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Abstract 

The paper presents a better calculation of the constants Psi
0
 and  of the CGT’s bag model, 

previously publised, which indicates  the existence of a bag pressure (and a bag constant) for 

each composite particle but also for quarks and the bag’s constant variation with the intrinsic 

temperature of the particle’s kernel. 

 

1. Introduction 

In a Cold genesis theory of particles  [1, 2] , the strong force of quarks confining and the 

nuclear force were explained by a (multi)vortical model of nucleon, considered as cluster of 

an even number N
p
 = 1836/0.8095 = 2268 quasielectrons, (integer number of degenerate 

“gammons”,  *
(e

*- 
e

*+
)), i.e. electrons with degenerate charge (e

* 
= (

2
/3)e), magnetic moment 

*
 and mass: me

*
 = 0.8095 me,  resulting by a degeneration of  the magnetic moment’s 

quantum vortex  =  A +B , given by ‘heavy’ etherons of mass ms  10
-60

kg and ‘quantons’ 
of mass mh = h1/c

2
 = 7.37x10

-51 
kg.   

The considered “gammons” were experimentally observed in the form of quanta of “un-

matter” plasma, [3]. 

 The  me
*
 -value results in CGT by the conclusion that the difference between the masses of 

neutron and proton: (mn -mp  2.62 me) is given by an incorporate electron with degenerate 

magnetic moment and a linking ‘gammon’ e (*
) = 2me

*
  1.62 me , forming a ‘weson’, w- 

 = 

(e (*
) + e

-
),  which explains the neutron in a dynamide model of Lenard- Radulescu type [1, 

2], ( protonic center and a negatron revolving around it by the  -vortex with the speed ve
*
 << 

c, at a distance re
*
  1.36 fm [4]- close to the value of the nucleon’s scalar radius: r0  1.25 fm 

used by the formula of nuclear radius: Rn  r0A1/3
), at which it has a degenerate e

S
 -magnetic 

moment and Se
n –spin.  

   The used electron model supposes an exponential variation of its density, n(r), given by 

photons of inertial mass mf , vortically attracted around a dense kernel m0 and confined in a 

volume of classic radius a = 1.41 fm, (the e-charge in electron’s surface), the superposition of 

the (N
p
+1) quantonic vortices 

*
 of the protonic quasielectrons, generating a total dynamic 

pressure: Pµ(r) = (1/2)µ(r)c2 (1/2)n(r)c2
= Pn(r), inside a volume with radius: d

a
 = 2.1 fm, 

which gives an exponential nuclear potential: Vn(r) = -iPµ(r) of eulerian form, conform to :  

                                Vn(r) = iPµ(r) = Vn0e-r/* 
;      Vn0

 
= -iPµ0 ,                                     (1) 

with: * = 0.8fm (equal to the root-mean-square radius of the magnetic moment’s density 

variation inside a neutron, experimentally determined) and i(0.590.6fm)- the ‘impenetrable’ 
volume of nuclear interaction [1, 2], the proton resulting as formed by N

p
  2268 paired 

quasi-electrons which give a proton’s apparent density in its center (by the sum rule), of 

value:    n
o  fcNpe

o 
= 4.54x10

17
kg/m

3
, (e

0
 = 22.24 x10

13
 kg/m

3 
), and an attached positron 

with degenerate magnetic moment, in the CGT’s model, the density of the  -vortex of a free 

electron having approximately the same density’ variation as the density of photons of its 

classic volume (of radius a = 1.41 fm), f ≈ 0.9 being a coefficient of mass’ and  -vortex’s 



density reducing in the center of the (quasi)electron at its mass degeneration, its value 

resulting by the gauge relation of CGT: e = 4a
2
/k1 and by the integral of nucleon’s mass –

considered as given by confined photons, with a density variation: n(r) = n
0
(0).e

-r/’
 with ’ 

= 0.87 fm, (equal to the proton’s root-mean square charge radius, experimentally determined: 

0.84 0.87 fm).   

     Eq. (1) with i(ai)  (0.86 0.9) fm
3
, gives a value  Vn

0
 = (110115) MeV and:  Vn(d=2fm) 

  (8.69) MeV – value specific to the mean binding energy per nucleon in the nuclei with the 

most strongly bound nucleons, ( 9 MeV/nucleon for 
56

Fe, 
58

Fe, 
60

Ni, 
62

Ni ).  

      It is know also the MIT bag model of particle (Chodos et al., 1974, [5]), based on 

Bogoliubov’s model (1967) and the Quantum chromodynamics, which consider the quarks 

moving inside a „bag” volume of radius R1fm , with the normal component of the pressure 

exerted by the free Dirac particles inside the bag balanced at the surface by the difference in 

the energy density of the quantum vacuum inside and outside the bag:  

                    E = (4/3)BR3
 ,       with B  58MeV/fm

3
 ,                                                   (2) 

the B-constant having the meaning of a quantum vacuum pressure. 

