − 𝑝

𝑝
=

1

3
           𝑔(2/1) =

𝑝 − 𝑝

𝑝
= 0 

𝑔(3/1) =  
𝑝

𝑝
=

1

3
                  Norm.  g(0/1)  +  g(1/1)  +  g(2/1)  +  g(3/1)  =  1   

〈𝑛 〉 = 0 ∙ 𝑔(0/1) + 1 ∙ 𝑔(1/1) + 2 ∙ 𝑔(2/1) + 3 ∙ 𝑔(3/1) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

4

3
            (35) 

〈𝑞 〉 = 1 ∙ 〈𝑛 〉 =
1

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

4

3
 

 

κ=2 

𝑔(0/2) =  
𝑝 − 𝑝

𝑝
=

2

3
              𝑔(1/2) =

𝑝

𝑝
=

1

3
           Norm.  g(0/2)  +  g(1/2)  =  1        

〈𝑛 〉 = 0 ∙ 𝑔(0/2) + 1 ∙ 𝑔(1/2) =
𝑝

𝑝
=

1

3
                   〈𝑞 〉 = 2 ∙ 〈𝑛 〉 =

2𝑝

𝑝
=

2

3
                     (36)  

 

 

 

 

1/3 1/3 1/3 

0 1 2 3 4

Ψ3(Ν)

N
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κ=3 

𝑔(0/3) =  
𝑝 − 𝑝

𝑝
=

2

3
              𝑔(1/3) =

𝑝

𝑝
=

1

3
          Norm.  g(0/3) +  g(1/3) =  1           

〈𝑛 〉 = 0 ∙ 𝑔(0/3) + 1 ∙ 𝑔(1/3) =
𝑝

𝑝
=

1

3
                   〈𝑞 〉 = 3 ∙ 〈𝑛 〉 =

3𝑝

𝑝
= 1                     (37) 

 

Also, we obtain the average number of photons existing in a system of    s=3  quanta, given 

also by Eq.(33), as  

                                 〈𝑁〉 = 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 =
1

𝑝
(𝑝 + 2𝑝 + 2𝑝 ) = 2 (𝑝ℎ)                       (38) 

and as expected, the sum of the average number of quanta existing in energy levels 1,2,3 

according to Eq.(24) reads 

                                       𝑠 = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 =
1

𝑝
(𝑝 + 3𝑝 + 4𝑝 ) = 3 (𝑞𝑢)                         (39) 

 

   s = 4 quanta ;     p4 = 5 states 

Eq.(14) reads 

         n1+2n2 +3n3 +4n4 = 4                  (40) 

 

Diagrams 

    

   Ν=1         Ν=2          Ν=2           Ν=3 

 

 

     

       Ν=4 

 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

1/5 

2/5 

1/5 1/5 

0 1 2 3 4 5

Ψ4(Ν)

N
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From Eqs (19,20) we have 

〈𝑁〉 = 1 ∙
1

5
+ 2 ∙

2

5
+ 3 ∙

1

5
+ 4 ∙

1

5
=

12

5
 (𝑝ℎ)                                                                                  (41) 

〈𝜅〉 = 4
1

1
∙

1

5
+

1

2
∙

2

5
+

1

3
∙

1

5
+

1

4
∙

1

5
=

31

15
 (𝑞𝑢/𝑝ℎ)                                                                     (42) 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3,4   and express the results in terms of 

partitions: 

 

κ=1 

𝑔(0/1) =
𝑝 − 𝑝

𝑝
=

2

5
               𝑔(1/1) =

𝑝 − 𝑝

𝑝
=

1

5
             𝑔(2/1) =

𝑝 − 𝑝

𝑝
=

1

5
     

𝑔(3/1) =
𝑝 − 𝑝

𝑝
= 0                𝑔(4/1) =

𝑝

𝑝
=

1

5
                 Norm. 𝑔(𝑛/1) = 1                (43) 

〈𝑛 〉 = 𝑛𝑔(𝑛/1) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

7

5
 

〈𝑞 〉 = 1 ∙ 〈𝑛 〉 =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

7

5
 

 

κ=2 

𝑔(0/2) =
𝑝 − 𝑝

𝑝
=

3

5
               𝑔(1/2) =

𝑝 − 𝑝

𝑝
=

1

5
             𝑔(2/2) =

𝑝

𝑝
=

1

5
     

Norm. 𝑔(𝑛/2) = 1                                                                                                                            (44) 

〈𝑛 〉  =   𝑛𝑔(𝑛/2) =
1

𝑝
(𝑝 + 𝑝 ) =

3

5
               〈𝑞 〉 = 2 ∙ 〈𝑛 〉 =

2

𝑝
(𝑝 + 𝑝 ) =

6

5
             

 

κ=3 

𝑔(0/3) =
𝑝 − 𝑝

𝑝
=

4

5
               𝑔(1/3) =

𝑝

𝑝
=

1

5
                    Norm. 𝑔(𝑛/3) = 1             (45) 

〈𝑛 〉  =   𝑛𝑔(𝑛/3) =
𝑝

𝑝
=

1

5
                                   〈𝑞 〉 = 3 ∙ 〈𝑛 〉 =

3𝑝

𝑝
=

3

5
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κ=4 

𝑔(0/4) =
𝑝 − 𝑝

𝑝
=

4

5
               𝑔(1/4) =

𝑝

𝑝
=

1

5
                    Norm. 𝑔(𝑛/4) = 1             (46) 

〈𝑛 〉  =   𝑛𝑔(𝑛/4) =
𝑝

𝑝
=

1

5
                                   〈𝑞 〉 = 4 ∙ 〈𝑛 〉 =

4𝑝

𝑝
=

4

5
        

 

