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Algebraic model of genetic code and biospin. 
S.Y. Kotkovsky 

 
Based on the algebra of biquaternions in isotropic basis, we have built a model of the DNA 
genetic code that describes nucleotides, doublets and triplets. Each nucleotide in this model 

is represented by its own biquaternion. Together, these four nucleotide biquaternions form 

the basis of the entire biquaternion space. The model justifies the grouping of triplets 

which are encoding the same amino acids. It is possible to trace direct correspondences 
between the algebraic structures of our model and the spin wave functions studied in 

quantum relativistic field theory. This suggests a special quantum-like nature of the 

structures of the genetic code. A new biquaternion representation of the Dirac equation is 
obtained, the establishment of connections with which allows one to see the chiral states in 

the DNA structure. The mathematical nature that characterizes the genetic code specifies a 

particular skew-symmetric type of noise immunity, which is based on the operation of 

parallel complementary channels of code implementation. 

Keywords: DNA, genetic code, biquaternions, isotropic basis, algebraic model, biospin, Dirac equation, 
degeneracy, symmetry, skew symmetry, skew-symmetric noise immunity, chirality. 

 

Introduction . 

 Studies of the structures of the genetic code of DNA have firmly revealed their mathematical 

nature, which provides the necessary properties for continuous recreation of living things, the 

transmission of heredity and ensuring appropriate noise immunity [6][7][8]. At the same time, the 

question of creating a complete mathematical model of the genetic code and finding out the reality 

behind it remains ongoing discovery. 

 The central point in the operation of the genetic code is its degenerate nature. The 

degeneracy of a fault-resistant code is generally an indispensable attribute of the latter, ensuring 

the detection and correction of errors in both the code itself and its execution [18][20]. In the 

genetic code, the same amino acid is encoded by different triplets. This fact obviously increases the 

reliability of the transmission of genetic information, since a change in the last letter in a triplet 

often does not affect the final result – the amino acid produced. However this is the simplest of the 

scenarios that make up a larger picture. Its description is only possible in terms of skew symmetry 

– a certain combination of symmetry and antisymmetry. Significantly that degeneracy turns out to 

be a more universal property than the genetic code itself: the latter has many different variants, 

while the properties of degeneracy are the same for all variants of the code [18]. 

To date, many attempts have been made to describe the symmetric nature of the genetic 

code using various mathematical models [18]. These include models based on Lie groups with 

partially broken symmetry, models using quantum groups, and models based on the quaternion 

apparatus. In [27], the genetic code model operates with the apparatus of integer quaternions to 

simulate the mechanisms of amino acid formation and spatial protein folding. Our model of 

hereditary DNA is also built on quaternions, or strictly speaking on their complex extension called 

biquaternions. However, we use fundamentally different approaches and methods than those used 
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in the mentioned study. What remains common is that each nitrogenous base is mathematically 

formalized using its own quaternion (in [27]) or biquaternion (in our work). 

Nucleotide doublets1, also known as roots, have a modality – they can be strong or weak . The 
modality of a root-doublet is determined by whether its triplets encode one amino acid or two 
different amino acids. Guided by the same principle, we introduce into consideration two “ideal” 
groups of nucleotide triplets, or codons – strong and weak. In reality, there is a certain violation of 
the symmetry of these groups, which must be taken into account in the next steps of model 
development. 

Our algebraic model of gene nucleotide structures is based on biquaternions. The proposed 
representation of biquaternion algebra and new methods of their multiplication and conjugation 
provide opportunities for an adequate description of the basic amino acid coding scheme. At the same 
time, it turns out that the algebraic objects characterizing nucleotides and their multiplets have a 
form similar to the spin wave functions of quantum field theory. We present a new biquaternion 
representation of the Dirac equation, establishing connections with which allows us to see the chiral 
states in the DNA structures. Thus, our model provides grounds for creating a quantum-like theory 
of DNA. 
 

The article is divided into two main parts. The first part is mathematical – it is devoted to new 

methods of biquaternion algebra, in particular the use of isotropic basis of biquaternion space 

constructed from nullquaternions. In this part, previously unknown methods of biquaternion 

multiplication and conjugation are introduced and biquaternions with special properties of 
projectivity and algebraic degeneracy are defined. In the second part, the obtained mathematical 

methods are applied to modeling the genetic code, namely to the algebraic representation of 

nucleotides, doublets, triplets and the amino acids. 

 

 

  

                                                             
1For brevity, we refer to the nitrogenous bases of DNA nucleotides as “nucleotides.” 
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Part 1. Algebra of biquaternions. 
 

Biquaternions were discovered by W. Hamilton following his discovery of quaternions, as a 

complex-valued extension of the latter [28]. L. Zilberstein clarified the central role played by 

biquaternions in the relativistic theory, or the theory of a unified space-time [29]. He also 

introduced the most convenient and intuitive scalar-vector representation of biquaternions [30]. In 

scalar-vector representation, biquaternions have the form [1][4]: 

 ℬ = (𝑠, 𝐮), 𝑠 ∈ ℂ,  𝐮 ∈ ℂ𝟑 (1) 

As a rule, we will denote biquaternions in capital letters, while scalars and vectors are in lowercase 

letters. As follows from definition (1), a biquaternion is a pair consisting of a complex number 𝑠  

and a complex-valued three-dimensional vector 𝐮. s and u are the scalar and vector parts of the 

biquaternion ℬ respectively. The sum of two biquaternions is calculated component by component, 

separately for the scalar and vector parts. Ordinary, or external, product of two biquaternions ℬ1 =
(𝑠1, 𝐮1)and  ℬ2 = (𝑠2, 𝐮2) is calculated according to the formula: 

 ℬ1ℬ2 = ℬ1⨀ℬ2 = (𝑠1𝑠2 + 𝐮1 ⋅ 𝐮𝟐,  𝑠1𝐮2 + 𝑠2𝐮1 + 𝑖 𝐮1 × 𝐮2), (2) 

where 𝐮1 ⋅ 𝐮2 , 𝐮1 × 𝐮2is the scalar and vector product 𝐮1and 𝐮2, accordingly, 𝑖 is the imaginary unit. 

Unlike other types of biquaternion products, which will be discussed below, for the ordinary 

(external) product we will use both equivalent notations ℬ1ℬ2and ℬ1⨀ℬ2. The product of 

biquaternions is non-commutative – it depends on the order of the multipliers. 

An arbitrary complex vector 𝐮 ∈ ℂ𝟑 is a special case of a biquaternion – in which the scalar part is 

equal to zero: 

 𝐮 =  𝐀 + 𝑖𝐁,    𝐀, 𝐁 ∈ ℝ3  (3) 

Complex conjugate of a biquaternion ℬ = (𝑠, 𝐮) has the form: 

 

  ℬ∗ = (𝑠∗, 𝐮∗)  (4) 

The complex conjugation of biquaternions corresponds to the Hermitian conjugation of matrix 

algebra (Appendix 1). 

 

Vector conjugation2 of a biquaternion ℬ = (𝑠, 𝐮) has the form: 

 

 ℬ̅ = (𝑠, −𝐮)  (5) 

                                                             
2The conjugation referred to here as "vector conjugation " is often called simply conjugation or "biquaternion 
conjugation ". We use the name “vector conjugation” in order to clearly distinguish this type from other types 
of conjugations. 



4  

  

The simultaneous use of complex and vector conjugations gives a double conjugation of the 

biquaternion : 

 ℬ̅∗ = (𝑠∗, −𝐮∗)  (6) 

Two biquaternions are equivalent if they are equal to each other up to a scalar (complex number) 

factor: 

 

 ℬ1 ≈ ℬ2:  ℬ1 = 𝜆 ℬ2 , 𝜆 ∈ ℂ, 𝜆 ≠ 0  (7) 

Square modulus of a biquaternion ℬ = (𝑠, 𝐮) is a complex number defined by the formula: 

 

 |ℬ|2 = ℬℬ̅ = 𝑠2 − 𝐮2 ,      |ℬ|2 ∈ ℂ (8) 

 

 

Isotropic basis. 

Isotropic basis of the biquaternion space introduced in this section is of exceptional 
importance in algebras describing the spin of elementary particles in physics. According to our 
assumption, this same basis serves as a powerful interdisciplinary tool which can be used to derive 
genetic code algebras in mathematical biology. This is a basis built on biquaternions with a zero 
square modulus. In physics, such quantities usually describe light and are called isotropic, which 
determines the name of the basis. 

Let us take a closer look at biquaternions 𝑄 that have a zero square modulus (8): |𝑄| = 0. In 

our terminology, such biquaternions are called nullquaternions [1]. The first type of 
nullquaternions are nullvectors3, i.e. three-dimensional complex vectors whose square is zero. Each 
null vector 𝐪is decomposed into a complex sum of two mutually orthogonal vectors 𝐀 and 𝑖𝐁 
(Fig.1): 
 

      𝐪 = 𝐀 + 𝑖𝐁,    𝐀,𝐁 ∈ ℝ3,   𝐀 ⊥ 𝐁 

     𝐪 ∈ ℂ3,   𝐪2 = 0 

 
(9) 

The vector 𝐪∗which is complex conjugate to a given nullvector 𝐪 is also a nullvector. A vector 
equivalent to a given nullvector is also a nullvector. 

The second type of nullquaternions consists of uniform nullquaternions 𝑁, each of which 
can be obtained from a corresponding unit-length real vector 𝐧: 
 

                                    𝑁 = 𝜆(1, 𝐧),  𝐧 ∈ ℝ3 ,  𝐧𝟐 = 1 , 𝜆 ∈ ℂ                𝑁�̅� = 0 (10) 

Vector conjugation of a uniform nullquaternion 𝑁 again produces a uniform nullquaternion �̅� =
𝜆(1,−𝐧). 
                                                             
3Nullvectors are also called isotropic vectors. 
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Isotropic basis of a biquaternion space consists of the following four fixed elements, each of 
which is a nullquaternion: 
 

 

{
 
 

 
 

 

𝐪  =
1

2
(𝐀 + 𝑖 𝐁)

𝐪∗ =
1

2
(𝐀 − 𝑖 𝐁)

𝑁 =
1

2
(1,   𝐧)

�̅�  =
1

2
(1, −𝐧)

                      
𝐪, 𝐪∗, 𝑁, �̅� = 𝑐𝑜𝑛𝑠𝑡

𝐀, 𝐁,𝐧 ∈ ℝ3

𝐀𝟐 = 𝐁𝟐 = 𝐧𝟐 = 1

                           

 

 

(11) 

The first two of these elements are nullvectors, and the remaining two are uniform nullquaternions. 

