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Abstract

We propose necessary and sufficient conditions for the root-finding problem. A quantum algorithm
for finding the roots of a polynomial function f(x) = xm + am−1x

m−1 + ...+ a1x+ a0 is studied in
term of the phase kickback as an application of the necessary and sufficient condition. As a result,
we find a simple formula for the root-finding problem. Here all the roots are in the real numbers R.
All the roots are different numbers and the number of the roots is m. We expect our discussions
give some insight for future studies for root-finding problem.
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I. INTRODUCTION

The great success of quantum mechanics (cf. [1—7]) is recognized by the scientific community for physical theories.
Between the articles of research for constructing theoretical quantum algorithms [8] it may be mentioned as follows:
In 1985, the Deutsch algorithm was introduced and constructed for the function property problem [9—11]. In 1993, the
Bernstein—Vazirani algorithm was proposed for identifying linear functions [12, 13]. Generalization of the Bernstein—
Vazirani algorithm beyond qubit systems is reported [14]. In 1994, Simon’s algorithm [15] and Shor’s algorithm [16]
were discussed for period finding of periodic functions. In 1996, Grover [17] provided an algorithm for unordered
object finding and the motivation for exploring the computational possibilities offered by quantum mechanics. In
2020, a parallel computation for all of the combinations of values in variables of a logical function was proposed by
Nagata and Nakamura [18]. In 2021, concrete quantum circuits for addition of two numbers of arbitrary length were
discussed by Nakamura and Nagata [19].

Continuous-variable quantum information is the area of quantum information science that makes use of physical
observables, such as the strength of an electromagnetic field, whose numerical values belong to continuous intervals.
In 1998, Braunstein studied error correction for continuous quantum variables [20] and quantum error correction
for communication with linear optics [21]. In 1999, Lloyd and Braunstein proposed quantum computation over
continuous variables [22]. The same year, Ralph considered continuous-variable quantum cryptography [23]. In 2000,
Hillery discussed quantum cryptography with squeezed states [24], while Reid described quantum cryptography with
a predetermined key using continuous-variable Einstein-Podolsky-Rosen correlations [25].

In 2001, secure quantum key distribution using squeezed states was studied by Gottesman and Preskill [26]. A year
later, continuous-variable quantum cryptography using coherent states was first proposed by Grosshans and Grang-
ier [27]. Efficient classical simulation of continuous-variable quantum information processes is studied by Bartlett,
Sanders, Braunstein, and Nemoto [28]. Continuous-variable quantum computing and its applications to cryptography
are discussed by Diep, Nagata, and Wong [29].

Recently, Nagata and Nakamura discuss a quantum algorithm for finding the roots of a polynomial function by
using the generalized Bernstein—Vazirani algorithm [30]. However, they restrict themselves to an assumption that all
the roots are in the integers Z. Here, all the roots considered here are in the real numbers R. All the roots are different
numbers. How do we find all the roots of the polynomial function? We expect our discussions give some insight for
future studies for root-finding problem.

In this paper, we propose necessary and sufficient conditions for the root-finding problem. A quantum algorithm
for finding the roots of a polynomial function f(x) = xm + am−1xm−1 + ...+ a1x+ a0 is studied in term of the phase
kickback as an application of the necessary and sufficient condition. As a result, we find a simple formula for the
root-finding problem. Here all the roots are in the real numbers R. All the roots are different numbers and the
number of the roots is m. We expect our discussions give some insight for future studies for root-finding problem.

II. NECESSARY AND SUFFICIENT CONDITIONS FOR THE ROOT-FINDING PROBLEM

Let us consider necessary and sufficient conditions for finding the roots of a polynomial function f(x) = xm +
am−1xm−1 + ...+ a1x+ a0. Here all the roots are in the real numbers R. All the roots are different numbers and the
number of the roots is m. That is, |r1| < |r2| < ... < |rm|, rj ∈ R, f(x) ∈ R, x ∈ R, and aj ∈ R. |rj | is the absolute
value of the root rj of the function. Here the problem is of searching necessary and sufficient conditions for finding
the roots of the polynomial function. We introduce a natural number d and suppose the following relation:

d ≥ 2. (1)

Let us discuss the structure of quantum computing. To this end, we introduce the transformation Uf (using the
polynomial function f) defined by the mapping