Also, we obtain the average number of photons existing in a system of    s=4  quanta, given 

also by Eq.(41), as  

              〈𝑁〉 = 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 =
1

𝑝
(𝑝 + 2𝑝 + 2𝑝 + 3𝑝 ) =

12

5
 (𝑝ℎ)             (47) 

and as expected, the sum of the average number of quanta existing in energy levels 1,2,3,4 

according to Eq.(24) reads 

                  𝑠 = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 =
1

𝑝
(𝑝 + 3𝑝 + 4𝑝 + 7𝑝 ) = 4 (𝑞𝑢)                   (48) 

 

   s = 5 quanta ;     p5 = 7 states 

Eq.(14) reads 

          n1 + 2n2 + 3n3 + 4n4 + 5n5 = 5               (49) 

 

Diagrams 

    

   N=1       N=2      N=2      N=3 

    

   N=3        N=4       N=5 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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From Eqs (19,20) we have 

〈𝑁〉 = 1 ∙
1

7
+ 2 ∙

2

7
+ 3 ∙

2

7
+ 4 ∙

1

7
+ 5 ∙

1

7
=

20

7
 (𝑝ℎ)                                                                     (50) 

 

〈𝜅〉 = 5
1

1
∙

1

7
+

1

2
∙

2

7
+

1

3
∙

2

7
+

1

4
∙

1

7
+

1

5
∙

1

7
=

187

84
 (𝑞𝑢/𝑝ℎ)                                                     (51) 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3,4,5   and express the results in terms of 

partitions: 

 

κ=1 

g (0/1) =  
𝑝 − 𝑝

𝑝
=

2

7
               g (1 1⁄ ) =  

𝑝
4

− 𝑝
3

𝑝
5

=
2

7
              g (2 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

1

7
 

g (3 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

7
              g (4 1⁄ ) =  

𝑝
1

− 𝑝
0

𝑝
5

= 0                  g (5 1⁄ ) =  
𝑝

𝑝
=

1

7
 

Norm. 𝑔(𝑛 1⁄ ) = 1                                                                                                                            (52) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

12

7
                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

12

7
  

 

 

 

 

1/7 

2/7 2/7 

1/7 1/7 

0 1 2 3 4 5 6

Ψ5(Ν)

N
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κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

4

7
             g (1 2⁄ ) =  

𝑝
3

− 𝑝
1

𝑝
5

=
2

7
                g (2 2⁄ ) =  

𝑝

𝑝
=

1

7
 

𝑁𝑜𝑟𝑚. 𝑔(𝑛 2⁄ ) = 1                                                                                                                           (53) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 2⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

4

7
                  〈𝑞 〉  =  2 ∙ 〈𝑛 〉  =  

2

𝑝
(𝑝 + 𝑝 ) =

8

7
  

 

κ=3 

g (0 3⁄ ) =  
𝑝 − 𝑝

𝑝
=

5

7
            g (1 3⁄ ) =  

𝑝
2

𝑝
5

=
2

7
           Norm. 𝑔(𝑛 3⁄ ) = 1                      

〈𝑛 〉  =  𝑛 𝑔(𝑛 3⁄ ) =
𝑝

𝑝
=

2

7
                                     〈𝑞 〉  =  3 ∙ 〈𝑛 〉  =  

3𝑝

𝑝
=

6

7
                 (54) 

 

κ=4 

g (0 4⁄ ) =  
𝑝 − 𝑝

𝑝
=

6

7
             g (1 4⁄ ) =  

𝑝
1

𝑝
5

=
1

7
         Norm. 𝑔(𝑛 4⁄ ) = 1                        

〈𝑛 〉  =  𝑛 𝑔(𝑛 4⁄ ) =
𝑝

𝑝
=

1

7
                                    〈𝑞 〉  =  4 ∙ 〈𝑛 〉  =  

4𝑝

𝑝
=

4

7
                  (55) 

 

κ=5 

g (0 5⁄ ) =  
𝑝 − 𝑝

𝑝
=

6

7
               g (1 5⁄ ) =  

𝑝
0

𝑝
5

=
1

7
        Norm. 𝑔(𝑛 5⁄ ) = 1 

〈𝑛 〉  =  𝑛 𝑔(𝑛 5⁄ ) =
𝑝

𝑝
=

1

7
                                    〈𝑞 〉  =  5 ∙ 〈𝑛 〉  =  

5𝑝

𝑝
=

5

7
                 (56)  

Also, we obtain the average number of photons existing in a system of    s=5  quanta, given 

also by Eq.(50), as  

〈𝑁〉 = 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 =
1

𝑝
(𝑝 + 2𝑝 + 2𝑝 + 3𝑝 + 2𝑝 ) =

20

7
 (𝑝ℎ)  (57) 
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and as expected, the sum of the average number of quanta existing in energy levels 1,2,3,4,5 

according to Eq.(24) reads 

𝑠 = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 =
1

𝑝
(𝑝 + 3𝑝 + 4𝑝 + 7𝑝 + 6𝑝 ) = 5 (𝑞𝑢)             (58) 

 

   s = 6 quanta ;     p6 = 11 states 

Eq.(14) reads 

n1 + 2n2 + 3n3 + 4n4 + 5n5 +6n6= 6             (59) 

 

Diagrams 

       

   N=1         N=2            N=2           N=2 

      

      N=3            N=3           N=3         N=4 

   

   N=4          N=5       N=6 

 

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
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From Eqs (19,20) we have 

