ON THE NO-TRIVIAL ZEROS OF THE ZETA FUNCTION C(S)
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We research and explicitly expose example of an infinity of zeros (C(r+ic)=0) of RH (The
Riemann hypothesis) in the critical line (having for real part r= 1/2). So there is infinity of no-
trivial zeros of Riemann’s zeta function which have the real part equal to 1/2, which shows
(using simple mathematics baggage) Hardy and Littlewood Theorem and give as a hope that
the Riemann’s Conjecture would be true....
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1 Introduction

The Riemann hypothesis is a conjecture formulated in 1859 by the mathematician
Bernhard Riemann, according to which the non-trivial and infinity zeros of Riemann’s zeta

. 1
function all have a real part equal to >
Its demonstration would improve knowledge of the distribution of prime numbers and

open up new areas for mathematics.

Riemann’s article (see [1]) on the distribution of prime numbers is his only text
dealing with number theory, he develops the properties of the function zeta C(s) = ¥}, %
and prove the prime number theorem by admitting to passing several results including what is
now called RH the Riemann Hypothesis. After, Hardy says that there is an infinity of zeros on

the critical line (see [2], [3]), this gives us an esperance that the RH would be true...

Here, we are going to look the zeros on the critical line, and we will explicitly
determine some infinity zeros having the real part % This will give us another and simple
demonstration of Hardy result.
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C?=+-C?
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C2=C—C1=(1—%)C
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idem for S

Geometrically speaking,
S 1 Cand|S| = |C]

We can also prove that:

1+i
Gl = |5

|C1| = |Cz|

1+i
2

|1c=%1c1 =[5 Il

such
SZ + CZ = (Cl - Cz)z + (Cl + Cz)z
S2+C?=2(C?+C3)

S24+C%=0

which implies that
C2+C2=0
Therefore
Cl = ilCz
Thus
C; LG,

Conclusion-1;

C2+C2=0



S2+C%*=0

|C1| = |Cz|
IS| = [C|

S| = 2|C,|?

IC|? = 2]C,|?

SiLCand(C; LG,

i

C? =+-C?
)
l

C;=+-5?
27 =2

Ct =4, 5% = C* = —4C} = —4C4.

2 Thestudy of C & S.

Theorem 1 Letr = % and a = +§ [27]

SO
C* e R&S*ER
Proof. Assuming that C? ¢ R,
so (C,C) is abasis in C.
So, let
C, =aC +bC
c* = —4c}

= C* = —4(aC + bC)"
= —C* = 4(a*C* + 4a3b|CI7C? + 6a7b2|C|* + 4ab*|CI°C +b*C)
=
(a4 + %) C* + 4a3b|CI2C? + 6a2b2|C|* + 4ab?|CI’C +b*C =0
C* =+ 0 (since C? ¢ R),
50 (a* +3) €8 + 4a3b|CI2C + 6a2b2|CI*C* + 4ab3|C|°C? + b*|C|S = 0
{(a“ + %) X* +4a>bX® + 6a*b*X* + 4ab*X + b* =0 (E)

X—C2
GRTE

P(X) = (a* +3) X* + 4a°bX? + 6ah?X? + 4ab’X + b

Let

We are going to study the function P(X) on R[X].
Finding the roots of P(X) on R:

Wehavea4+i>0

SO
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We will find X, € R the minimum of P(X) and show that its image P(X,) > 0:
We have

1
= P'(X) =4 [(a“‘ + Z) X3+ 3a3bX? + 3a?b%X + ab3]
SO
1
P'(X)) =0 <a4 + Z) X3 4+ 3a®bXZ + 3a?b*Xy +ab® =0

1
& (a4 + Z) X3 = —[3a®bX? + 3a?b?X, + ab?]
ab+0=>X,+0
1
= <a4 + Z) X5 = —[3a3bX3 + 3a?b2XZ¢ + ab3X,]

S0
P(X,) = —3a3bX3 — 3a?b?X3 — ab3X, + 4a®bX; + 6a?b?XZ + 4ab3X, + b*
P(Xy) = a®bX3 + 3a?b%X% + 3ab3X, + b*
P(X,) = b[a®X3 + 3a?bX? + 3ab?X, + b3]
=
P(Xo) = blaX, +b]* (1)

Also
X3
P'(Xy) = 0 © a*X3 + 3a®bX? + 3a2b?X, + ab® = _TO

X3
& ala®X§ + 3a%bX§ + 3ab*X, + b3] = _TO
so P(X,) = b[a3X3 + 3a?bX? + 3ab?X, + b3 =
3
aP(Xo) = —b7> (2)

asb #0,from(1) & (2) =
alaXy + b = —-=2

= 4alaX, + b]® = — X}
= V4alaX, + b] = —X, (since X, € R)
=9

3
b+V4a
X0=

1+a3\/4-a

Therfore, P has one and unique minimum.
We can also prove it from

1
P'(X)=4 [(a‘* + Z) X3 +3a3bX? + 3a%b?*X + ab3]
1
= P"(X) = 12 [(a4 + Z) X? + 2a3bX + azbz]
1
A = (2a3b)? — 4a?b? (a4 + Z)
= A=-a’h?<0