    The quarks’ confining is explained  in CGT by a similar „bag” model [6], considering  

similarly  a pressure of quanta specific to the quantum vacuum, but with the difference that 

these radially kinetized quanta are a relative small part of the nucleon’s  quantonic clusters 

forming ‚naked’ photons (i.e. photons reduced to their inertial mass: mf = h/c
2
  mh, 

contained by a photon’s kerneloid of radius rf < 10
-17

 m and volume f), which are radially 

vibrated at the surface of the  ‘impenetrable’ volume of nuclear interaction, i(ai), considered 

of a radius ai  0.6 fm - used in the Jastrow’s expression for the nuclear potential [7],  as 

consequence of the vortical field’s attraction by a scalar potential of the form (1), i.e. 

Vf (r) = ½f(ai)c
2
 ;  (with f instead of i), the generated bag’s potential being considered as 

resulting by a Gaussian variation of the vibrated photons’ kinetic energy density, in the form: 
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in which q(mq;q) is the (u/d)-quark’s quantum impenetrable volume q(rq), considered of 

radius rq  0.2 fm –conform to older experiments [8], ai = ri
*
 ≈ 0.6 fm and:  

δ = 2c, (c–the gaussian standard deviation).  

  The value of Psi
0
 = f(ai)c

2
 (the pressure on the bag’s surface) resulted close to that obtained 

by the MIT bag model (10.2x10
33

 N/m
2
 instead of 9.3x10

33
 N/m

2
), but by a roughly 

approximation  (f(ai)  ½n(ai); n(r)- the nucleon’s density), the δ -constant resulting  of 

0.27 fm by the conclusion that the known quarks deconfination temperature: Td  2x10
12

K, 

([9], Karsch, 2001), is given in accordance with the equation :  

                                     MeVVrV
m

m
TkE cqn

q

n
dBD 175) )((

2

1 **                      (4) 

in which: r
* 0.45fm and V

*
c = (½)mqvr

2
  2.6x10

-3
 MeV  -the centrifugal potential, 

i.e. by the conclusion that the mechanic work of the mean force Fq(r) = -Vqn must cancel the 

kinetic energy Eqv = (mq/mn)ED obtained by a current (u/d)- quark, until the bag’s surface. 



       It was also argued in CGT [10] that the current d-quark’s mass md  7.5 MeV/c
2
 is more 

plausible than the value: md  5.2 MeV/c
2
 -actually used in the Standard Model. 

       The purpose of this paper is a better calculation of the constants Psi
0
 and of the - 

constant, by the CGT’s bag model, which indicates  the existence of a bag pressure (and a bag 

constant) for each composite particle. 

2. Argument for CGT’s calculation of the bag constant’s value 

A supplementary justification of the current quark’s radius : rq
n
  0.2 fm used in CGT for the 

real volume of a dilated current mass of an  u/d-quark of a nucleon having an ordinary 

temperature Tn
j
  1MeV/kB, instead of the value: rq

 = 0.43x10
-3

 fm –actually considered by 

the S.M. , is the next: 

   The known MIT bag model considers the current quarks and the gluons as light particles 

with radius rq

 <10

-3
 fm moving inside a „bag” volume of radius R  1fm , with the normal 

component of the pressure exerted by the free Dirac particles inside the bag balanced at the 

surface by the difference in the energy density of the quantum vacuum inside and outside the 

bag:  E = (4/3)BR3
 ,  corresponding to ¼  of the nucleon’s rest energy,  with B  

58MeV/fm
3
 [11], the B-constant having the meaning of a quantum vacuum pressure.  

Conform to this model, the quark confinement is explained by a potential similar to the 

Cornell potential: ),(     2

1 rfk 
r

k
  = V qC   (with a pseudo-Coulombian term of color charges 

interaction by gluon exchange and a strong force term corresponding to an elastic force as that 

generated by an elastic string formed between a pair of quarks), but with the second term in 

the form : BV = (4/3)BR
3
, i.e. by a pressure force:  

Ft =  4BR
2
, with B  58MeV/fm

3
 = 9.28x10

33
 N/m

2
. But for a current quark with a 

supposed radius rq

 = 0.43x10

-3
 fm, the resulting B-value gives a specific force:  

Fq

 = rq

2B = 5.39x10
-3

 N –of very low value.  

    If a nucleon has a vibration energy Ev = 1.4x10
-13

J = 0.875 MeV, corresponding to a 

nuclear temperature Tn
’
  10

10
 K, the energy Eq transmitted to a current quark of mass mq  3 

MeV/c
2
 is: Eq = (mq/mn)Ev = (3/938)0.875 = 0.0028 MeV  4x10

-16 
J – much higher than the 

mechanic work of the force Fq

 (considered constant) on the distance r  1 fm,  

(L(Fq

) = Fq

r  5.4x10
-18

 J), which lead to the conclusion that the current quark could 

penetrate the bag’s surface even at an ordinary nuclear temperature Tn
j
, without the interaction 

with the other two quarks by ‘color charge’ (concept not enough explained micro-physically) 

and that the Fq

 -force cannot explain the current quark’s ‘asymptotic freedom’.       