Nullvectors 𝐪 And 𝐪∗ lie in the same plane П (transverse plane). Real vectors 𝐀 and 𝐁 also lie in the 

transverse plane. The unit longitudinal real vector 𝐧 is normal to this plane. Isotropic basis is thus 

given by some constant direction in space (vector 𝐧) and a fixed angle of rotation in the plane П (a 

pair of related vectors 𝐀 and 𝐁). Nullvectors 𝐪 and 𝐪∗and are uniform nullquaternions 𝑁and �̅�are 

related to each other by the following relations: 

                        

     𝐪𝐪∗ = 𝑁,   𝐪∗𝐪 = �̅�         

 
(12) 

𝐪𝐪∗ and 𝐪∗𝐪 – ordinary, or external, biquaternion products (2). At the same time, a vector 

connection takes place: 𝐀 × 𝐁 = 𝐧, Where 𝐀 ×𝐁 denotes the vector product of the vectors 𝐀 and 𝐁. 

Various possible pairwise products of elements of isotropic basis are given in Appendix 2. Fig.2 

offers a schematic representation of this basis. 

  
Fig.1. Nullvector 𝐪 

(plane P). 
Fig.2. Isotropic basis. 

 
In the usual orthonormal basis built on real vectors 𝐀,𝐁,𝐧, the vectors 𝐧, 𝐪, 𝐪∗have the following 

complex Cartesian coordinates: 
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     𝐧 = (
0
0
1
) ,    𝐪 =

1

2
(
1
𝑖
0
) ,    𝐪∗ =

1

2
(
1
−𝑖
0
)          

 

(13) 

An arbitrary biquaternion ℬ is expanded into isotropic basis using complex number coordinates 

𝛼, 𝛽, 𝜉, 𝜂: 

                        

     ℬ = 𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂�̅�,     𝛼, 𝛽, 𝜉, 𝜂 ∈ ℂ         

 

(14) 

The uniqueness of this decomposition is easily shown. 

 

Let's expand the biquaternionℬ (14) into two components: 

                        

     ℬ = 𝐮 +𝒫 ,             {
u = 𝛼𝐪+ 𝛽𝐪∗

𝒫 = 𝜉𝑁 + 𝜂�̅�
 

   

(15) 

The first component 𝐮, let's call it transverse component, is a complex vector, lying in the plane П. The 

second component 𝒫, let's call it longitudinal component, is a biquaternion, the vector part of which 
is parallel to the normal 𝐧  to the plane П. Expansion (15) thus gives a longitudinal-transverse 

representation of the biquaternion ℬ. 

 

 
Signed biquaternions and projectors. 

Let us group the terms of expansion (14) so as to present it as follows: 

                        

 ℬ = ℬ+ +ℬ− ,                         {
ℬ+ = 𝛼𝐪+ 𝜂�̅�
ℬ_ = 𝛽𝐪∗ + 𝜉𝑁

 

 
(16) 

Biquaternions of the form ℬ+and ℬ−will be called signed – positive and negative, respectively. We 

will denote the fact that a certain biquaternion ℬis positive signed in symbolic form as ℬ = 𝐵+, and 

negative signed , respectively, as ℬ = 𝐵−. 

 

Let us now expand the same biquaternion ℬ (14) in another way: 

                        

 ℬ = 𝑃+ + 𝑃− ,                         {
𝑃− =  𝛼𝐪 + 𝜉𝑁

𝑃+ = 𝛽𝐪∗ + 𝜂�̅�
 

 

(17) 

Biquaternions of the form 𝑃−and 𝑃+will be called projectors – negative and positive, respectively. 

From the uniqueness of the expansion over isotropic basis it follows that each biquaternion can be 

uniquely decomposed both into a sum of signed biquaternions and into a sum of projectors. 

 
Signed biquaternions and projectors are interconnected by the vector conjugation 

operation (5): 

                        

             {
𝐵+̅̅ ̅̅ = 𝑃

−

𝐵_̅̅ ̅ = 𝑃+   
              {

𝑃−̅̅ ̅̅ = 𝐵+
𝑃+̅̅ ̅̅ = 𝐵−   

 

 

(18) 
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From correspondence (18) it follows that there is an isomorphism between signed biquaternions 

and projectors by external multiplication, taking into account that the product of two projectors 

should be taken in the reverse order of the product of signed biquaternions. It should be noted that 
although both these types of biquaternions – projectors and signed biquaternions - have a signed 

characteristic, we apply the terms “signed” and “signedness” only to the first. As shown in Appendix 

4, the sign nature of biquaternions means their chiral4 (right- or left-handed) nature. 

 

Biquaternion multiplication. 

In addition to the ordinary, or external, method of multiplying biquaternions (2), we 

introduce other methods of multiplying them. In the current study, four different methods for 

multiplying biquaternions are used. Below you can see products of these types for two 

biquaternions ℬ1and ℬ2, presented in the longitudinal-transverse representation and in isotropic 

basis as: 

 
 {
ℬ1 = 𝐮𝟏 + 𝒫1 = 𝛼1𝐪+ 𝛽1𝐪

∗ + 𝜉1𝑁 + 𝜂1�̅�

ℬ2 = 𝐮𝟐 + 𝒫2 = 𝛼2𝐪 + 𝛽2𝐪
∗ + 𝜉2𝑁 + 𝜂2�̅�

 
 (19) 

In accordance with (16), each of these biquaternions can be decomposed into signed parts: 

 

 
 {
ℬ1 = ℬ1+ +ℬ1− 
ℬ2 = ℬ2+ +ℬ2− 

 
 (20) 

The first two of the types of biquaternion multiplication given below, external and internal, 

correspond to two possible ways of multiplying square matrices of the second order – by adding or 

subtracting the products of the elements of the rows of the first matrix by the elements of the columns 

of the second matrix (see Appendix 1). 

 

1) External  product ⨀ 

External5, or ordinary, product of biquaternions was defined above in formula (2). In isotropic basis 

the external product of two biquaternions ℬ1is ℬ2 is expressed as 

ℬ1⨀ℬ2 = (𝜉1𝛼2 + 𝛼1𝜂2)𝐪 + (𝜂1𝛽2 + 𝛽1𝜉2)𝐪
∗ + (𝛼1𝛽2 + 𝜉1𝜉2)𝑁 + (𝛽1𝛼2 + 𝜂1𝜂2)�̅� (21) 

2) Internal  product ⨂ 

In isotropic basis, internal product of two biquaternions ℬ1is ℬ2 is expressed as 

ℬ1⨂ℬ2 = (𝛼1𝛼2 + 𝜉1𝜂2)𝐪 + (𝛽1𝛽2 + 𝜂1𝜉2)𝐪
∗ + (𝛽1𝜉2 + 𝛼2𝜉1)𝑁 + (𝛼1𝜂2 + 𝛽2𝜂1)�̅� (22) 

                                                             
4Chirality is understood here in the sense of symmetry studied in spin theory, and not as a type of spatial 
twisting of biological molecules. We denote the latter by the term biomolecular chirality . 
5External and internal products used in this work have different meanings than outer and inner products in 
Grassmann algebras. 
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As the matrix representation shows (see Appendix 1), external and internal multiplications 

complement each other in a skew-symmetric manner. Parallel and crossing multiplications defined 

below combine external and internal products in a certain way. 

 

3) Parallel product □ 

 

  ℬ1□ℬ2 = 𝐮𝟏⨂𝐮𝟐 +𝒫1⨀𝒫2  (23) 

ℬ1□ℬ2 = 𝛼1𝛼2𝐪+ 𝛽1𝛽2𝐪
∗ + 𝜉1𝜉2𝑁 + 𝜂1𝜂2�̅� (24) 

As we see, in the case of parallel multiplication there is a complete separation of variables. 
 

4) Crossing product ⟡ 
 

  ℬ1 ⟡ ℬ2 = 𝐮𝟏⨀𝐮𝟐 +𝒫1⨂𝒫2  (25) 

ℬ1 ⟡ ℬ2 = 𝜂1𝜉2𝐪 + 𝜉1𝜂2𝐪
∗ + 𝛼1𝛽2𝑁 + 𝛽1𝛼2�̅� (26) 

The operations of parallel and crossing multiplication also complement each other: the first 

separates the variables, and the second mixes them. 

 

The crossing product of a positive projector (on the left) with any biquaternion (on the 
right) always produces a positive signed biquaternion, and the crossing product (on the left) of a 

negative projector with any biquaternion (on the right) always produces a negative signed 

biquaternion. The products of projectors on the right and biquaternions on the left have similar 

properties. Let us write down all four possible variants of products of projectors of different signs 

𝑃± onto an arbitrary biquaternion ℬ on the left and right: 

 

 

 
 ∀ℬ: {

𝑃+ ⟡ ℬ = 𝐵+
𝑃− ⟡ ℬ = 𝐵− 

ℬ ⟡ 𝑃+ = 𝐵−
ℬ ⟡ 𝑃− = 𝐵+

 

 

(27) 

These formulas determine their very name of projectors: biquaternions of this type project an 
arbitrary biquaternion onto a positive or negative signed biquaternion. So, projectors and signed 

biquaternions are closely related to each other – firstly, through vector conjugation (18), and 

secondly, through projection relations (27). 
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Biquaternion conjugates. 

 

The classical types of conjugations of biquaternions were considered above: complex ℬ∗ (4) 

and vector ℬ̅ (5). An important feature of both of these operations is that when applied to a product 

of biquaternions, they reverse the order of the factors: (𝒜ℬ)∗ = ℬ∗𝒜∗,  𝒜ℬ̅̅ ̅̅ ̅ = ℬ̅�̅� . For a particular 

type of conjugation, the behavior with respect to the reversal of multipliers in products will be 

considered a characteristic property of this conjugation. In addition to the conjugations mentioned 
above, we   introduce other types. 

