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Abstract. In this paper, we introduce weighted weak group inverse in
a ring with proper involution. This is a natural generalization of weak
group inverse for a complex matrix and weighted weak group inverse for
a Hilbert operator. We characterize this weighted generalized by using a
kind of decomposition involving weighted group inverses and nilpotents.
The relations among weighted weak group inverse, weighted Drazin inverse
and weighted core-EP inverse are thereby presented.

1. Introduction

Let R be an associative ring with an identity. An involution of R is an anti-
automorphism whose square is the identity map 1. A ring R with involution ∗
is called a *-ring. An element a in a *-ring R has group inverse provided that
there exists x ∈ R such that

ax2 = x, ax = xa, a = xa2.

Such x is unique if exists, denoted by a#, and called the group inverse of a.
An element a ∈ R has core-EP inverse (i.e., pseudo core inverse) if there

exist x ∈ R and n ∈ N such that

ax2 = x, (ax)∗ = ax, xan+1 = an.

If such x exists, it is unique, and denote it by aD©. The core-EP inverse has
been investigated from many different views, e.g., [3, 4, 10, 12, 17].

Wang and Chen (see [13]) introduced and studied a weak group inverse for
square complex matrices. A square complex matrix A has weak group inverse
X if it satisfies the equations

AX2 = X,AX = AD©A.
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The involution ∗ is proper, that is, x∗x = 0 =⇒ x = 0 for any x ∈ R, e.g., in a
Rickart *-ring, the involution is always proper. In [15], Zou et al. extend the
notion of weak group inverse to elements in a ring with proper involution. An
element a ∈ R has weak group inverse if there exist x ∈ R and n ∈ N such
that

ax2 = x, (a∗a2x)∗ = a∗a2x, xan+1 = an.

If such x exists, it is unique, and denote it by aW©. The weak group inverse has
been extensively studied from many different views, e.g., [2, 5, 10, 11, 13, 15,
16].

Let a, w ∈ R. We recall that

Definition 1.1. An element a ∈ R has w-Drzin inverse if there exist x ∈ R
such that

xwawx = x, awx = xwa, (aw)n = xw(aw)n+1

for some n ∈ N. The preceding x is unique if it exists, and we denote it by
aD,w. The set of all w-Drazin invertible elements in R is denoted by RD,w.

We say that a has Drazin inverse if w = 1 and denote aD,1 by aD. In
particular, for the preceding index k = 1, we have

Definition 1.2. An element a ∈ R has w-group inverse if there exist x ∈ R
such that

xwawx = x, awx = xwa, awxwa = a.

The preceding x is unique if it exists, and we denote it by a#w . The set of all
weak w-group invertible elements in R is denoted by R#

w .

Recently, weighted weak group inverse for Hilbert space operators was stud-
ied by Mosić and Zhang in [9]. The motivation of this paper is to introduce
and study a new kind of weak inverse with a wight as a natural generalization
of weak group inverse for complex matrices and weighted weak group inverse
for Hilbert operators mentioned above. In Section 2, we introduce weighted
weak group inverse in terms of a new kind of weighted group decomposition.
Many properties of the weak group inverse are thereby extended to the general
cases.

Let Rnil
w = {x ∈ R | xw ∈ R is nilpotent }.

Definition 1.3. An element a ∈ R has weak w-group decomposition if there
exist x, y ∈ R such that

a = x + y, x∗y = ywx = 0, x ∈ R#
w , y ∈ Rnil

w .
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We shall prove that a ∈ R has weak w-group decomposition if and only if
there exists unique x ∈ R such that

x = ax2, (an)∗a2x = (an)a∗a, ak = xak+1 for some n ∈ N.
We call the preceding x the weak w-group inverse of a, and denote it by aW©w .
The set of all weak w-group invertible elements in R is denoted by RW©

w .
In Section 3, we investigate elementary equivalent characterizations of weight-

ed weak group inverse in a ring. We prove that a ∈ RW©
w if and only if a ∈ RD,w

and there exists some y ∈ R such that

(aD,ww)∗aD,wwy = (aD,ww)∗a.

In this case, aW©w = (aD,ww)3y.
In Section 4, the relations between weighted core-EP inverses and weighted

weak group inverses are presented. The conditions under which an element
and its weak weighted group inverse commute with the weight are given.

Throughout the paper, all rings are associative ring with a proper involution
∗. We use R#, RD, RD© and RW© to denote the sets of all group invertible, Drazin
invertible, core-EP invertible weak group invertible elements in R, respectively.
N denotes the set of all natural numbers.

2. weak w-group inverse

The purpose of this section is to introduce a new generalized inverse which
is a natural generalization of weak group inverse in a *-Banach algebra. We
begin with

Lemma 2.1. Let a, w ∈ R. Then the following are equivalent:

(1) a ∈ R#
w .

(2) aw,wa ∈ R#.
(3) There exist x ∈ R such that

x(wa)2 = a, a(wx)2 = x, awx = xwa.

In this case, a#w = (aw)#a(wa)#.

Proof. Straightforward. �

Lemma 2.2. Let a ∈ R#
w . Then (aw)2a#w = a and a[wa#w ]2 = a#w .

Proof. Let x = a#w . Then

awxwa = a, xwawx = x, awx = xwa.

Hence, (aw)2x = aw(awx) = (aw)x(wa) = a. Moreover, we have a[wa#w ]2 =
a(wx)2 = x by Lemma 2.1. �
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We are ready to prove:

Theorem 2.3. Let a, w ∈ R. Then the following are equivalent:

(1) a ∈ R has weak w-group decomposition.
(2) There exist x ∈ R and n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Proof. (1)⇒ (2) Let a = a1 + a2 be the weak w-group decomposition of a.
Let x = (a1)

#
w . By virtue of Lemma 2.2, we have

awx = (a1w + a2w)(a1)
#
w = a1w(a1)

#
w ,

a(wx)2 = a1[w(a1)
#
w ]2 = (a1)

#
w = x,

Since a2 ∈ Rnil
w , (a2w)n = 0 for some n ∈ N. As a2wa1 = 0, we see that

aw − xw(aw)2

= (a1w + a2w)− [(a1)
#
wwa1w + (a1)

#
wwa2w](a1w + a2w)

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w]a2w.