3. The calculation of the bag constants B and δ of the CGT’ model of strong interaction 

a) Because the nucleon’s rest energy: EN = mnc
2
 = 938 MeV corresponds to a virtual 

temperature TN = EN/kB  1.087x10
13

 K, the deconfining energy ED = 175 MeV 

experimentally determined corresponds to a nucleon’s  associated temperature: TD = 

(ED/EN)TN  2x10
12

 K. 

However, for a nucleon’s impenetrable volume containing three current quarks of mass mq  

7.5 MeV/c
2
, (the difference m  2.6 me being given by the masses of the constituent quarks, 

in CGT),  only a fraction R = Eqv = (mq/mn)ED   1.4 MeV is transmitted to a current quark. 



    Conform to CGT [6], the quarks’ deconfining is produced when a current quark penetrate 

the bag’s surface generated by their common vortical field, i.e. when it has –relative to at least 

one other current quark of the same nucleon, (figure 1), an energy: 

                     Eqv  Vq
0
(ai)

 
 = (mq/mn)ED   1.4 MeV,                                                              (5) 

with Vq
0
(ai)

 
 = qPsi

0
;  (q = q(0.2fm) –the current quark’s volume, in CGT, [2], in 

concordance with older experiments [9]),  Psi
0
 being the bag’s pressure: Psi

0
(ai), given by 

naked photons  mixed with quantons,  radialli kinetized toward the nucleon’s center, (vfr). 

The equality (5) is justified by the fact that the inter-quarks potentials: magnetic, Vq , and 

centrifugal, Vqc , are sensible smaller and they are reciprocally compensated [6].  

   For a maximal speed: vf = c of the radially vibrated ‚naked’ photons of the bag’s surface, we 

can approximate that: Psi
0
(ai)  ½f(ai)c

2
,  with f(ai) –the density of vibrated photons.                                                                                 

It results from Eq. (5) that  Psi
0
(ai) = 6.69x10

33
 N/m

2
, corresponding to: Bi  42 MeV/fm

3
, –for 

vfr , (½f(ai)). 

  It must be mentioned that the obtained values of  Psi
0
(ai) and Bi correspond to an interaction 

state, i.e. to a value specific to the interaction between two nucleons, and each nucleon 

increases the  quantonic dynamic pressure at the surface of the impenetrable quantum volume 

(‚kerneloid’)  of the other nucleon, with a higher value between their kerneloids (in A-point) 

compared to the value in the opposed B-point. 

 But in the opposed point B, the increasing of the dynamic pressure Pdi
i
(di

0
)  is realised with a 

negative gradient Pdi
i 
  in report to the nucleon’s radius rn, i.e. corresponding to an attractive 

potential of the form (1): Vf (r) = ½f(ai)c
2
, acting over the volumes of ‚naked’ photons, 

this corresponding- conform to the explanatory model, to an increasing of the bag’s constant 

value.  

  However, conform to the Bernoulli’s law, the increasing of the quantonic dynamic pressure 

Pdi
i
(di

0
) = ½(di

0
)c

2
 reduces locally the static quantum pressure, but in our case- i.e. for the 

Psi(ai) corresponding to the photon’s speed vfr  , it results that this effect can be considered 

as compensated by the effect of the Vf (r)- potential in the B-point (opposed to  the A-point), 

while at the semi-surface of nucleon’s kerneloid corresponding to the A-point, the gradient 

Pdi
i
 introduced by the second nucleon is positive in report to the rn -radius of the first 

nucleon, diminishing the total potential  Vf (r) = ½f(ai)c
2
, acting over the volumes of 

‚naked’ photons and diminishing also the local value of Psi(ri) , (ri = di/2),  so the Bernoulli’s 

law can be applied to the case of the semi-surfaces Si = 2ai
2
 oriented toward the A-point. 

  The nuclear force results in this case –with acceptable approximation, by the pressure 

difference between the value Psi
B
(ai)  Psi

0
(ai) –specific also to  the free state and the value:   

Psi
A
(ri)  Psi

0
(ri) - Pdi

i
(ri

0
 ),  (Psi

0
(ri) –value of free state), acting on the interaction section Si = 

ai
2
. 

   b) - For the calculation of the δ-constant we use the approximation: Fqm = Vq
0
/ai  

Vq(FqM)/rM,  i.e. the conclusion that –because the Fq –force’s variation is between 0 and  its 

maximal value FqM(rM) on both intervals: (0rM) and ((rMai), the mean force Fqm is 

approximately equal to the intervals (0rM) and ((0 ai), and of value: Fqm = KqFqM , i.e.: 

            Fqm = KqFqM(rM) = Vq
0
/ai   Vq(FqM)/rM   =  373 N                                                 (6) 



Also, because FqM correspons to the equality: d(Fq(rM)/dr = 0 , it results that: 
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From Eqs. (3), (6) and (7) it results that:  rM = aie-0.5
 = 0.364 fm and: FqM = 575.7 N. 