 

1) Symbolic conjugation ℬ✶.  

Let's define symbolic conjugation first for signed biquaternions: 

 ℬ+ = 𝛼𝐪 + 𝜂�̅�       →    ℬ+
✶ = 𝛼 𝐪∗ + 𝜂𝑁 = 𝐵− 

ℬ− = 𝛽𝐪
∗ + 𝜉𝑁    →    ℬ−

✶ = 𝛽𝐪 + 𝜉�̅�   = 𝐵+     

 

(28) 

As follows from (28), the operation of symbolic conjugation is reduced to mutual replacement 𝐪 by 

𝐪∗ and mutual replacement 𝑁with �̅� in this expression. As can be seen from (28), in symbolic 

conjugation, positive signed biquaternions turn into negative ones and vice versa. According to 
(16), each biquaternion is decomposed into the sum of positive and negative biquaternions, from 

which it is easy to obtain a symbolic conjugation formula for an arbitrary biquaternion ℬ: 

 

 ℬ = 𝛼𝐪+ 𝜂�̅� + 𝛽𝐪∗ + 𝜉𝑁   →    ℬ✶ = 𝛼𝐪∗ + 𝜂𝑁 + 𝛽𝐪+ 𝜉�̅�      (29) 

The symbolic conjugation operation is symmetrical: ℬ2 = ℬ1
✶ ⇔ ℬ1 = ℬ2

✶. When applying 

symbolic conjugation to the internal product of longitudinal biquaternions, the factors are reversed: 

 (𝒫1⨂𝒫2)
✶ = 𝒫2⨂𝒫1 . The last relationship serves as a characteristic feature of this conjugation. 

 

2) Swap conjugation ℬ̃. 

Let's introduce swap conjugation operation first for signed biquaternions: 

 ℬ+ = 𝛼𝐪+ 𝜂�̅�       →    ℬ̃+ = 𝜂𝐪
∗ + 𝛼𝑁 = 𝐵− 

ℬ− = 𝛽𝐪
∗ + 𝜉𝑁    →    ℬ̃− = 𝜉𝐪 + 𝛽�̅�   = 𝐵+     

(30) 

From (30) it follows that swap conjugation transforms positive signed biquaternions into negative 

ones and vice versa. Based on formulas (30) and (16), it is not difficult to write out the swap 

conjugation formula for an arbitrary biquaternion: 

 

 ℬ = 𝛼𝐪+ 𝜂�̅� + 𝛽𝐪∗ + 𝜉𝑁   →    ℬ̃ =  𝜉𝐪 + 𝛽�̅� + 𝜂𝐪∗ + 𝛼𝑁      (31) 

The swap conjugation operation is also symmetrical: ℬ2 = ℬ̃1  ⇔ ℬ1 = ℬ̃2. 

 
In relation to the external and internal products, signed biquaternions have special ideal-

like properties of degeneracy, which are of particular importance for the gene code modeling. For 
arbitrary signed biquaternions 𝒜+, 𝒜−, ℬ+, ℬ−the following easily verifiable relations involving 
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external multiplication take place: 

 

 

 

{
 

 
𝒜+⨀ℬ+ ≈ 𝒜+

𝒜−⨀ℬ− ≈ 𝒜−

𝒜−⨀ℬ+ ≈ 𝒜−̃

𝒜+⨀ℬ− ≈ 𝒜+̃

  

(32) 

These relations use the definition of biquaternion equivalence given above in (7). Using the 

symmetry property of swap conjugation, the last two identities from (32) can be rewritten as: 

 
 {
𝒜−̃⨀ℬ+ ≈  𝒜−

𝒜+̃⨀ℬ− ≈  𝒜+

  
(33) 

For internal multiplication, similar relations hold. 

In addition to the types of biquaternion conjugations discussed above, in Appendix 4 we also 
introduce another type of biquaternion conjugation – cyclic conjugation (52), which plays a key role 

in the formulation of the Dirac biquaternion equation. 
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Part 2. Algebraic model of the genetic code. 

 
In our algebraic model of the genetic code, all its three base levels (nucleotides, doublets, 

triplets) are represented by the same mathematical object – a biquaternion. Initially, we define a 

nucleotide biquaternions. Then special products are used to construct biquaternions of doublets and 

triplets-codons. The main requirement for the created mathematical model is that the codons 
provide the necessary variety of amino acids and at the same time have the properties of convergence 

to the same amino acid (algebraic degeneracy). 

 
Representation of nucleotides. 

Recall that by nucleotides we refer to the nitrogenous bases of DNA nucleotides: adenine 
(A), cytosine (C), thymine (T), and guanine (G). In our model, each of the four nucleotides is 
represented by its own biquaternion: 
 

 
{

 
A = 𝛼2𝐪 + 𝜉2𝑁
G = 𝛼1𝐪+ 𝜉1𝑁

           {

 
C = 𝛽1𝐪

∗ + 𝜂1�̅� 

T = 𝛽2𝐪
∗ + 𝜂2�̅�

 
(34) 

Coordinates of each of the nucleotide biquaternions in isotropic basis (34) are fixed complex 

numbers: 𝛼1,2, 𝛽1,2, 𝜉1,2, 𝜂1,2, which can be considered as model parameters. By definition, each of 

these biquaternions is a positive or negative projector: 

 
{ 
A = 𝑃2

− 
G = 𝑃1

−            {
 C = 𝑃1

+

 T = 𝑃2
+ 

(35) 

As we shall see, it is the projective nature of nucleotide biquaternions that endows them with the 

required characteristics to generate the variety of multiplets and provide the corresponding levels 

of algebraic degeneracy. Recalling the properties of projectors (18), we write out the vector 

conjugations of biquaternions of nucleotides (34): 

 
{ 
A̅ = 𝑃2

−̅̅ ̅̅ = ℬ2+ 

G̅ = 𝑃1
−̅̅ ̅̅ = ℬ1+

           {
 C̅ = 𝑃1

+̅̅ ̅̅ = ℬ1−

 T̅ = 𝑃2
+̅̅ ̅̅ = ℬ2−

 
(36) 

As follows from (36), nucleotides are divided into two pairs. The first pair in conjugate form A̅, G̅ are 

positive signed biquaternions, and the second pair C̅, T̅ are negative signed biquaternions. 

The quartet of nucleotide biquaternions (34) and the quartet of isotropic basis 

biquaternions (11) are linearly related to each other. From this connection it follows that the 

quartet of nucleotide biquaternions represents the basis of biquaternion space, provided the 

exclusion of special conditions for the parameters 𝛼1,2, 𝛽1,2 , 𝜉1,2, 𝜂1,2. 

In the presented model, pyramidins (nucleotides consisting of one aromatic ring) are 

represented by positive projectors, while purines (consisting of two rings) are represented by 

negative projectors  (35). In the conjugate form, each of the nucleotides is represented by a signed 

biquaternion (36). 
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Representation of doublets. 

By doublet we do not mean an arbitrary pair of consecutive nucleotides of a single DNA 

chain, but precisely the one that starts a codon – triplet encoding amino acid. Such doublets are also 
called roots. By the term modality of a doublet we mean whether it is strong (𝑓) or weak (𝑝). A 

strong doublet uniquely identifies the amino acid produced by its triplets. A weak doublet produces 

two different amino acids. This binary division into strong and weak roots was called Rumer's in 

honor of Yu.B. Rumer, the author of the first work [11], in which this principle was discovered and 

applied to study the symmetries of the gene code [19][22][23]. The Rumer's division was 

independently discovered by S.V. Petoukhov and became the basis of his theory of fundamental 

matrices of genetic inheritance, or genetic matrices [5][6][7]. Petoukhov genetic matrices clearly 

show a hierarchical fractal-like system of genetic code based on interconnected symmetric 

ensembles of multiplets of nitrogenous bases of various levels. 

In Table 1 all available nucleotide doublets are divided into two groups (degeneracy classes) 

according to their modality. 

Table 1. Strong and weak doublets. 

Strong roots (f) Weak roots (p) 

AC 

GT 

CC, GG 

TC, CT 

CG, GC 

CA 

TG 

AA, TT 

GA, AG 

AT, TA 

 

Let us express a doublet as a biquaternion 𝒟, resulting from the crossing product of the 

biquaternion-nucleotides 𝒩1and 𝒩2: 

  𝒟 =  𝒩1 ⟡𝒩2  (37) 

The product (37) is contextual : a given nucleotide can be represented by both its biquaternion (35) 

𝑃1,2
±  and its symbolical conjugate 𝑃1,2

± ✶
. The appropriate choice is determined by the requirement 

that the result of the product be non-zero:  𝒩1 ⟡𝒩2 ≠ 0. Thus, the product of biquaternions-

nucleotides АА is 𝑃2
− ⟡ 𝑃2

−✶  , because 𝑃2
− ⟡ 𝑃2

− = 0. To have an example, let’s calculate the 

indicated product using formula (25): 

 AA = 𝑃2
− ⟡ 𝑃2

−✶ = (𝛼2𝐪+ 𝜉2𝑁) ⟡ (𝛼2𝐪
∗ + 𝜉2�̅�) = 𝜉2

2𝐪∗ + 𝛼2
2𝑁   

Doublet biquaternions obtained according to formula (37) are presented in Table 2. For the last 

four doublets, this table shows signedness of their biquaternions 𝒟± (explanations below in the 

article).  
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Table 2. Biquaternion representation of doublets (𝒟). 