= P’ is strictly monotone,
P' is bijective (as P’ is a continuous function)



so we have X, such P'(X,) = 0 is unique,
= (Xo, P(X,)) is the overall-minimum,

P(X,) = ng=>P(X)— bXy
a 0) = 4 o) = 43a
b(_ bV4a )
1+ a¥V4
S P(X,) = — + aVda
4q
b*4a
=>P(X0)= 3 3
4a(1+ aV4a)
b4-
ip(Xo)Zﬁ
(1 + a¥%a)

Ifa<0s034a <0
=aVda>0=>1+aV4a >0
> (1 +a¥Ea)” > 0
andb # 0= b*>0= P(X,) >0
Ifa>0s034a >0
=aVda>0=>1+aV4a >0
> (1 +a¥Ea) > 0
andb # 0= b*>0= P(X,) >0

So
P(X,) > 0 V(a,b) € R?

So P(X) = P(X,) > 0 ¥(a,b) € R2 VX € R
=

V(a,b) ER?’VXER PX)#0

So P(X) = 0 has non-real complexes as a solution.

Since P € R[X] polynomial with real coefficients, the solutions will be z,, z,,7;,7,,

and
PO = (a* 4 ) (X — )0 — 2) (X~ 7)(X ~ 7,)
1
P(X) = (a4 + Z) (X2 — 2Re(z)X + |z |2) (X2 — 2Re(2,)X + |2,|?)
X=ﬁ:>|X|=1=>|21I=|22|=1=>
P(X) = (a4 + %) (X2 — 2Re(z)X + 1)(X? — 2Re(z,)X + 1)
—=5 = X*—2[Re(z;) + Re(z,)]1X3 + [2 + 4Re(z,)Re(z,)]X? — 2[Re(z,) +

Re2 X¥+1
since
1
P(X) = <a4’ + Z)X‘* + 4a3bX? + 6a2b?X? + 4ab®X + b*
we will have
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(a1 _ s
a* + Z =b
—2b*[Re(z,) + Re(z,)] = 4a3b
b*[2 + 4Re(z,)Re(z,)] = 6a?b?
—2b*[Re(z,) + Re(z,)] = 4ab?
= 4a3b = 4ab® = 4ab(a®> - b?) =0
ab + 0=
a==b

= C; = b(+C +C)
=2 =p>(C2+C +2(C1?)€R
€2 = C2 € iR

Ct=1-
Conclusion:
C°¢R=C?€iR
= C?’€iRorC?€eR
=C*eR
= S* e R (since C* = 5*%)

3 A Rotation in C
We suppose that C # 0:

SoC?+0&|C|#0
= 3r = |C| # 0, 3y = arg(C) such C? = r?e'?¥

= (Ceie)2 = (2120 = 12¢i2r+20) € R such 2y + 260 = 0 [n]

So (Ce'®)* ¢ Rsuch 6 2 —y E]
Letd € Rsuch 6 & —y E] and €', C}, Cy,S" such

C'=ce'
C; = Cre’f
C; = Cye®
=9
CIZ e R
We have
Ci+Cy=C
Ci—Cy=5'

|C1| = |Cil and |C3| = |G|
|G, | = |G, = |C{| = 1G5
IC'| =|C],|S'| = |S|



C? + C;2 = e9(CE + C2)
since C2+C2 =0
SO
C2+C2=0

and since C* = —4C¢, so
C'* = —4c

c?¢R=(C',C")isabasein C.
As we have the same conditions as in the last theorem:
1) ¢/ = aC' +bC’
2) C'* = —4C)*
we willhave C'? ¢ R = C'? € iR
So,C'?€ RorcC’? €iR
=

C'* € R&S'* € RVA ER

= (C*=e"C*eR
= e’ € RVO € IR —{—y + k2 /k € Z} (such C* € R)

absurd!!!,
unless
C*=0

(because e*’ ER & 0 = k=, k € Z)

Conclusion-3-
C=5=0
4 Conclusion:
For s=r+ic=%+ic such c=—(i+2k)$ , keZ (idem for c¢=

1 T
—(—Z-I‘Zk)m,k eZ),wehave

— l L +oco l_ 400 (_1)71_
c-(i4+2k>ln(2),k€Z=>Zn=1ns— = S =o.
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