Hence,

(aw)n − xw(aw)n+1

= [aw − xw(aw)2](aw)n−1

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w]a2w(aw)n−1

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w](a2w)n

= 0.

Thus, (aw)n = xw(aw)n+1.
Since aw = a1w + a2w, (a2w)(a1w) = 0 and (a2w)n = 0, we have

(aw)n =
n∑

i=0

(a1w)i(a2w)n−i = (a1w)n +
n∑

i=1

(a1w)i(a2w)n−i.

As (a1)
∗a2 = 0, we deduce that

(
(aw)n

)∗
a2 =

(
(a1w)n

)∗
a2 +

n−1∑
n=1

[(a1w)i(a2w)n−i]∗a2 = 0;

and then
(
(aw)n

)∗
a1 =

(
(aw)n

)∗
a. Accordingly,(

(aw)n
)∗

(aw)2x =
(
(aw)n

)∗
(a1w + a2w)(a1w + a2w)a#1

=
(
(aw)n

)∗
(a1w)2a#1 =

(
(aw)n

)∗
a1

=
(
(aw)n

)∗
a.
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Therefore we derive

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

(2)⇒ (1) By hypothesis, there exist x ∈ R and n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Let a1 = (aw)2x and a2 = a− (aw)2x.
Claim 1. a2wa1 = 0.
Clearly, x = (aw)x(wx) = (aw)2x(wx)2 = (aw)n−1x(wx)n−1. Then

a2wa1 = [a− (aw)2x]w(aw)2x
= (aw)3x− (aw)2xw(aw)2x
= (aw)3x− (aw)2xw(aw)2x
= (aw)3x− (aw)2xw(aw)2(aw)n−1x(wx)n−1

= (aw)3x− (aw)2[xw(aw)n+1]x(wx)n−1

= (aw)3x− (aw)n+2x(wx)n−1

= (aw)3x− (aw)3[(aw)n−1x(wx)n−1]
= (aw)3x− (aw)3x = 0.

Claim 2. a∗1a2 = 0.
Obviously, (aw)2x = (aw)2[(aw)n−2x(wx)n−2] = (aw)nx(wx)n−2. Then

a∗1a2 = [(aw)2x]∗[a− (aw)2x]
= [(aw)nx(wx)n−2]∗[a− (aw)2x]
= [x(wx)n−2]∗[(aw)n]∗[a− (aw)2x]
= 0.

Claim 3. a1 ∈ R#
w . Evidently, we verify that

a1wx = (aw)2xwx = awa(wx)2 = awx,
xwa1 = xw(aw)2x = xw(aw)2[(aw)n−1x(wx)n−1]

= [xw(aw)n+1]x(wx)n−1 = (aw)nx(wx)n−1 = awx,

and then a1wx = xwa1. Moreover, we have

a1wxwa1 = (a1wx)wa1 = awxw(aw)2x
= awxw(aw)2[(aw)n−1x(wx)n−1]
= aw[xw(aw)n+1]x(wx)n−1

= (aw)n+1x(wx)n−1 = (aw)2x = a1,
xwa1wx = (xwa1)wx = a(wx)2 = x.

Hence, a1 ∈ R#
w and (a1)

#
w = x.
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Claim 2. a2 ∈ Rnil
w . It is easy to verify that

[aw − xw(aw)2]x = [aw − xw(aw)2][(aw)n−1x(wx)n−2]
= [(aw)n − xw(aw)n+1]x(wx)n−2 = 0.

Hence,

[aw − xw(aw)2]2 = [aw − xw(aw)2]aw − [aw − xw(aw)2]xw(aw)2

= [aw − xw(aw)2](aw).

This implies that

[aw − xw(aw)2]n = [aw − xw(aw)2]n−2[aw − xw(aw)2]2

= [aw − xw(aw)2]n−3[aw − xw(aw)2]2(aw)
= [aw − xw(aw)2]n−3[aw − xw(aw)2](aw)2

...
= [aw − xw(aw)2](aw)n−1

= (aw)n − xw(aw)n+1 = 0.

Thus, [1− xw(aw)]aw ∈ Rnil, and then aw[1− xw(aw)] = aw − aw(xw)aw ∈
Rnil. Hence, [1− aw(xw)]aw ∈ Rnil. This implies that aw[1− aw(xw)] ∈ Rnil.
That is, aw − (aw)2xw ∈ Rnil; hence, a2 = a− (aw)2x ∈ Rnil

w .
Therefore a = x + y is weak w-group decomposition of a, as required. �

Corollary 2.4. Let a, w ∈ R. Then the following are equivalent:

(1) a ∈ R has weak w-group decomposition.
(2) There exists x ∈ R such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)n = xw(aw)n+1

for some m,n ∈ N.

Proof. (1)⇒ (2) This is trivial by Theorem 2.3.
(2)⇒ (1) By hypothesis, there exists x ∈ R such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)n = xw(aw)n+1
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for some m,n ∈ N. Then(
(aw)n

)∗
(aw)2x =

(
xw(aw)n+1

)∗
(aw)2x

=
(
a(wx)2w(aw)n+1

)∗
(aw)2x

=
(
(aw)(xw)2(aw)n+1

)∗
(aw)2x

=
(
(aw)m(xw)m+1(aw)n+1

)∗
(aw)2x

=
(
(xw)m+1(aw)n+1

)∗
[((aw)m)∗(aw)2x]

=
(
(xw)m+1(aw)n+1

)∗
[
(
(aw)m

)∗
a]

=
(
(aw)m(xw)m+1(aw)n+1

)∗
a

=
(
(aw)(xw)2(aw)n+1

)∗
a

=
(
a(wx)2w(aw)n+1

)∗
a

=
(
xw(aw)n+1

)∗
a

=
(
(aw)n

)∗
a

In light of Theorem 2.3, we complete the proof. �

Theorem 2.5. Let a, w ∈ R. Then the following are equivalent:

(1) a ∈ R has weak w-group decomposition.
(2) There exists unique x ∈ R such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1

for some n ∈ N.