 

{
 
 

 
 AA = 𝑃2

− ⟡ 𝑃2
−✶ = 𝜉2

2𝐪∗ + 𝛼2
2𝑁 = 𝑝

TT = 𝑃2
+ ⟡ 𝑃2

+✶ = 𝜂2
2𝐪  + 𝛽2

2�̅� = 𝑝

CC = 𝑃1
+ ⟡ 𝑃1

+✶ = 𝜂1
2𝐪  + 𝛽1

2�̅� = 𝑓

GG = 𝑃1
− ⟡ 𝑃1

−✶ = 𝜉1
2𝐪∗ + 𝛼1

2𝑁 = 𝑓

                                                      

 

 {
AT = 𝑃2

− ⟡ 𝑃2
+ = 𝜉2𝜂2𝐪

∗ + 𝛼2𝛽2𝑁 = 𝑝

TA = 𝑃2
+ ⟡ 𝑃2

− = 𝜉2𝜂2𝐪  + 𝛼2𝛽2�̅� = 𝑝
                             {

CG = 𝑃1
+ ⟡ 𝑃1

− = 𝜉1𝜂1𝐪 + 𝛼1𝛽1�̅� = 𝑓

GC = 𝑃1
− ⟡ 𝑃2

+ = 𝜉1𝜂1𝐪
∗ + 𝛼1𝛽1𝑁 = 𝑓

 

 

 {
AG = 𝑃2

− ⟡ 𝑃1
−   = 𝜉1𝜉2𝐪  + 𝛼1𝛼2�̅�  = 𝑝

GA = 𝑃1
− ⟡ 𝑃2

−✶ = 𝜉1𝜉2𝐪
∗ + 𝛼1𝛼2𝑁 = 𝑝

                          {
TC = 𝑃2

+✶ ⟡ 𝑃1
+ = 𝜂1𝜂2𝐪

∗ + 𝛽1𝛽2𝑁 = 𝑓

CT = 𝑃1
+ ⟡ 𝑃2

+✶ = 𝜂1𝜂2𝐪  + 𝛽1𝛽2�̅� = 𝑓
 

 

{
AC = 𝑃2

− ⟡ 𝑃1
+ = 𝜂1𝜉2𝐪

∗ + 𝛽1𝛼2𝑁 = 𝒟− = 𝑓

CA = 𝑃1
+ ⟡ 𝑃2

− = 𝜂1𝜉2𝐪  + 𝛽1𝛼2�̅� = 𝒟+ = 𝑝
                     {

GT = 𝑃1
− ⟡ 𝑃2

+ = 𝜉1𝜂2𝐪
∗ + 𝛼1𝛽2𝑁 = 𝒟− = 𝑓

TG = 𝑃2
+ ⟡ 𝑃1

− = 𝜉1𝜂2𝐪  + 𝛼1𝛽2�̅� = 𝒟+ = 𝑝
 

 

 

 

With model parameters of a fairly general form, taking into account certain restrictions, none of the 
various biquaternion doublets presented in Table 2 coincide with each other. This is a necessary 

condition for the non-degeneracy (non-coincidence) of biquaternion triplets encoding different 

amino acids. This issue is discussed in more detail in Appendix 3. 

   

In Table 2 the first four doublets are homogeneous – formed by the same nucleotide. The 

remaining doublets are grouped into pairs. Each pair consists of two doublets obtained from each 

other by swapping the nucleotides. The doublets within each of the permutation pairs in Table 2 
are interconnected by symbolic conjugation: 

 

 𝒩1 𝒩2 = (𝒩2 𝒩1)
✶  (38) 

So, for paired doublets {AG,GA} : 
 

 AG = (GA)✶  ⇔    𝜉1𝜉2𝐪 + 𝛼1𝛼2�̅� = (𝜉1𝜉2𝐪
∗ + 𝛼1𝛼2𝑁)

✶     

Doublets are built on nucleotide biquaternions which are projectors. Therefore according to the 

projection property (27) all biquaternion doublets turn out to be signed. Let us introduce special 
notation for them 𝒟±. 

  ∀𝒟: 𝒟 = 𝒟±  (39) 

𝒟+, 𝒟− are positive and negative signed biquaternions, respectively. For further purposes, we will 
write out in a Table 3 signed biquaternions for each of the doublets. 
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Table 3. Signedness  of doublet biquaternions. 

 

{

AA = 𝒟+
TT = 𝒟−
CC = 𝒟+
GG = 𝒟−

           {
AT = 𝒟−
TA = 𝒟+

         {
CG = 𝒟−
GC = 𝒟+

       {
AG = 𝒟+
GA = 𝒟−

          {
TC = 𝒟−
CT = 𝒟+

       {
AC = 𝒟−
CA = 𝒟+

          {
GT = 𝒟−
TG = 𝒟+

 

 

 

 

Modality of doublets. 
 

From the analysis of biquaternion doublets included in the first four pairs counting from the 

top in Table 2 (after homogeneous doublets), at least two possible ways to algebraically determine 

their modality follow: by the real or imaginary part of the coefficient standing in front of the 

longitudinal element (𝑁or �̅�). In our model, for this definition we will use the imaginary part: the 

modality 𝑀𝑜𝑑(𝒟) of the doublet 𝒟 will be determined according to the formula: 

           [
𝒟 = 𝐮 + 𝜆 𝑁
𝒟 = 𝐮 + 𝜆 �̅�

        ⇒    𝑀𝑜𝑑(𝒟) =  𝑆𝑔𝑛(𝐼𝑚(𝜆)), (40) 

where the function 𝑆𝑔𝑛(𝑥) expresses the sign of a real number 𝑥,  𝐼𝑚(𝜆) is the imaginary part of a 

complex number 𝜆. A square bracket indicates an alternative choice (either/or). Positive values 

𝑀𝑜𝑑(𝒟) correspond to a strong modality, and negative values correspond to a weak one. Thus, for a 
pair of weak doublets {AT,TA} it is required 𝐼𝑚(𝜆) = 𝐼𝑚(𝛼2𝛽2) < 0. For a pair of strong doublets 

{CG,GC} the opposite condition is required 𝐼𝑚(𝜆) = 𝐼𝑚(𝛼1𝛽1) < 0. 

However, the rule for determining modality (40) turns out to be insufficient for different 

modalities of doublets within pairs {AC,CA} and {GT,TG}. So, in the pair {GT,TG}, each of the 

biquaternions of the doublets has the same value 𝜆, but nevertheless GT is a strong doublet, and TG 

is a weak doublet. This means that the condition must be met for this pair 𝐼𝑚(𝜆) = 0 ⇒
 𝐼𝑚(𝛼1𝛽2) = 0. A similar condition 𝐼𝑚(𝜆) = 0 for the pair {AC,CA} results in an identity 𝐼𝑚(𝛽1𝛼2) =

0.  {AC,CA} and {GT, TG} pairs must have one additional rule added to (40). As the second rule, it is 

natural to accept the definition of modality based on the signedness of the biquaternion: 𝒟− =
𝑓,𝒟+ = 𝑝 (see Table 2, pairs {AC,CA}, {GT,TG}). So, in order to determine the modality of doublets, 

two conditions must be met: 

 
{
𝐼𝑚(𝛼1𝛽2) = 0
𝐼𝑚(𝛽1𝛼2) = 0

  
(41) 

Let us impose the following skew-symmetric conditions on the complex coordinates of the 

biquaternion-nucleotides 𝛼1,2, 𝛽1,2, 𝜉1,2, 𝜂1,2 , which will be sufficient for (41) to hold: 

 

{
 

 
𝛽1 = −𝛼2

∗

𝛽2 = −𝛼1
∗

𝜂1 = 𝜉2
∗

𝜂2 = 𝜉1
∗

  

(42) 

Then, as follows from (34), biquaternions of nucleotides take the following form: 
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{
 
 

 
 G =    𝛼1𝐪 + 𝜉1𝑁

A =    𝛼2𝐪 + 𝜉2𝑁

C = −𝛼2
∗𝐪∗ + 𝜉2

∗�̅�

T = −𝛼1
∗𝐪∗ + 𝜉1

∗�̅�

                      

 

(43) 

So, the conditions for differentiating doublets by modality led us to a certain, albeit incomplete, 
specification of the initial parameters of the model 𝛼1,2, 𝛽1,2, 𝜉1,2, 𝜂1,2. According to (43), the model is 

now parameterized by four complex parameters 𝛼1,2, 𝜉1,2or eight real numbers. 

From (43) it follows that the Rumer's transformation (amino ↔keto) [17][22] in biquaternions has 

the form of double conjugation (6): 

 {
A ↔ C
T ↔ G

      ⇔       {C = A̅
∗

T = G̅∗
     

 

As is known, nucleotides that have the same number of hydrogen bonds (two or three 

bonds) form Watson-Crick complementary pairs : C - G , A - T. From (43) it follows that the 

transformation converting complementary nucleotides into each other has the following form: 

 

{
A ↔ T
C ↔ G

        ⇔       

{
 

 
𝐪 ↔ 𝐪∗

𝑁 ↔ �̅�
𝛼2 ↔ −𝛼1

∗

𝜉2 ↔ 𝜉1
∗

                      

 

(44) 
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Ideal codon groups. 

As above in the case of defining a doublet, by triplet we mean not arbitrary consecutive triplet of 

nucleotides, but only the one that encodes an amino acid. A triplet understood in this way is also 

called a codon. 

In the works of S.V. Petoukhov [6][7] there were introduced two conditional groups of 
codons, defined by strong and weak doublets; each of these groups contains 32 triplets. Let's call 

these two groups ideal codon groups. Between these two groups in their matrix-tensor alphabetic 

representation, a certain symmetry in the arrangement of elements was discovered, which inherits 

the symmetry of the corresponding groups of doublets and nucleotides. In this property we see an 
indication of the presence of internal symmetry of nucleotides, which are inherited in the multiplets 

they form. Table 4 shows two ideal groups of codons, grouped into series according to the amino 

acids they encode6. 

 

Table 4. Ideal groups of codons. 