〈𝑁〉 = 1 ∙ + 2 ∙ + 3 ∙ + 4 ∙ + 5 ∙  +6 ∙  = (𝑝ℎ)           (60) 

〈𝜅〉 =6 ∙ + ∙ + ∙ + ∙ + ∙ + ∙ =  (𝑞𝑢/𝑝ℎ)              (61) 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3,4,5,6   and express the results in terms of 

partitions: 

 

κ=1 

g (0 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

4

11
           g (1 1⁄ ) =  

𝑝
5

− 𝑝
4

𝑝
6

=
2

11
          g (2 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

11
 

g (3 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

11
           g (4 1⁄ ) =  

𝑝
2

− 𝑝
1

𝑝
6

=
1

11
           g (5 1⁄ ) =  

𝑝 − 𝑝

𝑝
= 0 

g (6 1⁄ ) =  
𝑝

0

𝑝
6

=
1

11
                         Norm. 𝑔(𝑛 1⁄ ) = 1                                                                 (62) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

19

11
                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

19

11
  

 

κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

6

11
           g (1 2⁄ ) =  

𝑝
4

− 𝑝
2

𝑝
6

=
3

11
         g (2 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

1

11
 

1/11

3/11 3/11

2/11

1/11 1/11

0 1 2 3 4 5 6 7

Ψ6(Ν)

N
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g (3 2⁄ ) =  
𝑝

𝑝
=

1

11
                      𝑁𝑜𝑟𝑚. 𝑔(𝑛 2⁄ ) = 1                                                                (63) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 2⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

8

11
                 

〈𝑞 〉  =  2 ∙ 〈𝑛 〉  =  
2

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

16

11
  

 

κ=3 

g (0 3⁄ ) =  
𝑝 − 𝑝

𝑝
=

8

11
           g (1 3⁄ ) =  

𝑝
3

− 𝑝
0

𝑝
6

=
2

11
         g (2 3⁄ ) =  

𝑝

𝑝
=

1

11
 

𝑁𝑜𝑟𝑚. 𝑔(𝑛 3⁄ ) = 1                                                                                                                            (64) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 3⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

4

11
              〈𝑞 〉  =  3 ∙ 〈𝑛 〉  =  

3

𝑝
(𝑝 + 𝑝 ) =

12

11
   

 

κ=4 

g (0 4⁄ ) =  
𝑝 − 𝑝

𝑝
=

9

11
           g (1 4⁄ ) =  

𝑝
2

𝑝
6

=
2

11
                 Norm. 𝑔(𝑛 4⁄ ) = 1 

〈𝑛 〉  =  𝑛 𝑔(𝑛 4⁄ ) =
𝑝

𝑝
=

2

11
                                 〈𝑞 〉  =  4 ∙ 〈𝑛 〉  =  

4𝑝

𝑝
=

8

11
                (65) 

 

κ=5 

g (0 5⁄ ) =  
𝑝 − 𝑝

𝑝
=

10

11
             g (1 5⁄ ) =  

𝑝
1

𝑝
6

=
1

11
                 Norm. 𝑔(𝑛 5⁄ ) = 1 

〈𝑛 〉  =  𝑛 𝑔(𝑛 5⁄ ) =
𝑝

𝑝
=

1

11
                                 〈𝑞 〉  =  5 ∙ 〈𝑛 〉  =  

5𝑝

𝑝
=

5

11
                (66) 

 

κ=6 

g (0 6⁄ ) =  
𝑝 − 𝑝

𝑝
=

10

11
             g (1 6⁄ ) =  

𝑝
0

𝑝
6

=
1

11
               Norm. 𝑔(𝑛 6⁄ ) = 1 

〈𝑛 〉  =  𝑛 𝑔(𝑛 6⁄ ) =
𝑝

𝑝
=

1

11
                                 〈𝑞 〉  =  6 ∙ 〈𝑛 〉  =  

6𝑝

𝑝
=

6

11
                (67) 
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Also, we obtain the average number of photons existing in a system of    s=6  quanta, given 

also by Eq.(60), as  

 

〈𝑁〉  = 〈𝑛 〉 + 〈𝑛 〉 +〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉  

     =
1

𝑝
(𝑝 + 2𝑝 + 2𝑝 + 3𝑝 + 2𝑝 + 4𝑝 ) =

35

11
 (𝑝ℎ)                                                          (68) 

and as expected, the sum of the average number of quanta existing in energy  

levels 1,2,3,4,5,6 according to Eq.(24) reads 

 

s = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉  

   =
1

𝑝
(𝑝 + 3𝑝 + 4𝑝 + 7𝑝 + 6𝑝 + 12𝑝 ) = 6 (𝑞𝑢)                                                                (69) 

 

   s = 7 quanta ;     p7 = 15 states 

Eq.(14) reads 

n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6 +7n7 = 7                    (70) 

 

Diagrams 

    

   N=1       N=2       N=2       N=2 

    

   N=3         N=3        N=3       N=3 

 

 

 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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   N=4       N=4            N=4                 N=5 

   

     N=5         N=6         N=7 

 

 

From Eqs (19,20) we have 

 

〈𝑁〉  = 1 ∙ + 2 ∙ + 3 ∙ + 4 ∙ + 5 ∙ +6 + 7  = (𝑝ℎ)              (71) 

 

〈𝜅〉  = 7 ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙ =  (𝑞𝑢/𝑝ℎ)           (72) 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3,4,5,6,7   and express the results in terms 

of partitions: 

 

κ=1 

g (0 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

4

15
           g (1 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

15
            g (2 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

15
 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1/15

3/15 

4/15

3/15 

2/15

1/15 1/15

0 1 2 3 4 5 6 7 8

Ψ7(Ν)     