 So, from (6)  and (7) it results that:  Kq = Fqm/ FqM = 0.648;   = 2(ai –rM) = 0.3327 fm. 

        4. The explaining of the nuclear force 

The obtained value of Psi
0
(ai), (6.7x10

33
 N/m

2
 ) must explain in CGT also the nuclear force, 

in the sense that the maximal attractive force between two nucleons, which is at an 

interdistance di
0
  2ri

0
 = 0.9 fm (corresponding to the mechanic contact between the nucleonic 

kernels of radius ri
0
  0.45fm, formed by the nucleon’s current quarks), must result in 

concordance with Eq. (1) by a pressure difference: Psi  (Psi
0
(ai) - Psi(ri)),  (with Psi(ri) << 

Psi
0
(ai); ri = di/2), in concordance with the Bernoulli’s law on the vortex line lr = 2r inside the 

nucleon’s volume having an exponential density’ variation : n(r) = n
0e-r/’

,
 
(’ = 0.87 fm):                    

         Psi(r) + Pdi(r) = Psi
*
(r)  n(r)c

2
 ;  (n = n

0
e

-r/’
)    Psi(r)  = -Pdi(r),                    (8)          

P(r) being a pressure difference between two points A, B, diametrally opposed on the vortex 

line lri = 2ri : P(ri) = PA(ri) – PB(-ri) for the attracted nucleon (1a), but produced by the 

vorticity of an attactor nucleon (2a) for which the points A, B correspond to rA and rB = rA + 

2ri . 

 For  di = 2ri, with ai = 0.59 fm and PB(-ri)  Psi
0
(ai), 

 
the nuclear force resulting by (1) is given 

by the pressure difference Psi  generated by light ‚naked’ photons on surface S(ai):                   

    Fn(di) = (1/*
)Vn(di)  S(ai)Psi  ;  (ai)

2
(Psi

B
 - Psi(ri)) = (1/*

)Vn0e-di/*
,                  (9)  

 -For di  1.2 fm, (ri = ai  = 0.59fm), by Eq. (1) it results: Vn0 = 110 MeV; Vn(di) = 24.54 MeV;   

     Fn(di) = 24.54x1.6x10
-13

J/0.8x10
-15

 = 4.9x10
3
 N , and- conform to (9): 

      Psi = 4.9x10
3
/1.09x10

-30
 = 4.5x10

33
 N/m

2
  Psi

B
(ai) - Psi(ri)  Psi

0
(ai) - Psi(ri). 

  By the explained approximation: Psi
B
(ai)  Psi

0
(ai) = 6.69x10

33
 N/m

2
, it results that: 

    Psi(ri) = Psi
A
(ai) = Psi

B
(ai) - Psi   Psi

0
(ai) -  Psi  = 2.19x10

33
 N/m

2
 = k1Psi

0
(ai) 

  (k1 = 2.19/6.69 = 0.3273- for di = 2ai  1.2 fm). 

-For di = di
0
 = 2ri

0
 = 0.9 fm, we have:  Psi

B
(ai)  Psi

0
(ai)  = 6.69x10

33
 N/m

2
,  

and compared to the case: di =2ai , Fn(di) and Psi(ri) are changed  -conform to the model. 

 By Eq.(9), with Si = (ai)
2
 = 1.09x10

-30 
m

2
, we have: Vn(di

0
) = 35.71 MeV   and:   

        Fn(di
0
) = 35.71x1.6x10

-13
J/0.8x10

-15
 = 7.142x10

3
 N  SiPsi , resulting:  

  Psi = 7.142x10
3
/1.09x10

-30
 = 6.552x10

33
 N/m

2
  Psi

B
(ai) - Psi(ri

0
), and  by PB(-ri)  Psi

0
(ai), 

 
 

    it results that: Psi(ri
0

 ) = Psi
A
(ai)   Psi

0
(ai) - Psi  0.14x10

33
 N/m

2
 = k1’Psi

0
(ai),   

 with k1’ = 0.021 and Psi
0
(ai)  = f

x
(ai)c

2
  ½f(ai)c

2
, (f

x 
= ½f corresponding to naked 

photons with: vf r). 

     -By Pdi(di) = ½µ(di)c
2
, Eq. (9) for an attracted nucleon can also be written as: 

  Fn(di) =  ½µ(di)c
2
(1/*

)(4ai
3
/3) = ½[f(ai)- f’(ri)]c

2(ai
2
) =  ½f(ai)c

2(ai
2
)(1-k1)     (10) 



 because  Psi is given by light photons with: vf r , generating the repulsive potential (3).    

-  For ri = ai , (di = 2ai
  1.2fm),  by Psi(ri

0
) = k1Psi

0
 = 0.3273Psi

0
, it results: f’(ri) = k1f(ai),  

(µ(di) = n
0
e

-1.2/*
 = 1.013x10

17
 kg/m

3
; *

 = 0.8 fm), and with:   

 f(ai) = 2Psi
0
/c

2
 = 1.486x10

17
kg/m

3
  1.46177µ(di) = k1pµ(di) = krµ(di)/(1-k1),  

(kr  0.9832),  it results that:   f’(ri) = 0.3273x1.486 = 0.48636x10
17

 kg/m
3
.  