I. Strong codons (f) II. Weak codons (p) 

TCC
TCA
TCT
TCG

}  𝑆𝑒𝑟             

CTC
CTA
CTT
CTG

}𝐿𝑒𝑢         

GCC
GCA
GCT
GCG

}  𝐴𝑙𝑎       

GGC
GGA
GGT
GGG

}  𝐺𝑙𝑦 

CCC
CCA
CCT
CCG

}  𝑃𝑟𝑜        

CGC
CGA
CGT
CGG

}𝐴𝑟𝑔        

GTC
GTA
GTT
GTG

}  𝑉𝑎𝑙      

ACC
ACA
ACT
ACG

}  𝑇ℎ𝑟 

AGC
AGT

} 𝑆𝑒𝑟               
AGA
AGG

} 𝑠𝑡𝑜𝑝 

TTC
TTT

}𝑃ℎ𝑒             
TTA
TTG

} 𝐿𝑒𝑢 

TAC
TAT

}𝑇𝑦𝑟              
TAA
TAG

} 𝑠𝑡𝑜𝑝 

TGC
TGT

}𝐶𝑦𝑠              
TGA
TGG

}𝑇𝑟𝑝 

ATC
ATT

} 𝐼𝑙𝑒                  
ATA
ATG

}𝑀𝑒𝑡 

AAC
AAT

}𝐴𝑠𝑛              
AAA
AAG

}𝐿𝑦𝑠  

GAC
GAT

}𝐴𝑠𝑝           
GAA
GAG

}𝐺𝑙𝑢 

CAC
CAT

}𝐻𝑖𝑠           
CAA
CAG

}𝐺𝑙𝑛 

 

The mitochondrial code has three degeneracy groups 1, 2 and 3, corresponding to the number 

of codon pairs encoding the same amino acid. In particular, the amino acids Ser and Leu are encoded 
by three pairs of triplets, and therefore have degeneracy 3. By resorting to ideal groups of codons, 

we can temporarily “get rid” of the degeneracy 3 inherent in the codons of amino acids Ser and Leu , 

and reduce the problem to two to degeneracy groups, skew-symmetrical to each other. 

 

                                                             
6The amino acid coding scheme presented here is based on considered the most ancient and symmetrical 

vertebrate mitochondrial code [7][25]. 
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Group I consists of “strong” codon triplets formed from strong roots, and group II consists of 

“weak” codon triplets formed from weak roots. Each of the group II amino acids or stop codons is 

encoded by a pair of codons that ends with a third nucleotide C and T (eg Phe) or a third nucleotide 
A and G (eg Lys). Note that the pair C,T is described by positive projectors, and the pair A,G – by 

negative projectors (35). In group II, two pairs of codons do not code amino acids, but stop codons. 

The amino acid codon pair Met contains the start codon ATG. The exclusive amino acids Ser and Leu 

, each encoded by six codons, have their codons in both ideal groups. 

 

Let us write down the model formula to calculate the biquaternion 𝒯of a triplet consisting of 

a doublet 𝒟 and a third nucleotide 𝒩3: 

 

  𝒯 =  𝒟 ∗ �̅�3    (45) 

The sign ∗ in this formula denotes an external ⨀, but contextual product: depending on the modality 

of the doublet and the sign types of cofactors, the first factor can be either the biquaternion of the 

doublet itself 𝒟  (calculated according to Table 2), or its swap conjugate �̃� . Recall that the 
biquaternion doublet itself is always a signed biquaternion ((39), Table 3), i.e. can only exist in one 

of two forms 𝒟± . Also, the third nucleotide of the triplet in its swap-conjugated form is a signed 

biquaternion: �̅�3 = ℬ±. Thus, both cofactors in (45) are signed biquaternions. As we saw above in 

(32), (33), the latter have ideal-like properties. 

 

Table 5. Rules for calculating biquaternion triplets 

 𝒯 = 𝒟 ∗ �̅�3,𝒟 = 𝒟±,  �̅�3 = ℬ±    

𝒟 �̅�3 𝒟 ∗ �̅�3 Strong roots 𝒟(f) Weak roots 𝒟(p) 

𝒟+ 

𝒟+ 

𝒟− 

𝒟− 

ℬ+ 

ℬ− 

ℬ− 

ℬ+ 

𝒟+ ∗ ℬ+ 

𝒟+ ∗ ℬ− 

𝒟− ∗ ℬ− 

𝒟− ∗ ℬ+ 

𝒟+⨀ ℬ+ ≈ 𝒟+ 

�̃�+⨀ ℬ− ≈ 𝒟+ 

𝒟−⨀ ℬ− ≈ 𝒟− 

�̃�−⨀ ℬ+ ≈ 𝒟− 

𝒟+⨀ ℬ+ ≈ 𝒟+ 

𝒟+⨀ ℬ− ≈ �̃�+ 

𝒟−⨀ ℬ− ≈ 𝒟− 

𝒟−⨀ ℬ+ ≈ �̃�−  

 

According to the rules of Table 5, if the doublet is strong, then the first multiplier in the 

product (45) is determined by interrelation between “signs” of both multipliers. If the doublet is 

weak, then the first factor in (45) is always taken 𝒟. The same table shows, up to equivalence class 

(7), the results of the corresponding products. From these rules it follows that weak doublets give 

two different biquaternions as codon-triplet, while strong doublets give only one. In other words, 
weak doublets produce two amino acids, while strong doublets produce only one. Now we write in 

general form the results of codon products for strong (𝒟𝑓) and weak (𝒟𝑝) roots: 

 
𝒟𝑓 ∗ �̅�3 ≈ 𝒟𝑓                𝒟𝑝 ∗ �̅�3 ≈ [

𝒟𝑝

�̃�𝑝
 

(46) 

It is important to emphasize that the Table 5 demonstrates the skew-symmetric nature of the 

relationship between strong and weak doublets. For example, the rule �̃�+⨀ ℬ− ≈ 𝒟+ for strong 
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doublets is replaced with a rule 𝒟+⨀ ℬ− ≈ �̃�+ for weak ones. This algebraic rule serves as the 

ground of the division of doublets by modality within our model. 

 

Using the rules for calculating triplets ((45), Table 5) one can obtain specific values of 

biquaternion codons and the amino acids they encode in each of the ideal groups. Let us write 

down, as an example, a biquaternion expression for a strong codon GTC. From Table 2 doublet-

biquaternion GT = 𝜉1𝜂2𝐪
∗ + 𝛼1𝛽2𝑁 = 𝒟−. For the third nucleotide C : �̅�3 = 𝑃1

+̅̅ ̅̅ = ℬ−. From formula 

(45) and Table 5 the biquaternion of one of the triplets formed by this doublet: GTC = 𝒟− ∗ ℬ− =

𝒟−⨀ ℬ− ≈ 𝒟− . The biquaternion of the codon GTCturns out to be equivalent to the biquaternion of 

the doublet itself GT = 𝜉1𝜂2𝐪
∗ + 𝛼1𝛽2𝑁. The amino acid biquaternions corresponding to the ideal 

group codons calculated in this way are shown in Table 6. The amino acid Ser is conventionally 

divided into two amino acids 𝑆𝑒𝑟1and 𝑆𝑒𝑟2, each belonging to its own ideal group. The amino acid 

Leu is similarly divided into 𝐿𝑒𝑢1and 𝐿𝑒𝑢2. 
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Table 6. Biquaternion representation of amino acids in ideal groups. 

Group I (f) Group II (p) 

𝑆𝑒𝑟1 ≈ TC = 𝜉1
∗𝜉2
∗ 𝐪∗ + 𝛼1

∗ 𝛼2
∗𝑁        

𝐿𝑒𝑢1 ≈ CT = 𝜉1
∗𝜉2
∗𝐪 + 𝛼1

∗ 𝛼2
∗�̅�       

𝐴𝑙𝑎 ≈ GC = 𝜉1𝜉2
∗𝐪∗ − 𝛼1𝛼2

∗𝑁       

𝐺𝑙𝑦 ≈ GG = 𝜉1
2𝐪∗ + 𝛼1

2𝑁  

𝑃𝑟𝑜 ≈ CC =  𝜉2
∗𝟐𝐪  + 𝛼2

∗2 �̅�  

𝐴𝑟𝑔 ≈ CG = 𝜉1ξ2
∗𝐪 − 𝛼1𝛼2

∗�̅� 

𝑉𝑎𝑙 ≈ GT =  |𝜉1|
2𝐪∗ − |𝛼1|

2𝑁 

𝑇ℎ𝑟 ≈ AC = |𝜉2|
2𝐪∗ − |𝛼2|

2𝑁 

     

𝑆𝑒𝑟2 = AGC,AGT ≈ AG̃ = 𝛼1𝛼2𝐪
∗ + 𝜉1𝜉2𝑁    

𝑠𝑡𝑜𝑝1 = AGA,AGG ≈ AG = 𝜉1𝜉2𝐪 + 𝛼1𝛼2�̅� 

𝐿𝑒𝑢2 = TTA, TTG ≈ TT = 𝜉2
∗𝟐𝐪 + 𝛼1

∗𝟐�̅� 

𝑃ℎ𝑒 = TTC, TTT ≈ TT̃ = 𝛼2
∗𝟐𝐪∗ + 𝜉1

∗𝟐𝑁 

𝑇𝑦𝑟 = TAC, TAT ≈ TÃ = −𝛼1
∗𝛼2𝐪

∗ + 𝜉1
∗𝜉2𝑁 

𝑠𝑡𝑜𝑝2 = TAA,TAG ≈ TA = 𝜉1
∗𝜉2𝐪 − α1

∗𝛼2�̅� 

𝐶𝑦𝑠 = TGC, TGT ≈ TG̃ = −|𝛼1|
2𝐪∗ + |𝜉1|

2𝑁 

𝑇𝑟𝑝 = TGA, TGG ≈ TG = |𝜉1|
2𝐪  − |𝛼1|

2�̅� 

𝐼𝑙𝑒  = ATC, ATT ≈ АТ = 𝜉1
∗𝜉2𝐪

∗ − 𝛼1
∗𝛼2𝑁 

𝑀𝑒𝑡/𝑠𝑡𝑎𝑟𝑡 = ATA,ATG ≈ AT̃ = −𝛼1
∗𝛼2𝐪+ 𝜉1

∗𝜉2�̅� 

𝐴𝑠𝑛 = AAC,AAT ≈ АА = 𝜉2
2𝐪∗ + 𝛼2

2𝑁 

𝐿𝑦𝑠 = AAA,AAG ≈ AÃ = 𝛼2
2𝐪 + 𝜉2

2�̅� 

𝐴𝑠𝑝 = GAC,GAT ≈ GA = 𝜉1𝜉2𝐪
∗ + 𝛼1𝛼2𝑁 

𝐺𝑙𝑢 = GAA,GAG ≈ GÃ = 𝛼1𝛼2𝐪+ 𝜉1𝜉2�̅� 

𝐻𝑖𝑠 = CAC,CAT ≈ CA = |𝜉2|
2𝐪  − |𝛼2|

2�̅� 

𝐺𝑙𝑛 = CAA,CAG ≈ CÃ = −|𝛼2|
2𝐪∗  + |𝜉2|

2𝑁                   

 

In our scheme, each amino acid in its ideal group is described by a single biquaternion 

(Appendix 3).  To clarify, an amino acid biquaternion equals to the biquaternion of its any codon, 

accounting for the amino acids Ser and Leu conventional division described above.  Specific amino 

acid biquaternion is determined mainly by its root-doublet, while only its sign is taken from the 
third conjugate biquaternion-nucleotide. Recall that vector conjugate biquaternions-nucleotides 

C̅, T̅ are sign-positive, and G̅, A̅ are sign-negative (36). 
 

