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We research and explicitly expose example of an infinity of zeros (C(r+ic)=0) of RH (The 

Riemann hypothesis) in the critical line (having for real part r= 1/2). So there is infinity of no-

trivial zeros of Riemann’s zeta function which have the real part equal to 1/2, which shows 

(using simple mathematics baggage) Hardy and Littlewood Theorem and give as a hope that 

the Riemann’s Conjecture would be true.... 
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1 Introduction 

 

The Riemann hypothesis is a conjecture formulated in 1859 by the mathematician 

Bernhard Riemann, according to which the non-trivial and infinity zeros of Riemann’s zeta 

function all have a real part equal to 
 

 
. 

Its demonstration would improve knowledge of the distribution of prime numbers and 

open up new areas for mathematics. 

Riemann’s article (see [1]) on the distribution of prime numbers is his only text 

dealing with number theory, he develops the properties of the function zeta          
   

 

   

and prove the prime number theorem by admitting to passing several results including what is 

now called RH the Riemann Hypothesis. After, Hardy says that there is an infinity of zeros on 

the critical line (see [2], [3]), this gives us an esperance that the  RH would be true... 

 

Here, we are going to look the zeros on the critical line, and we will explicitly 

determine some infinity zeros having the real part 
 

 
. This will give us another and simple 

demonstration of Hardy result. 

 

Let        
 

 
    ,   and   such            

 

 
     ,      

We suppose (this is our proposal) that,  
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Geometrically speaking, 

 

               
 

We can also prove that: 
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2 The study of   &  . 

 

Theorem 1 Let   
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Proof. Assuming that     , 

so       is a basis in  . 
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We are going to study the function      on     . 
Finding the roots of      on  : 

We have    
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We will find      the minimum of      and show that its image        : 

We have 
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Therfore,   has one and unique minimum. 

We can also prove it from 

            
 

 
                       

              
 

 
                

                   
 

 
  

           

    is strictly monotone, 

   is bijective (as    is a continuous function) 
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so we have    such          is unique, 

            is the overall-minimum, 
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So        has non-real complexes as a solution. 

Since        polynomial with real coefficients, the solutions will be            , 

and 
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Conclusion: 
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3 A Rotation in   
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As we have the same conditions as in the last theorem: 
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4 Conclusion: 
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