-For the case ri = 0.45 fm, (di
0
 = 0.9 fm), we have Psi(ri

0
) = k1’Psi

0
 = 0.021Psi

0
,  

   and by Eq.(10) it results similarly:  

    f(ai)  kr
0µ(di

0
)/(1- k1’) = 1.474x0.9832/(1-0.021) = k2pµ(di

0
);  (k2p = 1.0043)  and: 

     f’(ri
0
) = k1’f(ai) = 0.021x1.486x10

17
 = 0.0312x10

17
 kg/m

3
, (ri = ri

0
  0.45 fm). 

  So, the condition: Psi(ri) << Psi
0
(ai), (maximal nuclear force), is fulfilled for di = di

0
 and it is 

explained by the current quark’s vorticity, in accordance with the explanatory model, this 

result being in concordance with the (multi)vortical nucleon model of CGT in the next way:      

   In CGT, the phenomenon of preons’ current mass increasing with the particle’s mass is 

explained by the fact that the force Fv = -V given by the total vortical field of the N
e
 

quasielectrons forming z
0
-preons (included into the quark’s kernel) retains the inertial masses 

of internal photons inside the quark’s kerneloid by a force of static quantum pressure gradient 

generated conform to the Bernoulli’s law, by a dynamic quantum pressure (Eq. (1), which 

increases proportional to the number of  z
0
-preons, i.e. proportional to the quark’s mass: 

              Fv(r) = -V = -N
eV

e
(r);     (V

e
 = -½fsc

2
)                                       (11) 

 (f –the volume of the photon’s kerneloid, containing its inertial mass; ½(sc
2
)r –the dynamic 

etherono-quantonic pressure in the e
 –vortex of a bound quasielectron at r -distance). 

      The explanation of the fact that the static pressure Psi of the bag’s surface is decreased 

(and not increased)  at the half of di -interdistance between nucleons (in A-point) is the fact 

that the superposition of the vortical fields n1(e
) and n2(e

)  of the interacting nucleons 

increases the total dynamic pressure Pdt(ri) = Pdi(ri) reducing the static pressure not only by 

the Bernoulli’s law but also by the decreasing of the dynamic pressure’s gradient, Pdt(ri) 

which generate the vortical attraction force Fv(r) acting over internal „naked” photons, 

reducing their static pressure on the nucleon’s kernel of interaction radius ai . 

 It is possible to explain the conclusion Psi(ri)A 0 by the Bernoulli’s law (8) in the next way: 

-Considering- in a simplified model- that only the vortical field of V
e
 characterized by 

etherono-quantonic vortices containing small photons (mf h1/c
2
) and by

 * = 0.8 fm 

generate the quantum static pressure variation at the nucleons’ interaction, (i.e. considering 

that the vorticity generated by heavier photons is compensated by the quantonic static 

pressure Psh), then for a free nucleon, on the vortex-line  lai = 2ai , by the Bernoulli’s law for 

the case: ri = ai characterized by a maximal static pressure of photons Psi(ai) =f(ai)c
2 

we have:  

   Psi(ai) + Pdi(ai) = f(ai)c
2 

 + ½µ(ai)c
2
  [k1pµ(di) + ½µ(ai)]c

2
 = Ps

*
(ai)  n(ai)c

2
         (12) 

When another nucleon (2a) is approached at an interdistance di’ = 2ai  1.2 fm,  the dynamic 

quantum pressure of vortexed quantons in A-point (at ri = ai)  is increased to a double value 

and from the Bernoulli’s law (Eq.(8)) it results that between the nucleonic kernels  we have: 



  Ps’(ai) + Pd’(ai) = [f’(ai) + 2ka(½µ(ai))]c
2
  [k1pµ(di) + ½µ(ai)]c

2
   0.5n

0
c

2
 
 
           (13) 

where ka < 1 is a vorticity attenuation factor which take into account the fact the interference 

of the vortical fields of the two interacting nucleons. It results from Eq. (13) that:          

                     f’(ai)  f(ai) - ½µ(ai)[2ka -1] = 0.486x10
17

 kg/m
3
                                   (14) 

resulting that:  ka = 0.966. 

-For ri = ri
0
 = 0.45 fm, similarly, for a free nucleon, on the vortex-line lri

0
 = 2ri

0
 we have: 

         Psi(ri
0
 ) + Pdi(ri

0
) = f(ri

0
)c

2 
 + ½(ri

0
)c

2
  [k3p(di

0
)  + ½(ri

0
 )]c

2
 = Ps

*
(ri

0
)        (15) 

-When the nucleonic kernels enters in mechanic contact, at di =di
0
 = 2ri

0
 = 0.9 fm,  similarly  

to Eq. (13), it results that between nucleons, in A’-point (at r = ri
0
) we have :  
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 Because from Eq. (10) it results that: f’(ri

0
)  0.0312x10

17
 kg/m

3
, by Eq. (16) it results: 
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It is observed that the new obtained value for the variation constant (0.35 fm) is enough 

close to the previously approximated value:  = 2(ai –rM) = 0.3327 fm. So, we can consider 

this last value of  as acceptable for our simplified theoretic model and it explains unitary not 

only the maintaining of the current quarks inside the nucleon’s ‚bag’ of radius ai = 0.6 fm, but 

also the scalar nuclear interaction between nucleons. 