N
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g (3 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

2

15
            g (4 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

1

15
           g (5 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

1

15
 

g (6 1⁄ ) =  
𝑝 − 𝑝

𝑝
= 0              g(7/1) =

𝑝

𝑝
=

1

15
              Norm. 𝑔(𝑛 1⁄ ) = 1                 (73) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

30

15
                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

30

15
  

 

κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

8

15
           g (1 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

15
            g (2 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

15
 

g (3 2⁄ ) =  
𝑝

𝑝
=

1

15
                Norm. 𝑔(𝑛 2⁄ ) = 1                                                                       (74) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 2⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

11

15
                 

〈𝑞 〉  =  2 ∙ 〈𝑛 〉  =  
2

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

22

15
  

 

κ=3 

g (0 3⁄ ) =  
𝑝 − 𝑝

𝑝
=

10

15
           g (1 3⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

15
             g (2 3⁄ ) =  

𝑝

𝑝
=

1

15
 

Norm. 𝑔(𝑛 3⁄ ) = 1                                                                                                                            (75) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 3⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

6

15
               〈𝑞 〉  =  3 ∙ 〈𝑛 〉  =  

3

𝑝
(𝑝 + 𝑝 ) =

18

15
  

 

κ=4 

g (0 4⁄ ) =  
𝑝 − 𝑝

𝑝
=

12

15
           g (1 4⁄ ) =  

𝑝

𝑝
=

3

15
                Norm. 𝑔(𝑛 4⁄ ) = 1               



 
22 

〈𝑛 〉  =  𝑛 𝑔(𝑛 4⁄ ) =
𝑝

𝑝
=

3

15
                                 〈𝑞 〉  =  4 ∙ 〈𝑛 〉  =  

4𝑝

𝑝
=

12

15
                (76) 

 

κ=5 

g (0 5⁄ ) =  
𝑝 − 𝑝

𝑝
=

13

15
            g (1 5⁄ ) =  

𝑝

𝑝
=

2

15
           𝑁𝑜𝑟𝑚. 𝑔(𝑛 5⁄ ) = 1              

〈𝑛 〉  =  𝑛 𝑔(𝑛 5⁄ ) =
𝑝

𝑝
=

2

15
                                 〈𝑞 〉  =  5 ∙ 〈𝑛 〉  =  

5𝑝

𝑝
=

10

15
                (77) 

 

κ=6 

g (0 6⁄ ) =  
𝑝 − 𝑝

𝑝
=

14

15
            g (1 6⁄ ) =  

𝑝

𝑝
=

1

15
           Norm. 𝑔(𝑛 6⁄ ) = 1              

〈𝑛 〉  =  𝑛 𝑔(𝑛 6⁄ ) =
𝑝

𝑝
=

1

15
                                 〈𝑞 〉  =  6 ∙ 〈𝑛 〉  =  

6𝑝

𝑝
=

6

15
                (78) 

 

κ=7 

g (0 7⁄ ) =  
𝑝 − 𝑝

𝑝
=

14

15
            g (1 7⁄ ) =  

𝑝

𝑝
=

1

15
           Norm. 𝑔(𝑛 7⁄ ) = 1              

〈𝑛 〉  =  𝑛 𝑔(𝑛 7⁄ ) =
𝑝

𝑝
=

1

15
                                 〈𝑞 〉  =  7 ∙ 〈𝑛 〉  =  

7𝑝

𝑝
=

7

15
                (79) 

 

Also, we obtain the average number of photons existing in a system of    s=7  quanta, given 

also by Eq.(71), as  

 

〈𝑁〉  = 〈𝑛 〉 + 〈𝑛 〉 +〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉  

          =
1

𝑝
(𝑝 +2𝑝 + 2𝑝 + 3𝑝 + 2𝑝 + 4𝑝 + 2𝑝 ) =

54

15
 (𝑝ℎ)                                              (80) 

and as expected, the sum of the average number of quanta existing in energy  

levels 1,2,3,4,5,6,7 according to Eq. (24) reads 

 

s = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉  

   =
1

𝑝
(𝑝 +3𝑝 + 4𝑝 + 7𝑝 + 6𝑝 + 12𝑝 + 8𝑝 ) = 7 (𝑞𝑢)                                                      (81) 
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   s = 8 quanta ;     p8 = 22 states 

Eq.(14) reads 

n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6 + 7n7 + 8n8 = 8                  (82) 

 

Diagrams 

    

   N=1          N=2       N=2          N=2 

    

   N=2        N=3          N=3        N=3 

      

   N=3       N=3         N=4         N=4 

     

   N=4         N=4        N=4         N=5 

 

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
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   N=5           N=5        N=6          N=6 

  

   N=7          N=8 

 

 

From Eqs (19,20) we have 

 

〈𝑁〉 = 1 ∙ + 2 ∙ + 3 ∙ + 4 ∙ + 5 ∙ +6 ∙ + 7 ∙ + 8 ∙  = (𝑝ℎ)      (83) 

 

〈𝜅〉 = 8 ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙ =  (𝑞𝑢/𝑝ℎ)   (84) 

 

 

Conditional probabilities 

Using the diagrams we calculate   g(n/κ);  κ=1,2,3,4,5,6,7,8   and express the results in 

terms of partitions: 

 

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1/22

4/22
5/22 5/22

3/22
2/22

1/22 1/22

0 1 2 3 4 5 6 7 8 9

Ψ8(Ν)