By virtue of its construction, Table 6 reflects in algebraic language the known symmetries of 
codons associated with complementarity, Rumer's transformation and the number of hydrogen 

bonds of nucleotides. Moreover, in this table one can trace other symmetries identified by 

V.  Shcherbak in [17] and called him cooperative symmetries. An example of such symmetry is 
provided by a pair of stop codons 𝑠𝑡𝑜𝑝2 = {TAA,TAG} and a pair of codons {ATA,ATG}. The latter 

encode the amino acid Met ; ATG is also a start codon. In a remarkable way, these two pairs are 
described in the model by symmetric biquaternions 𝑀𝑒𝑡/𝑠𝑡𝑎𝑟𝑡 ≈ −𝛼1

∗𝛼2𝐪+ 𝜉1
∗𝜉2�̅� and 𝑠𝑡𝑜𝑝2 ≈
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𝜉1
∗𝜉2𝐪 − α1

∗𝛼2�̅�. Note that it is still an open question what mechanisms are behind the assignment 

of start and stop roles to individual triplets and their pairs . 

 
 Summarizing the above, let's write out the general formula for calculating the biquaternion 

of a codon from the biquaternions of its constituent nucleotides 𝒩1,𝒩2,𝒩3 . To do this, we combine 

(37) and (45) into one formula: 

  𝒯 = (𝒩1 ⟡𝒩2)⨀𝒩3̅̅ ̅̅     (47) 

Let us recall that both products ⟡ in ⨀ formula (47) are contextual – the choice of their specific type 

depends on the multipliers. Formula (47) gives a summary of our model. 

 
Violation of ideal symmetry. 

In this section, we will only outline some directions for the future development of the 

presented model in terms of the transition from the ideal groups of codons and amino acids 

discussed above to real ones. Two codon pairs from ideal weak group II (Table 4) { AGC, AGT }      
and { TTA, TTG }   break perfect symmetry: they encode the amino acids Ser and Leu , the remaining 

codons of which lie in strong group II . Note that in the strong group these two amino acids are 

defined by paired (swapped) doublets, algebraically related to each other through symbolic 

conjugation (38): TC = CT✶. 

As shown in Appendix 3, the biquaternions of codons 𝑆𝑒𝑟1 and 𝑆𝑒𝑟2 from groups I and II 

(Table 6) cannot be made equal to each other. The same applies to biquaternions of codons 𝐿𝑒𝑢1 

and 𝐿𝑒𝑢2 from these two groups. Therefore, some additional transformation is needed to violate the 

ideal symmetry of codons, which would change the biquaternions of the indicated codons of groups 

I or II , so as to make them equal to each other: 𝐿𝑒𝑢1: = 𝐿𝑒𝑢2 , 𝑆𝑒𝑟1: = 𝑆𝑒𝑟2. 

Likely, the violation of the symmetry of ideal groups also affects the spatial twist (chirality) 

of the resulting amino acids and is responsible for the fact that one of the 20 amino acids glycine 

has a molecule of right chirality (R-configuration), while all the others have left-handed (L-

configuration). Once again we emphasize the difference between the concepts of chirality of 

biological molecules and the chirality of spin wave functions, which are of primary focus in this 

article. 

 We limited our study to mitochondrial code of vertebrates, which are considered to be the 

most symmetrical and ancient genetic code. The transition from the mitochondrial to the nuclear 

gene code suggests another symmetry breaking, which probably arose evolutionarily [23]. 

 

The concept of biospin. 

A number of studies have suggested the quantum-like nature of the genetic code and DNA  

[9][34][35][36]. The article [34] consider the gene code as a transmitter, and the produced protein 

as a recipient of quantum information expressed by the Hamiltonian matrix. Quantum-likeness is 
forms the basis for the construction of a new biological field theory [35][36]. Based on the proposed 
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model of the gene code, we come to a close idea: DNA possesses a quantum-like biological nature, 

rooted in some analogue of the physical spin, referred here as biospin.  

 

Our genetic code model is based on the representation of nucleotides and their multiplets in the 

form of biquaternions. As shown in [24], there is an isomorphism between biquaternions and Dirac 

bispinors.  In the theory of field bispinors describe the quantum wave functions of fermions 

(electron, positron, neutrino, etc.). In Appendix 4 we offer our own version of the biquaternion 

representation of the Dirac equation, which is different from that proposed in [24]. Applying this 

representation, an isomorphism between bispinors and biquaternions (56)- (58) is also 

established. Thereafter the various operations of biquaternion algebra acquire a “physical” 

meaning, or a meaning with respect to internal symmetries. 

Above we introduced the biquaternion expression of nucleotides, doublets and triplets. On 

the other hand, according to “physical” logic, these biquaternion quantities correspond to some 

quasi-spinor wave functions, which, in turn, must have their own dynamic invariants. This means 

that for each of the nucleotides, doublets and triplets there may be found analogues of charge, mass, 

spin and other physical characteristics. In formula (47) one can see the expression of a quantum-

like relationship between the implicit “wave functions” of nucleotides 𝒩1,𝒩2,𝒩3and the 

“observable quantity” (sense) 𝒯 that the final amino acid represents. 

In fermion physics, two cases are possible: massive Dirac spinors describing an electron and 

massless Majorana spinors describing a neutrino. Our model requires precisely the first case, when 

singular objects with "charge" and "mass" occur. The algebra corresponding to Majorana spinors 

cannot be applied to the genetic code, since it cannot provide the entire variety of doublets and 

codons. 

The relation of the genetic code to spin also follows from the rules for multiplying genetic 

matrices proposed by S.V. Petoukhov in [8]. These rules are the same as the rules for multiplying 
split quaternions. On the other hand, as shown in [26], split-quaternion pairs provide another 

alternative to Dirac bispinors description of relativistic spin. In this correlation we see additional 

indications of the presence of spin-like structures underlying DNA. Moreover, split quaternions are 

a special case of biquaternions, on which our model is based. 

 
  In our model, we limited ourselves to third-order nucleotide structures, i.e. triplets-codons. 
However, this model can be extended further to longer sequences of nucleotides, including genes. 

Biquaternion algebra and the idea of biospin can help the development of such areas as comma-free 

codes [20], circular codes [21], and cyclic Gray codes in inherited biostructures [7]. In relation to 

the last two, cyclic conjugation (Appendix 4) can play a special role. Recall that cyclic conjugation 

produces a cyclic inverse permutation of isotropic coordinates of the biquaternion (53). 
 
  The work of M. Rempel et al. [33] upraises the hypothesis that DNA resonances serve as the 
sources of morphogenetic (biological) field [16]. The biospin concept provides certain theoretical 

foundations for these hypotheses. Indeed, like physical spin and magnetic moment, the biospin 

structure must carry on some rotation and be a source and receiver of some field. The latter can 

naturally be identified with the biological field, which is responsible for the holistic plan of building 
the organism and for its locomotive movements. 
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The foundations of the theory of the biological (morphogenetic) field were laid by A.G. 

Gurvich [15]. This theory received its maximum conceptual development, in our opinion, in the books 

of R. Sheldrake [16]. This researcher connects the past of a given individual with its present. This 
connection is carried out through morphic resonance. Thus, a living organism acts as an integral 

spatiotemporal formation. Sheldrake's concept also explains the phenomenon of differentiation of 

the work of the same DNA in cells of different types. This key phenomenon for the development of 

each organism can be explained by the idea that the morphogenetic field of the organism has a 
reverse effect on its DNA. Our assumption about biospin nature of DNA and its physics-like 

properties, such as quasi-charges and quasi-magnetic moments, points to more specific ways to 

describe the interactions between the morphogenetic field and DNA. 

 
Skew-symmetric noise immunity. 

In the figurative expression of S.V. Petoukhov, the genetic code of the DNA molecule chain is 

written simultaneously in three alphabets: it can be represented as three binary sequences: the 

sequence of hydrogen bonds of nucleotides (2 or 3), the sequence of purines (A. G) and pyramidins 

(C,T), the sequence of keto molecules (G,T) and amino molecules (A,C) [5]. Study  of the algebraic 
relationships between these three types of equivalence (or conjugation) of nucleotides indicates the 

skew-symmetric nature of the connections between the corresponding channels of genetic code 

implementation. 

 

Skew symmetry as a fundamental physical principle was deeply studied in the works of V.V. 
Shchennikov [12][13]. In the most general way, skew symmetry can be defined as a particular 

combination of symmetry and antisymmetry. Thus, skew symmetry is a higher level of 

organizational complexity in relation to simple symmetry. Skew symmetry is symmetry in a 

broader sense. As an expression of complementarity and interaction, skew symmetry underlies the 
fundamental equations of physics and mathematics, including the Cauchy-Riemann conditions and 

the Dirac equation [3]. In our opinion, the last equation in its integral mosaic complexity is the most 

beautiful of all existing expressions of skew-symmetric relations. 

 

The concrete form of skew symmetry as a relation of symmetry and antisymmetry depends 
on the nature of the mathematical objects we are dealing with and the representation used. 

Common to all skew-symmetric structures and relations is the factor of internal torsion or cyclicity 

[12][13], which is especially clearly manifested in the nature of the spin – the particle’s own 

moment of rotation. The genetic code is also based on its own internal skew symmetry. 