The rest mass of the constituent quark, given in CGT by „naked” photons, is retained by the 

vortical field of the current quarks according to Eq. (11)  

  

5. The bag’s constant variation with the particle’s intrinsic temperature 

5.1. The total potential of interaction between nucleons and between composite quarks  

  The conclusion of nuclear physics that at distances less than dr  0.7 fm the nuclear force 

becomes repulsive, corresponds in CGT to the conclusion that the current u/d quark has a thin 

repulsive shell q  (0.090.1 fm) generated similar to the case of the nucleon’s kerneloid and 

that the radius rq  0.2 fm of a spherical current u/d-quark characterizes a dilated current 

quark’s volume q
j
  0.0335 fm

3
 corresponding to the nucleon’s temperature Tn

j
  1MeV/kB, 

(1.16x10
10

 K) and to an its intrinsic temperature: 

 Ti
q
 = Tz

j
  (mz/Mn)Tn

j
  (mu/18Mn)Tn

j
 = (7.5/18x938)x10

10
 = 0.51x10

7
 K; (mz ; mu –mass of 

z
0
-preon’s kerneloid and of current u-quark, considered in CGT; Mn –the nucleon’s mass), the 

volume q
0
 of 0K being given by a compact hexagonal form of 18 z

0
-preons (2x7+4) whose 

cold volume z
0
 is given by 42 electronic kerneloids with radius ri

e
  10

-17
 m- corresponding 

to an experimentally obtained value reported by Milloni [12], it resulting of radius  rq
0
 = 0.09 



fm and a high hq
0
 = 0.36 fm, (q

0
 = 0.0091 fm

3
), corresponding to a current u/d-quark 

contracted more radially than axially. 

   In this case, the current quark’s volume q
j
 is deformable but its internal pressure:  

Pi
q
 = nz

0
kBTz opposes a resistance force Fqr = -Vqr which explains why an interaction 

between two nucleons (whose kernel’s radius: (0.440.45) fm is given by the diameter of a 

dilated current u/d –quark, 0.4 fm, and a small quark’s vibration) is repulsive at dr  0.7 fm. 

    We want see if we can obtain a total potential of interaction between nucleons and between 

composite quarks using the previous conclusions of CGT. 

       In the S.M. it is also known the Sombrero -type potential, which explains the process of 

spontaneous symmetry breaking considered for the explaining of particles’ forming from 

quantum vacuum [13]: 

       V() = 22 + 4 
 ;    = ei

 ;   dV()/d = 0,  i2 = -2
/2 = 2

                    (19) 

      In CGT, this genesic potential corresponds as form to a total potential of the interaction by 

the field of a vortical particle with the kernel (kerneloid) of another particle, the first part 

corresponding to an attractive potential of the form (1): Va = -½pc2
 = Va

0e-r/* 
 = 22   

by taking: 2 
= Va

0
 and: 2 = (r)/0

 = e
-r/* 

 and the second part corresponding to a 

repulsive potential, which by Eq. (19) results of the form: Vr = 4 
 = Vr

0e-2r/*
 , giving:  

      Vt(r)  = Va + Vr = 22 + 4 
;  Vr = Vr

0e-2r/*
 =

 
Vr

0e-r/’
 =  Vr

0 [r(r)/r
 0

]  ,           (20)                   

           (2
 = Va

0
;  = Vr

0
 = p r

0
c

2
 ;  ’ = *

/2;   [r(r)/r
 0

] = [(r)/0
]

2
 )   

This repulsive potential  (20) corresponds to a static quantum pressure: Ps = r(r)c
2
 generated 

by vibrations of the particle’s kernel, (these vibrations generating the partially destroying of 

photonic vortices inside the particle’s kernel, conform to CGT [1, 2]), whose value decreases 

more quickly than the value of the dynamic pressure Pd = ½(r)c2
 which generates the Va-

potential. 

 The condition: dV(r)/dr = 0 is in fact the condition of equilibrium: Ft(r) = -Vt(r) = 0, i.e:  

          Ft(r)  = (-1/*
)
 
Va

0e-r/* 
 + (-2/*

)
 
Vr

0e-2r/* 
 = 0;   i2 = -2

/2                      (21) 

 retrieving the value resulting from Eq. (19) of i2 which in our case is: i2 = (ri)/0
. 