Proof. (2)⇒ (1) Suppose that there exist x, y ∈ R such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1;

y = a(wy)2,
(
(aw)m

)∗
(aw)2y =

(
(aw)m

)∗
a, (aw)m = yw(aw)m+1.

Choose k = max(m,n). Then

x = a(wx)2,
(
(aw)k

)∗
(aw)2x =

(
(aw)k

)∗
a, (aw)k = xw(aw)k+1;

y = a(wy)2,
(
(aw)k

)∗
(aw)2y =

(
(aw)k

)∗
a, (aw)k = yw(aw)k+1.

Claim 1. xw = yw.
By hypothesis, we have

xw = aw(xw)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Thus xw is weak group inverse of aw. Likewise, yw is weak group inverse of
aw. In view of [15, Theorem 3.5], we have xw = yw.

Claim 2. (aw)2x = (aw)2y.
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Since x = a(wx)2, we have x = (aw)n−2x(wx)n−2, and so (aw)2x = (aw)nx(wx)n−2.
Then

((aw)2x)∗(aw)2x− ((aw)2x)∗a
= (x(wx)n−2)∗[((aw)n)∗a2x− ((aw)n)∗a]
= 0.

Therefore [((aw)2x)∗(aw)2x]∗ = ((aw)2x)∗a. Similarly, we have

(((aw)2x)∗(aw)2y)∗ = ((aw)2x)∗a,
(((aw)2y)∗(aw)2x)∗ = ((aw)2x)∗a,
(((aw)2y)∗(aw)2y)∗ = ((aw)2x)∗a.

Let z = (aw)2x− (aw)2y. Then we check that

z∗z = ((aw)2x− (aw)2y)∗((aw)2x− (aw)2y)
= ((aw)2x)∗(aw)2x− ((aw)2x)∗(aw)2y
− ((aw)2y)∗(aw)2x + ((aw)2y)∗(aw)2y
= ((aw)2x)∗a− ((aw)2x)∗a− ((aw)2y)∗a2 + ((aw)2y)∗a2

= 0.

Since A is a proper *-Banach algebra, we have z = 0; hence, (aw)2x = (aw)2y.
Claim 3. x = y.
We see that

(xw)(awx) = xwaw[(aw)kx(wx)k]w = [xw(aw)k+1]x(wx)k

= (aw)kx(wx)k = x.

Moreover, we have

(xw)2(aw)2x = xw[xw(aw)2](aw)k−1x(wx)k−1

= xw[xw(aw)k+1]x(wx)k−1

= xwaw[(aw)k−1x(wx)k−1]
= (xw)(awx).

Therefore x = (xw)2(aw)2x. Likewise, y = (yw)2(aw)2y. By the preceding
discussion, we have

xw = yw and (aw)2x = (aw)2y.

Therefore x = y, as desired. �

We denote x in Theorem 2.5 by aW©w , and call it the weak w-group inverse of
a. RW©

w denotes the sets of all weak w-group invertible elements in R.

Corollary 2.6. Let a ∈ RW©
w . Then the following hold.

(1) aW©w = aW©w wawaW©w .
(2) (aw)(aW©w w) = (aw)m(aW©w w)m for any m ∈ N.
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Proof. (1) Let x = aW©w . In view of Theorem 2.5, we have x = a(wx)2 and
(aw)n = xw(aw)n+1 for some n ∈ N. Then x = (aw)nx(wx)n. Hence,

aW©w wawaW©w = (xwaw)[(aw)nx(wx)n]
= [xw(aw)n+1]x(wx)n = (aw)nx(wx)n

= x,

as required.
(2) We easily see that

(aw)2(aW©w w)2 = aw[a(w(aW©w )2]w = (aw)(aW©w w).

By induction, we complete the proof. �

Theorem 2.7. Let a, x ∈ R and w ∈ R−1. Then the following are equivalent:

(1) x = aW©w .
(2) There exists some n ∈ N such that

x = a(wx)2, [(aw)∗(aw)2xw]∗ = (aw)∗(aw)2xw, (aw)n = xw(aw)n+1.

In this case, x = (aw)W©w−1.

Proof. (1) ⇒ (2) By hypothesis, a has the weak w-group decomposition a =
a1 + a2. Let x = (a1)

#
w . As in the proof of Theorem 2.3, we see that

x = a(wx)2, (aw)n = xw(aw)n+1.

Moreover, we have

(aw)∗(aw)2xw = (a1w + a2w)∗(a1w + a2w)2(a1)
#
ww

= (a1w + a2w)∗(a1w + a2w)a1w(a1)
#
ww

= (a1w + a2w)∗(a1w)2(a1)
#
ww

= (a1w + a2w)∗a1w
= (a1w)∗a1w.

Therefore

[(aw)∗(aw)2xw]∗ = [(a1w)∗a1w]∗ = (a1w)∗a1w = (aw)∗(aw)2xw,

as desired.
(2)⇒ (1) By hypotheses, there exist z ∈ R and n ∈ N such that

z = a(wz)2, [(aw)∗(aw)2zw]∗ = (aw)∗(aw)2zw, (aw)n = zw(aw)n+1.

Let a1 = (aw)2x and a2 = a − (aw)2x. As in the proof of Theorem 2.3, we
prove that

a2wa1 = 0, a1 ∈ R#
w and a2 ∈ Rnil

w .
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Moreover, we verify that

a∗1a2w = [(aw)2x]∗[a− (aw)2x]w
= [(aw)2x]∗aw − [awx]∗[(aw)∗(aw)2xw]
= [(aw)2x]∗aw − [awx]∗[(aw)∗(aw)2xw]∗

= [(aw)2x]∗aw − [(aw)∗(aw)2xwawx]∗

= [(aw)2x]∗aw − [(aw)2xwawx]∗aw
= [(aw)2x]∗aw − [(aw)2xwaw((aw)nx(xw)n)]∗aw
= [(aw)2x]∗aw − [(aw)2(xw(aw)n+1)x(xw)n)]∗aw
= [(aw)2x]∗aw − [(aw)2((aw)nx(xw)n)]∗aw
= [(aw)2x]∗aw − [(aw)2x]∗aw
= 0.