N
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κ=1 

g (0 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

7

22
           g (1 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

22
            g (2 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

22
 

g (3 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

2

22
           g (4 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

22
            g (5 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

1

22
 

g (6 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

22
           g(7/1) =

𝑝 − 𝑝

𝑝
= 0                  g(8/1) =

𝑝

𝑝
=

1

22
          

Norm. 𝑔(𝑛 1⁄ ) = 1                                                                                                                             (85) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

45

22
                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

45

22
  

 

κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

11

22
           g (1 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

6

22
            g (2 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

3

22
 

g (3 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

22
           g (4 2⁄ ) =  

𝑝

𝑝
=

1

22
                Norm. 𝑔(𝑛 2⁄ ) = 1             (86) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 2⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

19

22
                 

〈𝑞 〉  =  2 ∙ 〈𝑛 〉  =  
2

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

38

22
  

 

κ=3 

g (0 3⁄ ) =  
𝑝 − 𝑝

𝑝
=

15

22
           g (1 3⁄ ) =  

𝑝 − 𝑝

𝑝
=

5

22
            g (2 3⁄ ) =  

𝑝

𝑝
=

2

22
 

Norm. 𝑔(𝑛 3⁄ ) = 1                                                                                                                             (87) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 3⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

9

22
               〈𝑞 〉  =  3 ∙ 〈𝑛 〉  =  

3

𝑝
(𝑝 + 𝑝 ) =

27

22
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κ=4 

g (0 4⁄ ) =  
𝑝 − 𝑝

𝑝
=

17

22
           g (1 4⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

22
            g (2 4⁄ ) =  

𝑝

𝑝
=

1

22
 

Norm. 𝑔(𝑛 4⁄ ) = 1                                                                                                                             (88) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 4⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

6

22
               〈𝑞 〉  =  4 ∙ 〈𝑛 〉  =  

4

𝑝
(𝑝 + 𝑝 ) =

24

22
 

 

κ=5 

g (0 5⁄ ) =  
𝑝 − 𝑝

𝑝
=

19

22
           g (1 5⁄ ) =  

𝑝

𝑝
=

3

22
               Norm. 𝑔(𝑛 5⁄ ) = 1              (89) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 5⁄ ) =
𝑝

𝑝
=

3

22
                                  〈𝑞 〉  =  5 ∙ 〈𝑛 〉  =  

5𝑝

𝑝
=

15

22
 

 

κ=6 

g (0 6⁄ ) =  
𝑝 − 𝑝

𝑝
=

20

22
           g (1 6⁄ ) =  

𝑝

𝑝
=

2

22
                 Norm. 𝑔(𝑛 6⁄ ) = 1            (90) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 6⁄ ) =
𝑝

𝑝
=

2

22
                                  〈𝑞 〉  =  6 ∙ 〈𝑛 〉  =  

6𝑝

𝑝
=

12

22
 

 

κ=7 

g (0 7⁄ ) =  
𝑝 − 𝑝

𝑝
=

21

22
           g (1 7⁄ ) =  

𝑝

𝑝
=

1

22
                Norm. 𝑔(𝑛 7⁄ ) = 1             (91) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 7⁄ ) =
𝑝

𝑝
=

1

22
                                 〈𝑞 〉  =  7 ∙ 〈𝑛 〉  =  

7𝑝

𝑝
=

7

22
 

 

κ=8 

g (0 8⁄ ) =  
𝑝 − 𝑝

𝑝
=

21

22
          g (1 8⁄ ) =  

𝑝

𝑝
=

1

22
                 Norm. 𝑔(𝑛 8⁄ ) = 1             (92) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 8⁄ ) =
𝑝

𝑝
=

1

22
                                  〈𝑞 〉  =  8 ∙ 〈𝑛 〉  =  

8𝑝

𝑝
=

8

22
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Also, we obtain the average number of photons existing in a system of  s=8  quanta, given 

also by Eq.(83), as  

 

〈𝑁〉  = 〈𝑛 〉 + 〈𝑛 〉 +〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 

    =
1

𝑝
(𝑝 +2𝑝 +2𝑝 + 3𝑝 + 2𝑝 + 4𝑝 + 2𝑝 + 4𝑝 ) =

86

22
 (𝑝ℎ)                                    (93) 

and as expected, the sum of the average number of quanta existing in energy  

levels 1,2,3,4,5,6,7,8  according to Eq.(24) reads 

 

s  = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉   

    =
1

𝑝
(𝑝  + 3𝑝  + 4𝑝 + 7𝑝 + 6𝑝 + 12𝑝 + 8𝑝 + 15𝑝 ) = 8 (𝑞𝑢)                                    (94) 

 

   s = 9 quanta ;     p9 = 30 states 

Eq.(14) reads 

n1 + 2n2 + 3n3 + 4n4 + 5n5 +6n6 +7n7+8n8 +9n9= 9                (95) 

 

Diagrams 

    

    Ν=1          Ν=2         Ν=2           Ν=2 

       

    Ν=2         Ν=3        Ν=3           Ν=3 

 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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     Ν=3         Ν=3            Ν=3          Ν=3 

    

     Ν=4         Ν=4         Ν=4        Ν=4 

     

   Ν=4       Ν=4          Ν=5        Ν=5 

     

     Ν=5         Ν=5           Ν=5       Ν=6 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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   Ν=6         Ν=6         Ν=7          Ν=7 

  

     Ν=8        N=9 

 

 

From Eqs (19,20) we have 

 

〈𝑁〉  = 1 ∙ + 2 ∙ + 3 ∙ + 4 ∙ + 5 ∙  + 6 ∙ + 7 ∙ + 8 ∙ + 9 ∙  = (𝑝ℎ)  (96) 

 