   It can be also observed that the Sombrero potential (19) used in the form (20) have 

similitude with the Morse molecular potential [14]:   

                  Vt(r) = D(e
−2x

 − 2e
−x

)  ;    (x = (r-a)/a)                                                             (22a) 

but transformed in the form                                

                  Vt(r) =  Vr
0
(e

−2r
 – kae

−r
)  ;         ( = 1/*

;   ka = Va
0
/Vr

0
 )                               (22b) 

 Extrapolating to the case of the nucleon’s kernel (kerneloid), i.e.: * 0.8 fm; Va
0
  110MeV, 

the value of Vr
0
 can be obtained by the condition: Ft(ri  0.8fm) = 0, which gives: Vr

0
 = 149.5 

MeV and: Vr(0.9fm)= 15.75MeV - compared to: Va(0.9fm)= 35.7MeV.  

Also, for rr = 0.7 fm, it results: Fr(rr) = 64.94x10
2
N; Fa(rr) = -57.3x10

2
N –so the conclusion 

that for r  0.7 fm the total force Ft(r) becomes repulsive is verified. 

 But for di = 2 fm it results: Vt(r=2fm)  = (Va + Vr)2fm = 9.03 – 1  8 MeV –value a little lower 



than the mean binding energy per nucleon in the nuclei with the most strongly bound 

nucleons, ( 9 MeV/nucleon), indicating that the repulsive potential has a faster variation with 

r. In this case, we will try to find a form: V() = 22 + 2n 
 (n>2) of the total potential 

V(r), i.e. of the form:  Vr
0e-nr/* 

 , (n >2). It results that –similar to the case of the Reed’s 

potential [r], the value n = 7 fits satisfactory to the experimental data, resulting that: 

     Ft(ri)  = (-1/*
)
 
Va

0e-r/* 
 + (-n/*

)
 
Vr

0e-nr/* 
 = 0;    Vr

0
 = (-Va

0
/n) e

(n-1)r/* 
           (23) 

Because the equality (23) is satisfied for ri  0.7 fm, with n = 7, Va
0
 = 110 MeV and *

 = 0.8 

fm resulting that:  Vr
0
 = 2994.6 MeV.  The maximal force Ft

M
(r) corresponds to: d Ft(r)/dr = 0 

giving by Eq. (23): 

       dFt(r)/dr = 0,   (1/*
)
2 

Va
0e-r/* 

 + (n/*
)
2 

Vr
0e-nr/* 

 = 0;   n
2
Vr

0
/Va

0
 = e

(n-1)r/* 
     (24) 

Eq. (24) being verified by the value: r = rM = 0.96 fm (close to the value: 0.9 fm, 

experimentally determined), the value of the resulting potential Vr(r) being negligible to 

interdistances r > 1 fm.  

A nucleon having its kinetic energy: Ed = 175 MeV corresponding –in Galilean relativity, to 

the temperature of nucleon’s transforming into quarks (Td  2x10
12

 K), will be stopped by the 

potential Vr(r) to an interdistance rs = 0.324 fm given by: Ed =  Vr
0e-7r/* 

, corresponding to a 

maximally comprimed current u/d-quark, so – as in case of Va
0
, the obtained value of Vr

0
 is 

only mathematical.  

A better fit with the value rM = 0.9 fm experimentally verified, results by a repulsive potential  

with the form used by Reid’s formula [15]: Vr(r) = Vr
0e-7r/*

/(r/*
) with Vr

0
 = 2620 MeV, 

giving 
 
 rM = 0.93 fm and rs = 0.39 fm.     

    At interdistances r  4rq  0.8 fm the value of the repulsive potential is explained by a 

repulsive pseudo-charge qs of current quarks and of nucleon’s kerneloid, generated by 

vortically attracted and vibrated ‚naked’ photons at the current quark’s surface and at the 

nucleon’s kerneloid, which generates the bag’s pressure Pis
0
 of the bag’s constant B –in CGT, 

with the difference that the repulsive pseudo-charge qs which explains the repulsive potential 

 Vr(r) = Vr
0e-7r/*

 is generated by the component ½’
f given by naked (light) photons having 

the speed vf r whose radially acting pressure is reduced by the dynamic pressure Pd = 

½(r)c2
 of the adjacent nucleon, between the interacting nucleons, with the variation of their 

static pressure considered as real in the form corresponding to Eq. (3), for the nucleon’s free 

state, in CGT.  

A corrected expression of Vr(r) –potential results in this case, by Eq. (23), in the form: 

                Vr(r) = Vr(rs) = 175 MeV for r  rs = 0.324 fm;                                         (25)               

                Vr(r) =  Vr
0e-7r/* 

 , (Vr
0
 = 2994.6 MeV;  *

=0.8 fm) for r > rs  

    By similitude with the nucleon’s ‚impenetrable’ kernel, this Vr(r) -potential can be 

considered also for composite (heavy) quarks formed as clusters of three light quarks (a pair 

quark-antiquark and an un-paired quark). 