 

An antisymmetry transformation can be a sign reversal, a change from a left operator to a 

right one, a switch from clockwise direction to counterwise, etc. The various types of conjugations 
of biquaternions, which we discussed above, give one or another form of skew-symmetric 

transformations, thereby being skew conjugates. The most famous and significant type of 

mathematical conjugation is complex conjugation. Our mirror image offers an example of skew 

conjugation from ordinary life. Two types of multiplication, external and internal, are also 
connected by skew conjugation. In the matrix representation (Appendix 1) skew conjugation is 

expressed in the mutual replacement of the addition of products of matrix elements by their 

subtraction. The antisymmetric transformation here is the reversal of the sign of the second term. 

The symmetric transformation in this case obviously means preserving the sign of the first term. 
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Together, these two transformations make a skew-symmetric transition from the external 

multiplication of matrices (or biquaternions) to their internal multiplication. 

 

The mathematical nature of the genetic code defines a special skew-symmetric type of noise 
immunity, which is based on the work of several parallel complementary channels of code 

implementation. A diagram of this type of noise immunity is shown in Figure 3. Horizontal lines 

with arrows depict four channels of code execution. Each channel executes its own code (which 

itself can change over time). All four channels are interconnected by skew-symmetric links, as 
shown by the vertical dotted lines. If errors or failures occur in one of the channels, the code and 

the program it executes are restored based on the other channels using skew-symmetric addition 

operations. 

 

 
Fig. 3. Skew-symmetric noise immunity. 

 
As the author discovered from personal experience, skew-symmetric noise immunity 

effectively helps in working with calculations. Four different representations of the Dirac equation 

(Appendix 4) can serve as four channels of code execution. When searching for solutions to one of 

these equations, for example, in the form of plane or spherical waves, possible errors are detected 

and corrected by comparing this solution with similar solutions in the other three “channels”. Similar 

noise immunity mechanisms also operate in the genetic code, which is characterized by its multi-
level skew symmetry. At the most basic level, skew-symmetric noise immunity of the gene code is 

implemented via two complementary DNA strands. Unlike duplicating systems based on simple 

symmetry, skew-symmetric complementation is much more reliable. The same mutation is more 

likely to occur in identical elements, but less likely in different, although related, elements. 

 
Noise immunity is a mechanism for maintaining the integrity of a complex system, an example 

of which is the system of an organism. For the overall organization of such systems, their scalability 

is a key feature. And here the skew-symmetric nature of the basic processes of organization and 

continuous recreation of living things plays a fundamental role. As shown in the book [5], 

genomatrices have symmetries of a special scalable nature. As one of our future projects and goals, 
we see the establishment of a correspondence between Petoukhov genomatrices and the 

biquaternions of the genetic code of the present model. 

 

S.V. Petoukhov in [9] develops a quantum information approach to the study of the genetic 

code, based on the application of wave functions to the gene code. Such wave functions determine 

the probability of certain nucleotide sequences to occur in a given DNA chain. It is noteworthy that 
2-qubit nucleotide systems serve as the computational basis of this model, which in turn indicates a 

certain spin-like nature of nitrogenous bases and their multiplets. We also hope to connect the 

concept of biospin with Petoukhov’s quantum information approach.  
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Appendices. 

1. Matrix representation of biquaternions. 

There is an isomorphism between biquaternions and second-order square matrices [32]. Let 

us choose some isotropic basis in the space of biquaternions (11). Then for each biquaternion ℬ 

represented in this basis according to (14), we can be put a second-order square matrix 𝑀 into one-

to-one correspondence with it: 

 
   ℬ = 𝛼𝐪 + 𝛽𝐪∗ + 𝜉𝑁 + 𝜂�̅�    ↔     𝑀 = (

𝜉 𝛼
𝛽 𝜂

) 
(48) 

According to this correspondence rule, there is an isomorphism between biquaternions and 

second-order square matrices in addition and ordinary multiplication. The usual rule for matrix 

multiplication, let us denote it as for biquaternions by the symbol ⨀, has the well-known form: 

 

𝑀1⨀𝑀2 = (
𝑎11 𝑎21
𝑎12 𝑎22

)⨀(
𝑏11 𝑏21
𝑏12 𝑏22

) = (
𝑎11𝑏11 + 𝑎21𝑏12 𝑎11𝑏21 + 𝑎21𝑏22
𝑎12𝑏11 + 𝑎22𝑏12 𝑎12𝑏12 + 𝑎22𝑏22

) 
 

 

If for biquaternions the ordinary (external) multiplication ⨀ is replaced by internal one ⨂, then an 
isomorphism can also be established between them and the matrices: 

 
   ℬ = 𝛼𝐪 + 𝛽𝐪∗ + 𝜉𝑁 + 𝜂�̅�    ↔     𝑀 =  (

𝜉 𝛼
−𝛽 −𝜂

) 
(49) 

However, this requires changing the multiplication rule for matrices to the following: 

 

𝑀1⨂𝑀2 = (
𝑎11 𝑎21
𝑎12 𝑎22

)⨂(
𝑏11 𝑏21
𝑏12 𝑏22

) = (
𝑎11𝑏11 − 𝑎21𝑏12 𝑎11𝑏21 − 𝑎21𝑏22
𝑎12𝑏11 − 𝑎22𝑏12 𝑎12𝑏12 − 𝑎22𝑏22

) 
 

 

It follows that the external multiplication of biquaternions corresponds to the usual matrix 

multiplication, and the internal multiplication corresponds to matrix multiplication, in which the 

products of the elements of the rows of the first matrix by the elements of the columns of the second 
matrix are not added, but subtracted. In this study, we use a representation of biquaternions based 

on isomorphism of the first type. Because of that, the external product of biquaternions has the usual 

properties of matrix multiplication, including associativity. The internal product of biquaternions, 

unlike the external one, is not associative. It also turns out that the external product of biquaternions 
does not depend on the chosen basis, while their internal product is basis-dependent. Although, one 

can use an alternative representation of biquaternions, in which the internal product will be 

associative and basis-independent, and the external product will be non-associative and basis-

dependent. 
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2. Products of elements of isotropic basis. 

Table 7 shows various possible combinations of products of elements of a biquaternion 

isotropic basis for two basic types of multiplication: external ⨀ and internal ⨂. 

 
Table 7. Products of elements of isotropic basis. 

External (ordinary) product ⨀ 
 

Internal product ⨂ 

𝐪⨀𝐪 = 0 𝐪∗⨀𝐪∗ = 0 

𝑁⨀�̅� = 0 �̅�⨀𝑁 = 0 

𝐪⨀𝐪∗ = 𝑁 𝐪∗⨀𝐪 = �̅� 

N⨀N=N �̅�⨀�̅� = �̅� 

𝐪⨀𝑁 = 0 𝐪∗⨀�̅� = 0 

𝑁⨀𝐪 = 0 �̅�⨀𝐪∗ = 0 

𝐪⨀�̅� = 𝐪 𝐪∗⨀𝑁 = 𝐪∗ 

𝑁⨀𝐪 = 𝐪 �̅�⨀𝐪∗ = 𝐪∗ 
 

𝐪⨂𝐪∗ = 0 𝐪∗⨂𝐪 = 0 

𝑁⨂𝑁 = 0 �̅�⨂�̅� = 0 

𝐪⨂𝐪 = 𝐪 𝐪∗⨂𝐪∗ = 𝐪∗ 

𝑁⨂�̅� = 𝐪∗ �̅�⨂𝑁 = 𝐪 

𝐪⨂𝑁 = 0 𝐪∗⨂�̅� = 0 

�̅�⨂𝐪 = 0 𝑁⨂𝐪∗ = 0 

𝐪⨂�̅� = �̅� 𝐪∗⨂𝑁 = 𝑁 

𝑁⨂𝐪 = 𝑁 �̅�⨂𝐪∗ = �̅� 
 

 

 

In particular, it follows from this table that the elements 𝑁, �̅� are idempotent with respect to 

external multiplication ⨀ and nilpotent with respect to internal multiplication, and the elements 
𝐪, 𝐪∗ visa versa are nilpotent with respect to internal multiplication ⨂ and idempotent with respect 

to external multiplication. Switching from one type of multiplication to another transforms 

idempotents and nilpotents into each other. 

 

 

3. Model parameters. 

1) The uniqueness of amino acid biquaternions. We shall show in general terms that, with the 

exception of special conditions, the biquaternions of various amino acids (Table 6) do not intersect 

with each other, i.e. each amino acid is described by its own biquaternion. This obviously requires 

that all parameters 𝛼1,2, 𝛽1,2, 𝜉1,2, 𝜂1,2 be different, i.e. no two of them are identical. Further, if we 

take the first biquaternion of an amino acid in the list 𝑆𝑒𝑟1 ≈ TC = 𝜉1
∗𝜉2
∗ 𝐪∗ + 𝛼1

∗ 𝛼2
∗𝑁 and demand 

that it differ from all the others, then we obtain a series of inequalities: 𝜉1
∗𝜉2
∗ ≠ 𝜉1

2, 𝛼1
∗𝛼2 ≠

−𝛼1
2, 𝜉1

∗𝜉2
∗ ≠ 𝛼1

∗ etc. All these inequalities are satisfied almost always, with the exception of special 

conditions determined by their inverse equalities. The comparison of other amino acid 

biquaternions is similar. Thus, in the most general case, the biquaternions of all amino acids are 

different. 

2) The need to break ideal symmetry. As we saw above, the two amino acids Ser and Leu are 

represented by their codons simultaneously in each of the ideal groups I and II . As a consequence 

of the above requirements for model parameters, biquaternions describing the same amino acid 

Leu in groups I and II (𝐿𝑒𝑢1and 𝐿𝑒𝑢2) cannot be equal to each other. A similar situation occurs for 
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the second exceptional amino acid Ser. Therefore, an additional transformation of the violation of 

ideal symmetry is required – the corresponding paragraph of the article is devoted to its discussion. 

 

4. Biquaternionic Dirac equation. 

The Dirac equation occupies a central position in quantum field theory. This equation describes the 

wave functions of elementary particles of half-integer spin. In the context of this work, it is 

important that the Dirac equation and our model of genetic code operate with the same algebraic 
means and have common types of skew symmetry. 