〈𝜅〉  = 9 ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙ + ∙  

         =  (𝑞𝑢/𝑝ℎ)                              (97) 

 

 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1/30

4/30

7/30
6/30 

5/30 

3/30
2/30

1/30 1/30

0 1 2 3 4 5 6 7 8 9

Ψ9(Ν)

N
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Conditional probabilities 

Using the diagrams we calculate   g(n/κ)  ;  κ=1,2,3,4,5,6,7,8,9   and express the results in 

terms of partitions: 

 

κ=1 

g (0 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

8

30
           g (1 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

7

30
            g (2 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

30
 

g (3 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

4

30
           g (4 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

30
            g (5 1⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

30
 

g (6 1⁄ ) =  
𝑝 − 𝑝

𝑝
=

1

30
           g (7/1)  =  

𝑝 − 𝑝

𝑝
=

1

30
            g (8/1) =  

𝑝 − 𝑝

𝑝
 = 0          

g (9 1⁄ ) =  
𝑝

𝑝
=

1

30
                           Norm. 𝑔(𝑛 1⁄ ) = 1                                                            (98) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 1⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

67

30
                 

〈𝑞 〉  =  1 ∙ 〈𝑛 〉  =  
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

67

30
  

 

κ=2 

g (0 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

15

30
           g (1 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

8

30
            g (2 2⁄ ) =  

𝑝 − 𝑝

𝑝
=

4

30
 

g (3 2⁄ ) =  
𝑝 − 𝑝

𝑝
=

2

30
           g (4 2⁄ ) =  

𝑝

𝑝
=

1

30
                 Norm. 𝑔(𝑛 2⁄ ) = 1            (99) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 2⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

26

30
                 

〈𝑞 〉  =  2 ∙ 〈𝑛 〉  =  
2

𝑝
(𝑝 + 𝑝 + 𝑝 + 𝑝 ) =

52

30
  

 

κ=3 

g (0 3⁄ ) =  
𝑝 − 𝑝

𝑝
=

19

30
            g (1 3⁄ ) =  

𝑝 − 𝑝

𝑝
=

8

30
           g (2 3⁄ ) =  

𝑝 − 𝑝

𝑝
=

2

30
 

g (3 3⁄ ) =  
𝑝

𝑝
=

1

30
                              Norm. 𝑔(𝑛 3⁄ ) = 1                                                       (100) 
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〈𝑛 〉  =  𝑛 𝑔(𝑛 3⁄ ) =
1

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

15

30
                 

〈𝑞 〉  =  3 ∙ 〈𝑛 〉  =  
3

𝑝
(𝑝 + 𝑝 + 𝑝 ) =

45

30
  

 

κ=4 

g (0 4⁄ ) =  
𝑝 − 𝑝

𝑝
=

23

30
           g (1 4⁄ ) =  

𝑝 − 𝑝

𝑝
=

6

30
            g (2 4⁄ ) =  

𝑝

𝑝
=

1

30
 

Norm. 𝑔(𝑛 4⁄ ) = 1                                                                                                                           (101) 

〈𝑛 〉  =  𝑛 𝑔(𝑛 4⁄ ) =
1

𝑝
(𝑝 + 𝑝 ) =

8

30
                〈𝑞 〉  =  4 ∙ 〈𝑛 〉  =  

4

𝑝
(𝑝 + 𝑝 ) =

32

30
 

 

κ=5 

g (0 5⁄ ) =  
𝑝 − 𝑝

𝑝
=

25

30
           g (1 5⁄ ) =  

𝑝

𝑝
=

5

30
              Norm. 𝑔(𝑛 5⁄ ) = 1             (102) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 5⁄ ) =
𝑝

𝑝
=

5

30
                                  〈𝑞 〉  =  5 ∙ 〈𝑛 〉  =  

5𝑝

𝑝
=

25

30
   

 

κ=6 

g (0 6⁄ ) =  
𝑝 − 𝑝

𝑝
=

27

30
           g (1 6⁄ ) =  

𝑝

𝑝
=

3

30
                Norm. 𝑔(𝑛 6⁄ ) = 1           (103) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 6⁄ ) =
𝑝

𝑝
=

3

30
                                〈𝑞 〉  =  6 ∙ 〈𝑛 〉  =  

6𝑝

𝑝
=

18

30
            

κ=7 

g (0 7⁄ ) =  
𝑝 − 𝑝

𝑝
=

28

30
           g (1 7⁄ ) =  

𝑝

𝑝
=

2

30
               Norm. 𝑔(𝑛 7⁄ ) = 1            (104) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 7⁄ ) =
𝑝

𝑝
=

2

30
                                 〈𝑞 〉  =  7 ∙ 〈𝑛 〉  =  

7𝑝

𝑝
=

14

30
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κ=8 

g (0 8⁄ ) =  
𝑝 − 𝑝

𝑝
=

29

30
            g (1 8⁄ ) =  

𝑝

𝑝
=

1

30
               Norm. 𝑔(𝑛 8⁄ ) = 1           (105) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 8⁄ ) =
𝑝

𝑝
=

1

30
                                〈𝑞 〉  =  8 ∙ 〈𝑛 〉  =  

8𝑝

𝑝
=

8

30
            

 

κ=9 

g (0 9⁄ ) =  
𝑝 − 𝑝

𝑝
=

29

30
            g (1 9⁄ ) =  

𝑝

𝑝
=

1

30
               Norm. 𝑔(𝑛 9⁄ ) = 1           (106) 

 〈𝑛 〉  =  𝑛 𝑔(𝑛 9⁄ ) =
𝑝

𝑝
=

1

30
                                〈𝑞 〉  =  9 ∙ 〈𝑛 〉  =  

9𝑝

𝑝
=

9

30
            

 