As w ∈ R−1, we deduce that a∗1a2 = 0. Therefore a = x + y is weak w-group
decomposition of a.

Obviously, we have

xw = aw(xw)2, [(aw)∗(aw)2xw]∗ = (aw)∗(aw)2xw, (aw)n = xw(aw)n+1.

Hence, xw = (aw)W©. As w ∈ R−1, we have x = (aw)W©w−1, as required. �

3. equivalent characterizations

In this section we establish some equivalent characterizations of weak weight-
ed group inverses. We now derive

Theorem 3.1. Let a ∈ R. Then a ∈ RW©
w if and only if

(1) a ∈ RD,w;
(2) There exists x ∈ R such that

xR = aD,wR, ((aw)n)∗(aw)2x = ((aw)n)∗a, (aw)n = xw(aw)n+1

for some n ∈ N.

In this case, aW©w = x.

Proof. =⇒ In view of Theorem 2.3, there exist x ∈ R and n ∈ N such that

x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a, (aw)n = xw(aw)n+1.

Here, x = aW©w . Hence, xw = (aw)(wx)2 and (aw)n = (xw)(aw)n+1. By virtue
of [17, Lemma 2.2], aw ∈ RD. This implies that a ∈ RD,w.

We claim that xR = aD,wR.
By virtue of Theorem 2.3, there exist z, y ∈ R such that

a = z + y, z∗y = ywz = 0, z ∈ R#
w , y ∈ Rnil

w .
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Let x = x#
w . In view of Lemma 2.1, zw ∈ R#. Write (yw)k+1 = 0 for some

k ∈ N. Since aw = zw + yw, yw ∈ Rqnil and (yw)(zw) = 0, it follows by [1,
Corollary 3.5] that aw ∈ RD and

(aw)D = (zw)# +
k∑

n=1

((zw)#)n+1(yw)n.

We directly verify that

(aw)(aw)Dx = (aw)D(zw + yw)(zw)#

= (aw)Dzw(zw)#

= [(zw)# +
k∑

n=1

((zw)#)n+1(yw)n](zw)(zw)#

= (zw)#(zw)(zw)#

= x.

Moreover, we have

x(aw)(aw)D = a#1 (a1 + a2)[a
#
1 +

k∑
n=1

(a#1 )n+1an2 ]

= a#1 a1[a
#
1 +

k∑
n=1

(a#1 )n+1an2 ]

= a#1 +
k∑

n=1

(a#1 )n+1an2

= (aw)D.

Accordingly, xR = aD,wR, as asserted.
⇐= We directly check that

awxw(aw)D = awxw(aw)n+1[(aw)D]n+2

= aw[xw(aw)n+1][(aw)D]n+2

= aw(aw)n[(aw)D]n+2 = (aw)D.

Since aD,w = (aw)Da(wa)D, we have awxwaD,w = aD,w, and so (1−awxw)aD,w

= 0. As xR = aD,wR, we derive that (1 − awxw)x = 0. Therefore x =
awxwx = a(wx)2. By virtue of Theorem 2.3, a ∈ RW©

w . In this case, a g©
w = x,

required. �

Corollary 3.2. Let a ∈ R. Then a ∈ RW©
w if and only if

(1) a ∈ RD,w;
(2) There exists x ∈ R such that

xwawx = x, xR = (aw)mR = (aw)m+1R, a∗(aw)mR ⊆ x∗R
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for some m ∈ N.

In this case, aW©w = x.

Proof. =⇒ In view of Theorem 3.1, a ∈ RD,w and there exist x ∈ R and m ∈ N
such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)m = xw(aw)m+1.

Then x = awxwx = (aw)m(xw)mx; hence, xwawx = xwaw(aw)m(xw)mx =
[xw(aw)m+1](xw)mx = (aw)m(xw)mx = (aw)(xw)x = a(wx)2 = x. Thus,
x = awxwx = (aw)mx(wx)m; whence xR ⊆ (aw)mR. On the other hand,
(aw)mR ⊆ xR. Thus, xR = (aw)mR. Obviously, (aw)m+1R ⊆ (aw)mR. On
the other hand, (aw)m = xw(aw)m+1 = (aw)m+1x(wx)m+1w(aw)m+1; hence,
(aw)mR ⊆ (aw)m+1R. This implies that (aw)mR = (aw)m+1R. Moreover,
we get

(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, and so a∗(aw)m = x∗[

(
(aw)m

)∗
(aw)2]∗.

Accordingly, a∗(aw)mR ⊆ x∗R, as required.
⇐= By hypothesis, a ∈ RD,w and there exists x ∈ R such that

xwawx = x, xR = (aw)mR = (aw)m+1R, a∗(aw)mR ⊆ x∗R

for some m ∈ N.
Claim 1. xR = aD,wR. Let k = i(aw). Then xR = (aw)m+kR. S-

ince (aw)k = (aw)D(aw)k+1, we have xR = (aw)D(aw)m+k+1R = (aw)DR =
aD,wwR = aD,wR, as desired.

Claim 2. ((aw)m)∗(aw)2x = ((aw)m)∗a. Since x = xwawx, we have x(1 −
wawx) = 0, and so (1 − wawx)∗x∗ = 0. Hence (1 − wawx)∗a∗(aw)m = 0.
Therefore [(aw)m]∗(aw)2x = [(aw)m]∗a, as required.

Claim 3. (aw)m = xw(aw)m+1.
Since (1− xwaw)x = 0, we see that (1− xwaw)(aw)m = 0. Thus (aw)m =

xw(aw)m+1.
Therefore a ∈ RW©

w by Theorem 3.1. �

Theorem 3.3. Let a, w ∈ R. Then the following are equivalent:

(1) a ∈ RW©
w .

(2) a ∈ RD,w and there exist n ∈ N, x ∈ R such that

x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a.

(3) a ∈ RD,w and there exists some y ∈ R such that

(aD,ww)∗aD,wwy = (aD,ww)∗a.

In this case, aW©w = (aw)(aw)Dx = (aD,ww)3y.
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Proof. (1) ⇒ (2) By virtue of Theorem 3.1, a ∈ RD,w and there exists x ∈ R
such that

(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, as desired.

