An elementary approach to $x^{2}+7=2^{n}$

Seiji Tomita

Abstract

In this paper, we prove that the positive integer solutions of the equation $x^{2}+7=2^{n}$ are $x=$ $1,3,5,11,181$, corresponding to $n=3,4,5,7,15$.

1 Introduction

The equation $x^{2}+7=2^{n}$ is known as Ramanujan-Nagell equation. Ramanujan[5] conjectured that only five solutions exist just when $n=3,4,5,7$, and 15. It was first solved by Nagell[4] that there are only five solutions, namely, $(n, x)=(3,1),(4,3),(5,5),(7,11),(15,181)$. His method is using unique prime factorization in the field $\mathbb{Q}(\sqrt{-7})$. Cohn[2] solved $x^{2}+D=y^{n}$ for 77 values of D in the range $1 \leq D \leq 100$ using unique prime factorization in the field $\mathbb{Q}(\sqrt{-D})$. Bugeaud[1], Mignotte, and Siksek solved $x^{2}+D=y^{n}$ with $n \geq 3$ for $1 \leq D \leq 100$. Their method is the linear forms in logarithms and the modular approach.

We prove the problem by finding the integer points on elliptic curves that are related to the equation $x^{2}+D=2^{n}$.

Lemma 1. The equation $x^{2}+D=2^{n}$ can be reduced to finding the integer points on elliptic curves. We take the three cases $n=3 a, n=3 a+1$, and $n=3 a+2$.

1) $n=3 a$

Let $y=2^{a}$, then we get
$x^{2}=y^{3}-D$.
2) $n=3 a+1$
$x^{2}=2 y^{3}-D$.
Equivalently, $X^{2}=Y^{3}-4 D$ with $(X, Y)=(2 x, 2 y)$.
3) $n=3 a+2$
$x^{2}=4 y^{3}-D$.
Equivalently, $X^{2}=Y^{3}-16 D$ with $(X, Y)=(4 x, 4 y)$.
Theorem 1. The positive integer solutions of the equation $x^{2}+7=2^{n}$ are $x=1,3,5,11,181$, corresponding to $n=3,4,5,7,15$.

Proof.

$$
\begin{equation*}
x^{2}+7=2^{n} \tag{1}
\end{equation*}
$$

From Lemma 1, we take the three cases $n=3 a, n=3 a+1$, and $n=3 a+2$.

1) $n=3 a$

Let $y=2^{a}$, then we consider $x^{2}=y^{3}-7$.
According to Magma[3], this elliptic curve has integral points $(y, x)=(2, \pm 1),(32, \pm 181)$.
Then, we get $(n, x)=(3,1),(15,181)$.
2) $n=3 a+1$

Then, we consider $X^{2}=Y^{3}-28$.
This elliptic curve has integral points $(Y, X)=(4, \pm 6),(8, \pm 22),(37, \pm 225)$.
We get $(n, x)=(4,3),(7,11)$.
3) $n=3 a+2$

Similarly, $X^{2}=Y^{3}-112$.
This elliptic curve has integral point $(Y, X)=(8, \pm 20)$.
We get $(n, x)=(5,5)$.
Hence, there are only five integral solutions $(n, x)=(3,1),(4,3),(5,5),(7,11),(15,181)$.

References

[1] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations, II: The Lebesgue-Nagell equation. Compos. Math. 142(1), 31-62 (2006) Zbl 1128.11013.
[2] J. H. E. Cohn, The Diophantine equation $x^{2}+C=y^{n}$, Acta Arith. LXV. 4 (1993), 367-381.
[3] Online MAGMA Calculator, http://magma.maths.usyd.edu.au/calc/
[4] T. Nagell, The Diophantine equation $x^{2}+7=2^{n}$, Norsk Mat. Tidsskr. 30(1948) 62-64.
[5] S. Ramanujan, Question 464, J. Indian Math. Soc. 5 (1913), 120.