Also, we obtain the average number of photons existing in a system of    s=9  quanta, given 

also by Eq.(96), as  

 

〈𝑁〉 = 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 + 〈𝑛 〉 

     =
1

𝑝
(𝑝 + 2𝑝  + 2𝑝  + 3𝑝 + 2𝑝 + 4𝑝 + 2𝑝 + 4𝑝 + 3𝑝 ) =

128

30
 (𝑝ℎ)                  (107) 

 

and as expected, the sum of the average number of quanta existing in energy  

levels 1,2,3,4,5,6,7,8,9 according to Eq.(24) reads 

 

s = 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉 + 〈𝑞 〉  

   =
1

𝑝
(𝑝 + 3𝑝  + 4𝑝  + 7𝑝 + 6𝑝 + 12𝑝 + 8𝑝 + 15𝑝 + 13𝑝 ) = 9 (𝑞𝑢)                    (108) 
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4. General theory for arbitrary number  s  of quanta and the limit   s  ∞  

 

Extending the results of the previous section to a system containing an arbitrary number  s  

of quanta, the leading terms of the conditional probability  g(n/κ) that there are  n  photons 

in energy level  κ,  can be expressed exactly in terms of partitions  as shown below: 

 

            n 

κ 
0 1 2 3 

1 
𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

2 
𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

3 
𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

4 
𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

𝑝 − 𝑝

𝑝
 

 

             Table  2 

 

Therefore, the leading terms of  g(n/κ)  can be written compactly as 

 

          g (𝑛 𝜅⁄ ) =  
𝑝 − 𝑝 ( )

𝑝
    ;      𝑛 = 0,1,2, . . .   ;      𝜅 = 1,2,3, …                               (109) 

 

Introducing the Hardy-Ramanujan formula [Eq. (16)] we get the behaviour of  g(n/κ)  for 

large  s : 

 

            𝑔(𝑛/𝜅) =

𝑎
𝑠 − 𝑛𝜅

𝑒 √ −
𝑎

𝑠 − (𝑛 + 1)𝜅
𝑒 ( )

𝑎
𝑠

𝑒 √
                                                   (110) 

where    𝑎 =
√

  ;    b=π 2/3 .     For  s ≫1   we have       

 

            √𝑠 − 𝑛𝜅 = √𝑠 1 −
𝑛𝜅

𝑠
≈ √𝑠 1 −

𝑛𝜅

2𝑠
= √𝑠 −

𝑛𝜅

2√𝑠
 

 

            𝑠 − (𝑛 + 1)𝜅 = √𝑠 1 −
(𝑛 + 1)𝜅

𝑠
 ≈ √𝑠 1 −

(𝑛 + 1)𝜅

2𝑠
= √𝑠 −

(𝑛 + 1)𝜅

2√𝑠
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so that 

 

                𝑔(𝑛/𝜅) ≈

𝑎

𝑠 1 −
𝑛𝜅
𝑠

𝑒
√

√  − 
𝑎

𝑠 1 −
(𝑛 + 1)𝜅

𝑠

𝑒
√

( )

√

𝑎
𝑠

𝑒 √
 

 

                𝑔(𝑛/𝜅) ≈ 1 − 𝑒
 

√
 

𝑒
 

√
 

                                                                                     (111) 

 

and since  b=π 2/3  [Eq.(16)] we also obtain: 

 

                 𝑔(𝑛/𝜅) = 1 − 𝑒
 
√

 
𝑒

 
√

 
        ;  𝑛 = 0,1,2, …                                                  (112) 

 

We observe that Eq.(112) coincides with Eq.(2) because according to Eq.(9) we have  

θ = Τ/ε = √6s/π.  Therefore, the conditional probability  g(n/κ)  [Eq.(2)] can be obtained 

without resorting to Boltzmann’s law and to interactions between radiation and matter. 

Hence, Planck’s distribution [Eq.(12)] may be further derived in 3-D as in the introduction, 

by using only conservation Eq.(14) and the principle of equal probabilities of quantum 

states. 

Another generalization that can be obtained from the above theory, is that the average 

number of photons  〈𝑁〉   of a  1-D system containing  s  quanta defined by Eq.(19), can be 

also expressed in terms of partitions [see Eqs (30, 38, 47, 57, 68, 80, 93, 107)] : 

 

                   〈𝑁〉 =
1

𝑝
(𝜈 𝑝 + 𝜈 𝑝 + ⋯ + 𝜈 𝑝 + 𝜈 𝑝 )                                                 (113) 

 

where each coefficient  νn ;  n=1,2,…, s  is equal to the  number of divisors of n  and has 

universal  numerical values  νn=(1, 2, 2, 3, 2, 4, 2, 4, 3,…..) independent of  s.  Note that in 

number theory [9]  νn  is denoted by  σ0 (n)  or  d(n). 