(2) ⇒ (3) By hypothesis, a ∈ RD,w and there exist n ∈ N, x ∈ R such that
x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a. Then we see that ((aw)D)∗(aw)2x =
((aw)D)∗a. Obviously, we have

aD,ww = (aw)Da(wa)Dw = (aw)D[a((wa)D)2w]aw
= [(aw)D]2aw = (aw)D.

Hence, (aD,ww)∗(aw)2x = (aD,ww)∗a.
Since x = a(wx)2 = (aw)x(wx) = (aw)nx(wx)n for any n ∈ N, we observe

that

(aD,ww)∗(aw)2x− (aD,ww)∗(aw)D(aw)3x
= (aD,ww)∗(aw)n+2x(wx)n − (aD,ww)∗(aw)D(aw)n+3x(wx)n

= (aD,ww)∗[(aw)n − (aw)D(aw)n+1](aw)2x(wx)n.

Since (aw)n = (aw)D(aw)n+1, we get

(aD,ww)∗(aw)2x− (aD,ww)∗(aw)D(aw)3x = 0;

hence, (aD,ww)∗(aw)D(aw)3x = (aD,ww)∗a. Set y = (aw)3x. Then we verify
that

(aD,ww)∗aD,wwy = (aD,ww)∗[aD,ww]awx
= (aD,ww)∗(aw)Dawx = (aD,ww)∗a,

as desired.
(3) ⇒ (1) By hypothesis, (aD,ww)∗aD,wwy = (aD,ww)∗a for some y ∈ R.

Then ((aw)D)∗(aw)Dy = ((aw)D)∗a. It is easy to verify that

[aw(aw)D]∗aw(aw)D = (aw)∗[((aw)D)∗a]w(aw)D

= (aw)∗[((aw)D)∗(aw)Dy]w(aw)D

= [aw(aw)D]∗(aw)Dyw(aw)D

= [aw(aw)D]∗aw[(aw)D]2yw(aw)D.
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Since the involution ∗ is proper, we get aw(aw)D = (aw)Dyw(aw)D. Let
z = ((aw)D)3y. Then we verify that

a(wz)2 = aw((aw)D)3yw((aw)D)3y
= ((aw)D)2yw((aw)D)3y
= (aw)D[(aw)Dyw(aw)D]((aw)D)2y
= (aw)Daw(aw)D((aw)D)2y
= ((aw)D)3y = z;(

(aw)D
)∗

(aw)2z =
(
(aw)D

)∗
(aw)2((aw)D)3y

=
(
(aw)D

)∗
(aw)Dy

=
(
(aw)D

)∗
a.

Set n = i(aw). Then (aw)n = (aw)D(aw)n+1. Thus,

(aw)n − zw(aw)n+1

= [(aw)n − (aw)D(aw)n+1] + [(aw)D(aw)n+1 − zw(aw)n+1]
= (aw)D(aw)n+1 − ((aw)D)3yw(aw)n+1

= −((aw)D)3yw[1− (aw)D(aw)](aw)n+1

+ [(aw)D(aw)n+1 − ((aw)D)3yw(aw)D(aw)n+2]
= (aw)D(aw)n+1 − ((aw)D)3yw(aw)D(aw)n+2

= [(aw)D]2[(aw)(aw)D](aw)n+2 − ((aw)D)3yw(aw)D(aw)n+2

= [(aw)D]2[(aw)Dyw(aw)D](aw)n+2 − ((aw)D)3yw(aw)D(aw)n+2

= 0.

That is, (aw)n = zw(aw)n+1. Accordingly, a ∈ RW©
w . In this case,

aW©w = ((aw)D)3y = (aD,ww)3y = (aD,ww)3(aw)3x = (aw)(aw)Dx,

as asserted. �

Corollary 3.4. Let a ∈ R. Then a ∈ RW©
w if and only if

(1) a ∈ RD,w;
(2) There exists an idempotent q ∈ R such that

aD,wR = qR and (aD,w)∗awq = (aD,w)∗a.

Proof. =⇒ By using Theorem 3.3, a ∈ RD,w and there exists some y ∈ R such
that

(aD,ww)∗aD,wwy = (aD,ww)∗a.

Then
(aD,ww)∗(aw)[(aw)D]2y = (aD,ww)∗a.

Set q = [(aw)D]2y. Then (aD,w)∗awq = (aD,w)∗a. Obviously, qR ⊆ aD,wwR.
Moreover, aW©w = (aD,ww)3y = [(aw)D]3y. Then aW©w = (aw)Dq, and so q =



WEIGHTED WEAK GROUP INVERSE IN A RING WITH PROPER INVOLUTION 15

(aw)[(aw)Dq] = awaW©w . Hence, qw = (aw)(aW©w w), and so qw(aw)D = (aw)(aW©w w)
(aw)D. We observe that

(aw)D − qw(aw)D

= (aw)D − (aw)(aW©w w)(aw)D

= (aw)n+1[(aw)D]n+2 − (aw)(aW©w w)(aw)n+1[(aw)D]n+2

= aw[(aw)n − (aW©w w)(aw)n+1][(aw)D]n+2.

Hence, Since (aw)n = (aW©w w)(aw)n+1, we get (aw)D − qw(aw)D = 0; hence,
aD,ww = (aw)D = qw(aw)D; hence, aD,wwR ⊆ qR. Thus, we prove that
aD,wR = aD,wwR = qR, as desired.
⇐= By hypothesis, a ∈ RD,w and there exists an idempotent q ∈ R such

that

aD,wR = qR and (aD,w)∗awq = (aD,w)∗a.

Since aD,wR = aD,wwR = (aw)DR, we write q = (aw)Dz with z ∈ R. Choose
y = awz. Then

(aD,ww)∗aD,wwy = (aD,ww)∗aD,ww(aw)z
= (aD,ww)∗(aw)D(aw)z
= (aD,ww)∗aw[(aw)Dz]
= (aD,ww)∗awq
= (aD,ww)∗a,

the result follows by Theorem 3.3. �

4. relations with weighted core-EP inverses

In this section we investigate relations between weighted weak group and
weighted core-EP inverses. Our starting point is the following.