 

Above we pointed out the representation of the Dirac equation in biquaternion form, given 

in [24]. Here we give an alternative biquaternion representation of the Dirac equation that we 

derived7: 

    �̂�⨀𝐹+ + 𝐹−⨂�̂̅� = 𝑖𝑚𝐹
⤺

 , (50) 

In equation (50) 𝐹 there is a biquaternion fermion wave function, expanded according to (16) as 

the sum of its signed components: 𝐹 = 𝐹+ + 𝐹−,  m – particle mass,  �̂� is a biquaternion gradient 

operator, and the operator �̂̅� is vector conjugate to �̂�: 

 

 
   {
�̂� =  𝐪𝜕𝛽 + 𝐪

∗𝜕𝛼 + 𝑁𝜕𝜉 + �̅�𝜕𝜂

�̂̅� = −𝐪𝜕𝛽  −  𝐪
∗𝜕𝛼 +𝑁𝜕𝜂 + �̅�𝜕𝜂

 
(51) 

𝐹
⤺

 in equation (50) denotes cyclic conjugation of the first type taken from biquaternion 𝐹, defined 
according to the formula: 

 𝐹 = 𝐪𝑓𝛼 + 𝐪
∗𝑓𝛽 + 𝑁𝑓𝜉 + �̅�𝑓𝜂     ⇒    𝐹

⤺

= − 𝐪𝑓𝛽  −  𝐪
∗𝑓𝜂  −  𝑁𝑓𝛼 + �̅�𝑓𝜂     

(52) 

Cyclic conjugation (52) can be expressed using the following diagram, which shows a cyclic 

permutation of coordinates with inversions for a biquaternion 𝐹, which gives the output 𝐹
⤺

: 

 

 

 

 

(53) 

As a result of four cyclic conjugations, each coordinate returns to its place, but at the same time the 

sign of the entire biquaternion changes to the opposite. It takes another cycle of four conversions 
(53) to completely return the original biquaternion. In other words, two full turns (cycles) are 

required for the wave function of the particle to completely return to itself. And this just means that 

the particle described by the equation is a fermion and has a spin of ½. 

 

                                                             
7The form of the Dirac equation (50) is published for the first time. 
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In addition to (50), there are three more other analogous representations of the Dirac 

equation, using their own three types of cyclic conjugations. A detailed consideration of all types of 

these equations and its cyclic conjugates is beyond the scope of this article. Cyclic conjugations are 

closely related to swap conjugation (31). In particular, the cyclic conjugation of the first type (52) 

for positive signed biquaternions coincides up to sign with the swap conjugation: 

 

  𝐵+
⤺

= −𝐵+̃    
(54) 

As we can see, the Dirac equation in the biquaternion formulation uses the same operations of 
internal and external multiplication and swap conjugation which form the basis of our model. 

 

Let us show that equation (50) is equivalent to the usual Dirac equation in the 

representation  of Weyl spinors. The latter is written as [31]: 

 

 

 {
 
𝜕𝜓𝐿
𝜕𝑡

= −(𝛔 ⋅ 𝛁)𝜓𝐿 − 𝑖𝑚𝜓𝑅  

𝜕𝜓𝑅
𝜕𝑡

= +(𝛔 ⋅ 𝛁)𝜓𝑅 − 𝑖𝑚𝜓𝑅

 

 
(55) 

Here 𝛔 – a three-dimensional vector consisting of Pauli matrices; 𝛁 – three-dimensional nabla 

operator; 𝜓𝐿and ψR – Weyl three-dimensional spinors, which are right-handed and left-handed 
chiral states: 

 

 

 

{
 

  𝜓𝐿 = (
𝑢

𝑣
)

𝜓𝑅 = (
𝑢′

𝑣′
)
                𝑢, 𝑣, 𝑢′, 𝑣′ ∈ ℂ 

 
(56) 

The correspondence between Weyl spinors 𝜓𝐿 and 𝜓𝑅   (56) and the biquaternion wave function 
expanded in isotropic basis (14) 𝐹 = 𝐪𝑓𝛼 + 𝐪

∗𝑓𝛽 +𝑁𝑓𝜉 + �̅�𝑓𝜂is given by the following formula: 

 

 
 {
 𝑢 = 𝑓𝛽
𝑣 =  𝑓𝜂

          {
 𝑢′ = 𝑓𝛼
𝑣′ =  𝑓𝜉

 
(57) 

or 

 𝐹 = 𝐪𝑢′ + 𝐪∗𝑢 + 𝑁𝑣′ + �̅�𝑣 (58) 

From the above we can conclude that signed biquaternions represent chiral states. The signed 

positive biquaternion  𝐹+ describes a right-handed chiral state, and the signed negative 

biquaternion 𝐹− describes a left-handed chiral state: 
 

 
 {
 𝐹−~ 𝜓𝐿
𝐹+~𝜓𝑅

 
(59) 

Thus, arbitrary signed biquaternions 𝐵± can also be called chiral biquaternions of the corresponding 

direction (right- or left-handed).  
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Discussion and conclusions. 
 

Let us outline the main features of the genetic code model we have presented. This model is 

constructed utilizing new methods of biquaternion algebra including isotropic basis and internal, 

external and other types of biquaternionic multiplication, as well as various types of conjugation. In 

the model, each nucleotide is represented by its own biquaternion. Together, these four nucleotide 
biquaternions form the basis of the entire biquaternion space. Using products of various types, 

their doublets and triplets are constructed from biquaternions of nucleotides. Moving along this 

path, we can algebraically divide all nucleotide doublets, and then triplets (in idealization), into two 

modality groups – strong and weak. Well-known codon symmetries associated with 
complementarity, Rumer's transformation and the number of hydrogen bonds of nucleotides 

acquire algebraic embodiment.  

 

In biquaternion form, each codon is written as a special triple product of nucleotide 

biquaternions. The model put the ground under phenomena of code degeneracy, i.e. specific 
grouping of triplets that code the same amino acids. The degeneracy of multiplets results from 

ideal-like properties of the biquaternions that model nucleotides and their multiplets. Nucleotides 

(in conjugate form), doublets, triplets and amino-acids all occur to be right-chiral or left-chiral 

states (in spin sense). Thus, chirality plays a key role in the operation of genes.  

 

Historically spin formalism has been applied to areas other than the original spin theory. 
Thus, in theoretical physics, the theory of isotopic spin was proposed and successfully applied to 

describe the internal symmetries of baryons, which led to the creation of the quark model [37]. The 

proposed algebraic model of the genetic code indicates the quantum-like nature of nucleotides and 

the DNA molecule as a whole. Indeed, biquaternions provide an alternative representation of 
fermion spin wave functions in relativistic quantum theory. Biquaternions representing 

nucleotides can be considered as their wave functions, from which the complete wave functions of 

the genes and whole DNA are assembled. In future development biquaternion formalism may also 

be applied to the description of the non-coding part of DNA as well.  

 

The properties of DNA nucleotides obtained in biquaternion algebra are similar to the physical 

properties of elementary particles and fields, such as spin, charge, and mass. However, it would be 
rash to attempt to directly identify these characteristics for biological objects. When describing the 

genetic code, nucleotides and their multiplets, we should be talking not about the physical spin, 

charge, mass, etc., but about the spin-, charge-, mass-like properties of the corresponding structures 

and their elements. The quantum-like biological nature of DNA is based on an analogue of physical 
spin, which we called biospin. It will probably be appropriate for genetic structures and a living 

organism as a whole to talk about its own biological space-time in which these properties are 

realized. Physical space-time and the proposed biological space-time must be connected in some way. 

 

It can be assumed that the skew symmetry in the distribution of amino acid codons in ideal 
groups established within the framework of our model has its origin in the well-known asymmetry 

in living nature [14]. This assumption is based on the quasi-spin nature of the obtained algebraic 

structures. The “strength” or “weakness” of doublets and codons in ideal groups is largely 

determined by the chirality (in spin sense) of their constituent nucleotides. Moreover, between 
strong and weak roots we observe breaking of chiral symmetry, similar to one occurring in the 
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physics of weak interactions. Indeed, the distribution of chiral (signed) biquaternions is uneven 

between these two groups: there are three positive 𝐷+and five negative 𝐷−strong roots, and, 

conversely, five positive and three negative weak roots (see Tables 1 and 3). The internal chirality 
of nucleotides is assumingly responsible for the right-handed nature of the spatial twist of the DNA 

helix. 

 

In our previous work [1][2] we identified an algebraic property that indicates the similarity 

of mathematical and biological objects: nullvectors and genes. This is indicated by the so-called 

nullvector factorization: when multiplied by each other, nullquaternions each give the product its 
structural half. In sexual crossing, half of the parent's genetic information is passed on to the 

offspring. In the case of nullquaternions, either the left or right structural half acts as such a half, 

depending on the order of the two nullquaternions in their product There is a remarkable likeness 

between nullvector algebra and genetics: the product of nullvectors is similar to the combination of 

allelic genes in a chromosome. The model constructed in this work is also based on nullquaternions, 
which provides additional evidence that nullquaternions should play a key role in the mathematics 

of life. 

   

The proposed model in its own way answers many questions that have always faced 

researchers of the genetic code. Why there are four types of DNA nucleotides? Where did the 
division between strong and weak doublet roots come from? Why are triplets-codons grouped in a 

certain way when coding amino acids? The works [5][10] showed the manifestation of the ancient 

Eastern principle of Yin-Yang in its mathematical expression in the structures of the genetic code. In 

line with this, the main conclusion that we can draw here about the nature of DNA and the 
organism as a whole is that their work is based on the principle of complementarity, expressed in 

mathematical language of skew symmetry. 

 

Biquaternion algebra in isotropic basis provides a new mathematical language for 

describing skew-symmetric structures. The model proposed above is likely not the only possible, 

other models could be built using this language. However, any model is just a step towards creating 

a theory. Such a theory describing the biological and informational nature of DNA, as we believe, 
should be field and quantum-like in nature. 

 

The author sincerely thanks Sergey Valentinovich Petoukhov, without acquaintance with whose 

works and joint discussion of many deep issues of mathematical biology, writing this article would 

not have been possible. 
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