   So, the repulsive potential well Vr
0
 considered also for interaction between quarks can be 

written in a form: Vr
0
 = krqs

2 
 with qs = (qPsi

0
)- repulsive pseudo-charge, resulting that the 

value of this pseudo-charge depends on the value of the associated ‚bag’ constant B and on 



the value of the q –volume of the particle’s kerneloid, which- for a composite quark Q with 

dilated volume Q(Tq), results as sum of apparent volumes q(Tz) of its lighter quarks q, 

depends on the current quark’s mass mq and on its its intrinsic temperature Ti
q
 = Tz given by 

the vibrations of  the kerneloids kz of their z0 –preons, conform to the dilation’ law: 

                Q(Tq) = Q
0
(1 + QTq)  Nqq

0
(1 + qTz)  Nz

Qz
0
(1 + zTz)         (26) 

   From (26) it results that: Q = q(Tz/Tq)  q
a
/q

0Tq with Tq –the temperature 

associated to the q-quarks’ vibration. 

So, similarly to the case of two interacting nucleons, it can be analysed the case of two current 

quarks forming a meson – for example, (i.e. the case of a pair quark-antiquark, q-q). 

   This result is important for the explaining of the density increasing in case of the neutron 

stars’ collapsing by the forming of quark stars or dense black hole stars- formed when the 

repulsion force between current quarks and between neutronic kerneloids cannot stop the 

gravitational collapsing of the initial neutron star, which is progressively cooled, (this cooling 

reducing the qq-preudo-charge and the repulsive potential Vr(r). 

5.2. The similitude between the quark models of CGT and of S.M.  

    The conclusion that the bosonic shell of the current quarks is a photonic one, is in 

concordance with the fact that all charged particles emit photons and with the upper limit for 

the gluon’s mass experimentally determined: 11.3 MeV/c
2
 [16] -approximately equal to that 

of an (e
-
e

+
) pair. 

    It is also possible to make a similitude between the S.M.’s quark model, supposing a 

valence current quark and a shell of qluons conceived as (q-q)- pairs which interact by the 

color charge of the paired quarks and which generate an anti-screening effect that increases 

the strong force over an adjacent current quark, and the CGT’s model of quark formed by a 

kernel of z
0
-preons and an un-paired charged quasi-electron that gives its electric charge e

*
 = 

(
2
/3)e, surrounded by a photonic shell.  

    Supposing that at a critical temperature TcTd, (Tc –phase transformation temperature; Td –
the quarks deconfining temperature:  2x10

12
 K) some paired kerneloids of paired quasi-

electrons (‚gammons’ –in CGT, [10-12]) are released and transferred from the 

quasicrystalline cluster of its kerneloid in the volume of its photonic shell, then their behavior 

will be relative similar to that of the polarised gluons in S.M., with the difference that these 

‚gammons’ will interact by electric and magnetic interactions, (having the tendency to form 

clusters with 8 quasielectrons at T 0K) but being maintained inside the constituent quark’s 

volume by the force generated by a potential of the form (1), i.e. by the total vortical field of 

the current quark, (Eq. 16).   

   After partial deconfining of a current quark, its reconfining at T < Tc could generate a quasi-

crystal or  amorphous state- similar to the so-named ‚glasma’ in the S.M., [48; 49], with the 

difference that this state is considered in S.M. as specific to a saturation state in high energy 

hadronic collisions and not to a low temperature quarcic state. 

   For the S.M.’s quark model, it results the possibility to explain as in CGT the forming of 

heavy quarks as tri-quark clusters of lighter quarks having a current mass higher than the sum 

of masses corresponding to the lighter current quarks of its structure, by the addition of a part 

of gluons of its gluonic shell, i.e.- by an amorphous of quasi-liquid state of its current mass. 



5.3. Drop model of ‚melted’ current quark 

From the previous similitude and taking into account the ‚bag’ model specific to CGT, it 

results the possibility to describe a current quark ‚melted’ at high impact energy Ek  Ed 

corresponding to a temperature close to the u/d- quarks’ deconfining temperature Td = Ed/kB  

2x10
12

 K, by a drop model of composite current quark, having an internal temperature Ti
Q
 = 

Tq - given by the kerneloids of its preonic light quarks q, or Ti
q
 = Tz - given by the kerneloids 

of its z
0
-preons (which generate an internal pressure Pz = nz

0
kBTz), equilibrated by the energy 

given by a superficial tension q = Fz(y)/2lv given by Pe(B) = Psi
0
(ai) –for Ti = Tq

j
 = 

Tn
j
(mq/Mp) = (1MeV/kb)(7.5/938) = 9.27x10

7
 K: 

          ) 
2
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When the volume Q(rQ;Tq) of the composite current quark Q is dilated or contracted, because 

the quark’s mass remain the same we can approximate that the value: F = 4rQ
2
Pe(B) remains 

quasi-constant, for a composite quark Qu(uu d) or Qd(dd u) resulting that: 

      F = 4rQ
2
Pe(Tq) = 4ai

2
Psi

0
(Tq

j
 )  and:   Q =  ½ Psi

0
ai

2
/rQ . 
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