Theorem 4.1. Let a ∈ RD©
w . Then a ∈ RW©

w and aW©w = (aD©
w )2a.

Proof. By hypothesis, we have

aW©w = a(waW©w )2, (awaD©
w w)∗ = awaD©

w w, (aw)n = aD©
w w(aw)n+1.
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Set x = (aD©
w w)2a. Then we check that

a(wx)2 = [aw(aD©
w w)2][aw(aD©

w w)2]a
= aw(aD©

w w)(aD©
w w)2a = (aD©

w w)(aD©
w w)a

= (aD©
w w)2a = x,

(aw)∗(aw)2xw = (aw)∗(aw)2(aD©
w w)2aw = (aw)∗aw[a(waD©

w )2]waw
= (aw)∗[awaD©

w w]aw,
((aw)∗(aw)2xw)∗ =

(
(aw)∗[awaD©

w w]aw
)∗

= (aw)∗[awaD©
w w]∗aw

= (aw)∗[awaD©
w w]aw = (aw)∗awaD©

w waw
= (aw)∗aw[a(waD©

w )2]waw
= (aw)∗(aw)2(aD©

w w)2aw = (aw)∗(aw)2xw.

Moreover, we see that

(aw)n − xw(aw)n+1

= (aw)n − (aD©
w w)2(aw)n+2

= (aw)n − aD©
w w(aw)n+1 + aD©

w w(aw)n+1 − (aD©
w w)2(aw)n+2

= [(aw)n − aD©
w w(aw)n+1] + aD©

w w[(aw)n − (aD©
w w)(aw)n+1)]aw

= 0,

and so (aw)n = xw(aw)n+1 for some n ∈ N. Therefore aW©w = (aD©
w w)2a. �

Corollary 4.2. Let a ∈ RD©
w . Then aW©w = x if and only if a(wx)2 = x, awx =

aD©
w wa.

Proof. =⇒ In view of Theorem 4.1, a ∈ RW©
w and x := aW©w = (aD©

w w)2a. There-
fore

awx = aw(aD©
w w)2a = [a(waD©

w )2]wa = aD©
w wa,

a(wx)2 = (awx)wx = [aD©
w wawaD©

w ]waD©
w wa

= [aD©
w w]2a = aW©w = x,

as required.
⇐= By hypotheses, a(wx)2 = x, awx = aD©

w wa. Then we have

x = a(wx)2 = (awx)wx = aD©
w wa(wx)

= aD©
w w(awx) = aD©

w w(aD©
w wa)

= (aD©
w w)2a.

In light of Theorem 4.1, x = aW©w , as desired. �

Corollary 4.3. Let A,W ∈ Cn×n. Then X is the weak W -group of A if and
only if X satisfies

A(WX)2 = X,AWX = AD©
WWA.
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Proof. Lethal Cn×n be the ring of all n× n complex matrices, with conjugate
transpose ∗ as the involution. Then the involution ∗ is proper. Then the result
follows by Corollary 4.2. �

We turn to investigate when weighted group and core-EP inverse coincide
with each other.

Lemma 4.4. Let a ∈ AW©
w . Then awa ∈ AW©

w . In this case,

(awa)W©w = (aW©w w)3a.

Proof. Let x = (aW©w w)3a and c = awa. Then we check that

c(wx)2 = awaw(aW©w w)3aw(aW©w w)3a
= aw[a(waW©w )2w](aW©w w)aw(aW©w w)3a
= a(waW©w )2waw(aW©w w)3a
= [aW©w wawaW©w ]w(aW©w w)2a
= aW©w waW©w waW©w wa
= (aW©w w)3a
= x,

(cw)∗(cw)2(xw) = ((aw)2)∗(aw)4(aW©w w)3aw
= ((aw)2)∗(aw)2[(aw)2(aW©w w)2](aW©w w)aw
= ((aw)2)∗(aw)2(aw)(aW©w w)(aW©w w)aw
= ((aw)2)∗(aw)2[a(waW©w )2]waw
= [((aw)2)∗(aw)2aW©w ]waw
= [((aw)2)∗a]waw
=

(
(aw)2

)∗
(aw)2,

and then

((cw)∗(cw)2(xw))∗ = [
(
(aw)2

)∗
(aw)2]∗ =

(
(aw)2

)∗
(aw)2 = (cw)∗(cw)2(xw).

Moreover, we see that

(cw)n − xw(cw)n+1 = (aw)2n − (aW©w w)3aw(aw)2n+2

= (aw)2n − (aW©w w)2aW©w w(aw)2n+3

= (aw)2n − aW©w w(aw)2n+1

Hence, we have (cw)n = xw(cw)n+1 = 0. Therefore we complete the proof. �

Theorem 4.5. Let a ∈ RD©
w . Then the following are equivalent:

(1) aW©w = aD©
w .

(2) awaD©
w = aD©

w wa.
(3) (awa)W©w = aW©w waW©w .
(4) a has weak w-group decomposition a = a1 + a2 with a1wa2 = 0.
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(5) a has weak w-group decomposition a = a1+a2, a1 ∈ R#©
w and a1w(a1)

#©
w =

(a1)
#©
w wa1.

Proof. (1)⇒ (2) In view of Theorem 4.1,

aW©w = (aD©
w w)2a.

Hence,

awaD©
w = awaW©w = aw(aD©

w w)2a
= [a(waD©

w )2]wa = aD©
w wa,

as desired.
(2)⇒ (1) Since awaD©

w = aD©
w wa, it follows by Theorem 4.1 that

aW©w = (aD©
w w)2a

= aD©
w w(aD©

w wa)
= aD©

w w(awaD©
w )

= aD©
w ,

as required.
Let a = a1 + a2 be the w-core-EP decomposition. Then it is the weak

w-group decomposition.
(1)⇔ (4) We check that

awaD©
w = awaW©w = aw(a1)

#
w = (a1w + a2w)(a1)

#
w = a1w(a1)

#
w ,

aD©
w wa = (a1)

#
wwa = (a1)

#
w (wa1 + wa2) = (a1)

#
wwa1 + (a1)

#
wwa2.

Thus, (a1)
#
wwa2 = 0 if and only if awaD©

w = aD©
w wa.

