Causal effect vector and multiple correlation

Ait-taleb Nabil *

Abstract

In this article, we will describe the mechanism that links the notion of causality to correlations. This article answers yes to the following question: Can we deduce a causal relationship from correlations?

[^0]
1 Introduction

In this paper, we will understand from a proof how to relate the notion of causality to the correlation. For this, we will have to introduce the causal effect vector $\vec{\Delta} E$. This vector $\vec{\Delta} E$ will be related to the square root of a quadratic form containing the correlations $\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}$.

2 Multiple correlation and causal effect vector

We will describe below the relationship relating the causal effect vector $\vec{\Delta} E$ and the correlations $\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}$:

$$
\frac{\sqrt{\operatorname{Var}\left(\frac{\vec{X}+\vec{\Delta} E}{2}\right)}}{\sqrt{\operatorname{Var}(\vec{X})}}=\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}
$$

Where:

1. $\operatorname{Var}($.$) is the variance.$
2. \vec{X} is the signal obtained when Ω does not impact the signal \vec{X}.
3. $\frac{\vec{x}+\vec{\Delta} E}{2}$ is the signal obtained when Ω impacts the signal \vec{X}.
4. $\vec{\Delta} E=\vec{E}(X \mid \Omega)-\vec{E}(X \mid \tilde{\Omega})$ is the causal effect vector of the causes Ω acting on the vector \vec{X}.
5. $\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}$ is the multiple correlation and $0 \leq \sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}} \leq 1$.

Proof:

From the conditional average $\vec{E}(. \mid$.$) , we will define the following signals:$

1. $\vec{E}(X \mid \Omega)$ is the causal signal obtained when the causes Ω act on the variable X. This causal signal is produced by the intervention of causes Ω in the signal X.
2. $\vec{E}(X \mid \tilde{\Omega})$ is the signal obtained when the causes Ω do not act on the variable X. This signal is produced without the intervention of causes Ω in the signal X.

The total signal \vec{X} is obtained by summing the two previous signals:

$$
\begin{equation*}
\vec{X}=\vec{E}(X \mid \Omega)+\vec{E}(X \mid \tilde{\Omega}) \tag{1}
\end{equation*}
$$

Note that it is easy to show that the two signals $\vec{E}(X \mid \Omega)$ and $\vec{E}(X \mid \tilde{\Omega})$ are uncorrelated: $\operatorname{cor}(\vec{E}(X \mid \Omega), \vec{E}(X \mid \tilde{\Omega}))=0$, where $\operatorname{cor}()$ is the correlation.
We will now describe the causal effect vector $\vec{\Delta} E$:

$$
\begin{equation*}
\vec{\Delta} E=\vec{E}(X \mid \Omega)-\vec{E}(X \mid \tilde{\Omega}) \tag{2}
\end{equation*}
$$

By combining relations (1) and (2):

$$
\begin{equation*}
\vec{E}(X \mid \Omega)=\frac{1}{2} \cdot(\vec{\Delta} E+\vec{X}) \tag{3}
\end{equation*}
$$

As we know that (see appendix):

$$
\begin{equation*}
\frac{\sqrt{\operatorname{Var}(\vec{E}(X \mid \Omega))}}{\sqrt{\operatorname{Var}(\vec{X})}}=\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}} \tag{4}
\end{equation*}
$$

We obtain by combining the relations (3) and (4):

$$
\begin{gathered}
\frac{1}{2} \cdot \frac{\sqrt{\operatorname{Var}(\vec{\Delta} E+\vec{X})}}{\sqrt{\operatorname{Var}(\vec{X})}}=\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}} \\
\frac{\sqrt{\operatorname{Var}\left(\frac{\vec{X}+\vec{\Delta} E}{2}\right)}}{\sqrt{\operatorname{Var}(\vec{X})}}=\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}
\end{gathered}
$$

This relationship therefore links the causal effect vector $\vec{\Delta} E$ of the causes Ω acting on the variable X to the correlations $\sqrt{K_{X \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega X}}$.

3 Appendix

3.1 Conditional average vector and correlations

The relationship which links the conditional average vector to the correlations can be written as follows:

$$
\sqrt{K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}}=\sqrt{\frac{\operatorname{Var}(E(X \mid \Omega))}{\operatorname{Var}(X)}}
$$

where $0 \leq \sqrt{K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}} \leq 1$ is the multiple correlation, $E(. \mid$.$) is the conditional$ average and $\operatorname{Var}($.$) is the variance.$

Proof:

In what follows, we will factorize the variance $\Sigma_{X^{2}}$ of the conditional variance $\Sigma_{X^{2} \mid \Omega}$ to show the correlations K :
$\Sigma_{X^{2} \mid \Omega}=\Sigma_{X^{2}}-\Sigma_{X, \Omega} \cdot \Sigma_{\Omega^{2}}^{-1} \cdot \Sigma_{X, \Omega}$
$\Sigma_{X^{2} \mid \Omega}=\Sigma_{X^{2}}-\Sigma_{X, \Omega} \cdot\left(\operatorname{diag}^{-1}\left(\Sigma_{\Omega^{2}}\right)\right)^{\frac{1}{2}} \cdot K_{\Omega^{2}}^{-1} \cdot\left(\operatorname{diag}^{-1}\left(\Sigma_{\Omega^{2}}\right)\right)^{\frac{1}{2}} \cdot \Sigma_{\Omega, X}$
$\Sigma_{X^{2} \mid \Omega}=\Sigma_{X^{2}}-\Sigma_{X^{2}}^{\frac{1}{2}} \cdot K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot \Sigma_{X^{2}}^{\frac{1}{2}} \cdot K_{\Omega, X}$
$\Sigma_{X^{2} \mid \Omega}=\Sigma_{X^{2}} \cdot\left(1-K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}\right)$
The relationship can also be written:

$$
K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}=1-\frac{\Sigma_{X^{2} \mid \Omega}}{\Sigma_{X^{2}}}=1-\frac{\|X-E(X \mid \Omega)\|^{2}}{\|X-E(X)\|^{2}}=\frac{\|X-E(X)\|^{2}-\|X-E(X \mid \Omega)\|^{2}}{\|X-E(X)\|^{2}}
$$

Using the Pythagorean Theorem:

$$
\begin{aligned}
& \|X-E(X)\|^{2}=\|E(X \mid \Omega)-E(X)\|^{2}+\|X-E(X \mid \Omega)\|^{2} \\
& K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}=\frac{\|E(X \mid \Omega)-E(X)\|^{2}}{\|X-E(X)\|^{2}}=\frac{\frac{\|E(X \mid \Omega)-E(X)\|^{2}}{N}}{\frac{\|X-E(X)\|^{2}}{N}}
\end{aligned}
$$

As we have: $E_{\Omega}(E(X \mid \Omega))=\frac{1}{N} \sum_{\Omega} E(X \mid \Omega)=E(X)$, we obtain:

$$
K_{X, \Omega} \cdot K_{\Omega^{2}}^{-1} \cdot K_{\Omega, X}=\frac{\operatorname{Var}(E(X \mid \Omega))}{\operatorname{Var}(X)}
$$

By taking the square root we obtain the relationship.

4 Conclusion

In this paper, we have shown mathematically the steps to follow to obtain a relationship relating the notion of causality and correlation.
[1]Optimal stastical decisions. Author: Morris H.DeGroot. Copyright 1970-2004 John Wiley and sons.
[2]Matrix Analysis. Author: Roger A.Horn and Charles R.Johnson. Copyright 2012, Cambridge university press.

[^0]: *Corresponding author: nabiltravail1982@gmail.com