We observe that  νn  can be obtained by the following triangular algorithm where the 

columns are well defined harmonic sequences: 
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n νn   

1 1 = 1 

2 2 = 1 + 1 

3 2 = 1 + 0 + 1 

4 3 = 1 + 1 + 0 + 1 

5 2 = 1 + 0 + 0 + 0 + 1 

6 4 = 1 + 1 + 1 + 0 + 0 + 1 

7 2 = 1 + 0 + 0 + 0 + 0 + 0 + 1 

8 4 = 1 + 1 + 0 + 1 + 0 + 0 + 0 + 1 

9 3 = 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 1 

10 4 = 1 + 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        (114) 

 

Explicitly, the columns of the algorithm can be written as follows: 

              𝜏 (𝑛) =
1

𝜅
𝑐𝑜𝑠 2𝜋

𝑛

𝜅
𝑙    ;       𝑛 = 𝜅, 𝜅 + 1, 𝜅 + 2, … ;         𝜅 = 1,2,3, …             (115) 

so that  

𝜏 (𝑛) = 𝑐𝑜𝑠0 = (1, 1, 1, … )   ;    𝑛 = 1,2,3 

𝜏 (𝑛) =
1

2
{1 + cos (𝜋𝑛) } = (1, 0, 1, 0, … )   ;    𝑛 = 2,3,4, … 

𝜏 (𝑛) =
1

3
1 + cos

2𝜋

3
𝑛 + cos

4𝜋

3
𝑛  = (1, 0, 0, 1, 0, 0, … )   ;    𝑛 = 3,4, 5, … 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  (116) 

 

Therefore, the coefficients  νn  of  Eq.(113) are given exactly by the formula  

 

                 𝜈 = 𝜏 (𝑛) =
1

𝜅
 𝑐𝑜𝑠 2𝜋

𝑛

𝜅
𝑙        ;        𝑛 = 1,2,3, …                                (117) 

 

Also, the sum of the average number of quanta existing in the energy levels 1,2,3, …, s  is 

equal to  s  [Eq.(24)] and can be expressed in terms of partitions   

[see Eqs (31, 39, 48, 58, 69, 81, 94, 108)]: 

                   𝑠 =
1

𝑝
(𝜆 𝑝 + 𝜆 𝑝 + ⋯ + 𝜆 𝑝 + 𝜆 𝑝 )                                                          (118) 
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where each coefficient  λn  ;  n = 1, 2,…, s  is equal to  the sum of divisors of n  and has 

universal  numerical values  λn = (1, 3, 4, 7, 6, 12, 8, 15, 13, …) independent of  s.  Eq.(118) 

is well known in number theory [9] where  λn  is usually denoted by  σ1(n)  or  σ(n). Also, the 

coefficients  λn  were derived in ref. [10] using the following harmonic triangular algorithm: 

 

n λn   

1 1 = 1 

2 3 = 1 + 2 

3 4 = 1 + 0 + 3 

4 7 = 1 + 2 + 0 + 4 

5 6 = 1 + 0 + 0 + 0 + 5 

6 12 = 1 + 2 + 3 + 0 + 0 + 6 

7 8 = 1 + 0 + 0 + 0 + 0 + 0 + 7 

8 15 = 1 + 2 + 0 + 4 + 0 + 0 + 0 + 8 

9 13 = 1 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 9 

10 18 = 1 + 2 + 0 + 0 + 5 + 0 + 0 + 0 + 0 + 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      (119) 

 

As a result, the coefficients  λn  of Eq. (118) are given exactly by the formula : 

 

                                    𝜆 = 𝑐𝑜𝑠 2𝜋
𝑛

𝜅
𝑙         ;        𝑛 = 1,2,3, …                                        (120) 

 

Finally, the average number of photons  〈𝑛 〉  occupying the energy levels  κ=1,2,3,…, s  can 

be expressed compactly in terms of partitions for arbitrary  s,  according to the results of 

section 3,  as 

 

                                            〈𝑛 〉 =  
𝑝

𝑝

[ / ]

                                                                                        (121) 

 

Using next for large  s  the Hardy-Ramanujan formula [Eq.(16)], we also get  

 

                    〈𝑛 〉 =  

𝑎
𝑠 − 𝜅𝑙

 𝑒 √

𝑎
𝑠

 𝑒 √
≈ 𝑒

 
√ =  

1

𝑒√
 

− 1

                                          (122) 
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where  b=π 2/3.  Again, due to Eq.(9), the above result coincides with Eq.(4) leading to 

Planck’s distribution. 

 

 

5. Conclusion  

 

In the present paper it is shown that  Planck’s  distribution  of  black-body  radiation  

[Eq.(12)] can be derived by considering the cavity containing electromagnetic energy as a 

closed system without interactions with matter. In  1-D  where the modes are standing over 

a length  ℓ , the total energy  E = s ε0  is quantized according to Planck’s hypothesis into  s  

quanta of energy  ε0 = hc/2ℓ , and the energy  ε = nκε0  of each mode is also quantized into  

n  photons of energy  κ ε0  where  κ  is the energy level of the mode. The theory is based on 

the principle of equal probabilities of quantum states that are derived from conservation 

Eq.(14) taking into account that photons are indistinguishable particles obeying Bose 

statistics. In particular, each state containing  s  quanta of energy is represented by a 

diagram where the positions of the photons in the energy levels are shown explicitly. Since 

the total number of states of a 1-D photon system containing  s  quanta of energy, is equal 

to the number of partitions  ps  of the integer s, we express exactly the conditional 

probability  g(n/κ)  that  n  photons occupy level  κ,  in terms of partitions [Eq.(109)] and 

then study its behaviour for large  s  using the Hardy-Ramanujan formula [Eq.(16)]. Thus, 

Planck’s distribution is derived without resorting to Boltzmann’s law and to interactions 

between radiation and matter and the Bose statistics is fully justified. Note that the logic of 

the present work is similar to the one used in the derivation of the Maxwellian velocity 

distribution for an ideal gas in a closed system of constant energy, using the Borel method 

[11]. In this case, all points of the surface of the hypersphere created in  3N-D  by the 

conservation of the total kinetic energy, are supposed to be equiprobable and 

consideration of a collision mechanism is not necessary in order to obtain the velocity 

distribution in thermal equilibrium. 
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