If a1wa2 = 0, then

(a1)
#
wwa2 = [(a1)

#
wwa1w(a1)

#
w ]wa2 = [(a1)

#
ww]2[a1wa2] = 0.

If (a1)
#
wwa2 = 0, then

a1wa2 = [a1w(a1)
#
wwa1]wa1 = [a1w]2[(a1)

#
wwa1] = 0.

Thus, a1wa2 = 0 if and only if (a1)
#
wwa2 = 0. Accordingly, aW©w = aD©

w if and
only if a1wa2 = 0, as desired.
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(3)⇔ (4) In light of Lemma 4.4, we verify that

(awa)W©w = (aW©w w)3a
= ((a1)

#
ww)3(a1 + a2)

= ((a1)
#
ww)3a1 + ((a1)

#
ww)3a2

= ((a1)
#
ww)2[(a1)

#
wwa1] + ((a1)

#
ww)2[(a1)

#
wwa2]

= ((a1)
#
ww)2[a1w(a1)

#
w ] + ((a1)

#
ww)2[(a1)

#
wwa2]

= ((a1)
#
ww)[(a1)

#
wwa1w(a1)

#
w ] + ((a1)

#
ww)2[(a1)

#
wwa2]

= (a1)
#
ww(a1)

#
w + ((a1)

#
ww)2[(a1)

#
wwa2]

= (a1)
#
ww(a1)

#
w + ((a1)

#
ww)2[(a1)

#
wwa2]

= aW©w waW©w + ((a1)
#
ww)2[(a1)

#
wwa2].

If a1wa2 = 0, as in the argument above, we have (a1)
#
wwa2 = 0, and so

((a1)
#
ww)2[(a1)

#
wwa2] = 0.

If ((a1)
#
ww)2[(a1)

#
wwa2] = 0, then [a1w(a1)

#
ww(a1)

#
w ]w[(a1)

#
wwa2] = 0; hence,

[(a1)
#
wwa1w(a1)

#
w ]w[(a1)

#
wwa2] = 0. This implies that (a1)

#
ww[(a1)

#
wwa2] = 0.

Moreover, [a1(w(a1)
#
w )2]wa2 = 0. We infer that (a1)

#
wwa2 = 0. Similarly to

the preceding argument, we have a1wa2 = 0. Then a1wa2 = 0 if and only
if ((a1)

#
ww)2[(a1)

#
wwa2] = 0. Therefore a1wa2 = 0 if and only if (awa)W©w =

aW©w waW©w , as desired.
(1)⇒ (5) Since (a1)

#
w = aD©

w , we see that a1 ∈ R#©
w . Moreover, we have

a1w(a1)
#©
w = a1w(a1)

#
w = (a1)

#
wwa1 = (a1)

#©
w wa1.

(5) ⇒ (1) Since a1w(a1)
#©
w = (a1)

#©
w wa1, we see that (a1)

#©
w = (a1)

#
w . Thus,

we have

aW©w = (a1)
#
w = (a1)

#©
w = aD©

w ,

as asserted. �

Lemma 4.6. Let a ∈ RW©
w and i(aD,w) = k. Then the following hold:

(1) aW©w (wa)k = aD,w(wa)k.
(2) (aD,ww)k = aW©w w(aD,ww)k−1.

Proof. In view of Theorem 3.1, a ∈ RD,w. Let x = aW©w . Then a(wx)2 =
x, (aw)k = (xw)(aw)k+1. Hence (aw)(xw)2 = xw, (aw)k = (xw)(aw)k+1. In
view of [17, Lemma 2.2], aw ∈ RD and (aw)D = (xw)k+1(aw)k. Also we have
wa(wx)2 = wx, (wa)k+1 = (wx)(wa)k+2. By using [17, Lemma 2.2] again,
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(wa)D = (wx)k+2(wa)k+1. Accordingly,

aD,w = (aw)Da(wa)D = (xw)k+1(aw)ka(wx)k+2(wa)k+1

= (xw)k+1(aw)k+1(xw)k+1x(wa)k+1

= (xw)k+1(aw)(xw)x(wa)k+1

= (xw)k+1[a(wx)2](wa)k+1 = (xw)k+1x(wa)k+1

= x(wx)k+1(wa)k+1.

(1) We verify that

aD,w(wa)k = x(wx)k+1(wa)k+1(wa)k

= x(wx)k+1(wa)2k+1 = x(wx)k[(wx)(wa)k+1](wa)k

= x(wx)k(wa)2k = x(wx)k−1[(wx)(wa)k+1](wa)k−1

= x(wx)k−1(wa)2k−1 = · · · = x(wx)(wa)k+1

= x(wa)k;
aW©w (wa)k = x(wa)k.

Therefore aW©w (wa)k = aD,w(wa)k.
(2) We easily check that

(aD,ww)k = [x(wx)k+1(wa)k+1w][x(wx)k+1(wa)k+1w](aD,ww)k−2

= x(wx)k+1(wa)k+1(wx)k+2(wa)k+1w(aD,ww)k−2

= x(wx)k+1[(wa)k+1(wx)k+1][(wx)(wa)k+1]w(aD,ww)k−2

= x(wx)k+1[(wa)(wx)](wx)(wa)k+1w(aD,ww)k−2

= x(wx)k+1w[a(wx)2](wa)k+1w(aD,ww)k−2

= x(wx)k+1(wx)(wa)k+1w(aD,ww)k−2

= xw[x(wx)k+1(wa)k+1]w(aD,ww)k−2

= xw(aD,ww)k−1 = aW©w w(aD,ww)k−1.

�

Finally, we present various conditions under which an element and its weak
weighted group inverse commute with the weight.

Theorem 4.7. Let a ∈ RW©
w and i(aD,w) = k. Then the following are equiva-

lent:

(1) (aw)(aW©w w) = (aW©w w)(aw).
(2) (aw)k(aW©w w) = (aw)k(aD,ww).
(3) (aw)k = (aw)k+1(aW©w w).
(4) (aW©w w)(aD,ww) = (aD,ww)(aW©w w).

Proof. (1)⇒ (2) Since (aw)(aW©w w) = (aW©w w)(aw), we verify that (aw)2(aW©w w) =
(aw)[(aw)(aW©w w)] = (aw)[(aW©w w)(aw)] = [(aw)(aW©w w](aw) = [(aW©w w)(aw)](aw) =
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(aW©w w)(aw)2. By iteration of this process, we prove that (aw)k(aW©w w) =
(aW©w w)(aw)k. In light of Lemma 4.6, (aw)k(aW©w w) = [aW©w (wa)k]w = (aw)k(aD,ww).

(2)⇒ (3) It is easy to check that

(aw)k+1aW©w w = (aw)[(aw)k(aW©w w] = (aw)k+1aD,ww = (aw)k,

as required.
(3)⇒ (1) Since (aw)k = (aw)k+1aW©w w, we have

aW©w w(aw)k = [aW©w w(aw)k+1]aW©w w
= (aw)kaW©w w.

In view of Theorem 2.3, there exist z, y ∈ R such that

a = z + y, z∗y = ywz = 0, z ∈ R#
w , y ∈ Rnil

w .

Explicitly, aW©w = z#w and (yw)k = 0. Since aw = zw + yw and (yw)(zw) = 0,
then we have

(aw)k =
k∑

i=0

(zw)i(yw)k−i =
k∑

i=1

(zw)i(yw)k−i.

We check that

(aw)kaW©w w = [
k∑

i=1

(zw)i(yw)k−i]z#ww

= (zw)kz#ww.

Moreover, we have

aW©w w(aw)k = z#ww[
k∑

i=1

(zw)i(yw)k−i]

= z#ww(zw)k + z#ww
k−1∑
i=1

(zw)i(yw)k−i].

Since (zw)(z#ww) = (z#ww)(zw), by induction, we have (zw)k(z#ww) = (z#ww)(zw)k.

This implies that z#ww[
k∑

i=1

(zw)i(yw)k−i] = 0. Accordingly, we have

k∑
i=1

(zw)i(yw)k−i = (zw)(z#ww)[
k−1∑
i=1

(zw)i(yw)k−i] = 0.

That is,

(zw)(yw)k−1 + (zw)2(yw)k−2 + · · ·+ (zw)k−1(yw) = 0.
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Since (yw)k = 0, we see that

(zw)k−1(yw)k−1 = −[(zw)(yw)k−1 + (zw)2(yw)k−2

+ · · ·+ (zw)k−2(yw)2](yw)k−2 = 0.

As zw ∈ R#, we see that zw(yw)k−1 = [(zw)#]k−2[(zw)k−1(yw)k−1] = 0; and
then

(zw)2(yw)k−2 + · · ·+ (zw)k−1(yw) = 0.

Furthermore, we have zw(yw)k−2 = 0. By iteration of this process, we have
(zw)(yw) = 0.

Accordingly, we have

(aw)(aW©w w) = (zw + yw)z#ww
= zwz#ww + (ywz)[wz#w ]2w = zwz#ww,

(aW©w w)(aw) = z#ww(z + y)w = z#wwzw + z#wwyw
= z#wwzw + (z#ww)2(zwyw) = z#wwzw.

Hence, (aw)(aW©w w) = (aW©w w)(aw), as required.
(1) ⇒ (4) Let x = aW©w . Then awxw = xwaw and xw(aw)n+1 = (aw)n(n ∈

N), xwawx = (xwa)wx = (awx)wx = a(wx)2 = x. Hence, x = aD,w. This
implies that aW©w waD,ww = aD,wwaW©w w.

(4)⇒ (1) By using Cline’s formula (see [5, Theorem 2.1]), we have aD,ww =
(aw)D. Hence, (aW©w w)(aw)D = (aw)D(aW©w w).

By virtue of Theorem 2.3, there exist z, y ∈ R such that

a = z + y, z∗y = ywz = 0, z ∈ R#
w , y ∈ Rnil

w .

Explicitly, aW©w = z#w and (yw)k = 0. Since aw = zw + yw and (yw)(zw) = 0,
it follows by [1, Corollary 3.5] that

(aw)D = (zw)# +
k−1∑
i=1

((zw)#)n+1(yw)i.

It is easy to verify that

(aw)DaW©w w = [(zw)# +
k−1∑
i=1

((zw)#)n+1(yw)i]z#ww

= (zw)#z#ww.
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Moreover, we have

aW©w w(aw)D = z#ww[(zw)# +
k−1∑
i=1

((zw)#)i+1(yw)i]

= z#ww(zw)# + z#ww[
k−1∑
i=1

((zw)#)i+1(yw)i].

Sine (zw)#z#ww = z#ww(zw)#, we have

z#ww[
k−1∑
i=1

((zw)#)i+1(yw)i] = 0.

Thus,

k−1∑
i=1

((zw)#)i+1(yw)i = 0.

That is,

[(zw)#]2(yw) + [(zw)#]3(yw)2 + · · ·+ [(zw)#]k(yw)k−1 = 0.

Since (yw)k = 0, we have (zw)(yw)k−2 = 0; hence, (zw)(yw)k−3 = 0. By
iteration of this process, we see that (zw)(yw) = 0.

Therefor we have

(aw)(aW©w w) = (zw + yw)z#ww
= zwz#ww + (ywz)[wz#w ]2w = zwz#ww,

(aW©w w)(aw) = z#ww(z + y)w = z#wwzw + z#wwyw
= z#wwzw + (z#ww)2(zwyw) = z#wwzw.

Hence, (aw)(aW©w w) = (aW©w w)(aw), as asserted. �

As an immediate consequence of Theorem 4.7, we derive

Corollary 4.8. Let a ∈ RW©
w , w ∈ R−1 and i(aD,w) = k. Then the following

are equivalent:

(1) awaW©w = aW©w wa.
(2) (aw)kaW©w = (aw)kaD,w.
(3) (aw)k = (aw)k+1aW©w w.
(4) aW©w waD,w = aD,wwaW©w .
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