Uf |x�|j� = |x�|(|f(x)|+ j) mod d�, (2)

where |f(x)| is the absolute value of f(x).
We define a quantum state |φd� as follows:

|φd� =
1√
d

� d

0

djω(d)d−j |j�, (3)

where ω(d) = e2πi/d. By the phase kickback [31] (See Appendix A) we have the following formula:

Uf |x�|φd� = ω(d)|f(x)||x�|φd�. (4)
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Notice that

(Uf )d|x�|j� = |x�|(d|f(x)|+ j) mod d� = |x�|j�. (5)

Therefore, the mapping Uf is a cyclic transformation.
Here, we define the input state as follows:

|ψ�d =
1√
d

� +∞

−∞
dx|x�|φd�. (6)

By applying Uf , to |ψ�d, we obtain the following output state by the phase kickback:

Uf |ψ�d =
1√
d

� +∞

−∞
dxω(d)|f(x)||x�|φd�. (7)

Thus, by looking at the state Uf |ψ�d, we see the phase factor ω(d)|f(x)|.
Again, we define the input state as follows (d and e are relatively prime and d < e):

|ψ�e =
1√
e

� +∞

−∞
dx|x�|φe�. (8)

By applying Uf , to |ψ0�, we obtain the following output state by the phase kickback:

Uf |ψ�e =
1√
e

� +∞

−∞
dxω(e)|f(x)||x�|φe�. (9)

Thus, by looking at the state Uf |ψ�e, we see the phase factor ω(e)|f(x)|.
We have several necessary and sufficient conditions for finding all the roots of a polynomial function.
Theorem

|f(r)| = 0

⇔ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1

⇔ Uf = I

⇔ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e, (10)

where d and e are relatively prime and d < e, I is an identity operator, and r is a root of f(x).
Proposition 1

|f(r)| = 0 ⇒ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1. (11)

Proof: If |f(r)| = 0, then ω(d)0 = 1 and ω(e)0 = 1.
QED
Proposition 2

|f(r)| = 0 ⇐ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1. (12)

Proof: If ω(d)|f(r)| = 1, then |f(r)| = 0 or |f(r)| = dp, (p = 1, 2, 3, ...). If ω(e)|f(r)| = 1, then |f(r)| = 0 or
|f(r)| = eq, (q = 1, 2, 3, ...). d and e are relatively prime and d < e. Thus |f(r)| = dp and |f(r)| = eq are not realized.
Therefore, ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1 implies |f(r)| = 0.

QED
Proposition 3

ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1 ⇐ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e. (13)

Proof: We define the input state as follows:

|ψ�d =
1√
d

� +∞

−∞
dx|x�|φd�. (14)

By applying Uf , to |ψ�d, we obtain the following output state by the phase kickback:

Uf |ψ�d =
1√
d

� +∞

−∞
dxω(d)|f(x)||x�|φd�. (15)
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Thus, by looking at the state Uf |ψ�d, we see the phase factor ω(d)|f(x)|. Thus, we have

Uf |ψ�d = |ψ�d ⇒
1√
d

� +∞

−∞
dxω(d)|f(x)||x�|φd� =

1√
d

� +∞

−∞
dx|x�|φd� ⇒ ω(d)|f(x)| = 1. (16)

Similarly, we have, using e,

Uf |ψ�e = |ψ�e ⇒ ω(e)|f(x)| = 1. (17)

Therefore, ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1 ⇐ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e.
QED
Proposition 4

Uf = I ⇒ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e. (18)

Proof: If Uf = I, then Uf |ψ�d = |ψ�d and Uf |ψ�e = |ψ�e.
QED
Proposition 5

|f(r)| = 0 ⇒ Uf = I. (19)

Proof: If |f(r)| = 0, then Uf |r�|j� = |r�|(|f(r)|+ j) mod d� = |r�|j�.
QED
Thus, we prove the theorem (10). We expect our discussions give some insight for future studies for root-finding

problem.

III. APPLICATION OF THE NECESSARY AND SUFFICIENT CONDITION

Let us consider a quantum algorithm for finding the roots of a polynomial function f(x) = xm + am−1xm−1 + ...+
a1x + a0. We use necessary and sufficient conditions for finding all the m roots of the polynomial function. See the
theorem (10). Here all the roots are in the real numbers R. All the roots are different numbers and the number of
the roots is m. That is, |r1| < |r2| < ... < |rm|. |rj | is the absolute value of the root rj of the function. Here the
problem is of searching quantum algorithm for finding the roots of the polynomial function.

We define a quantum state |φd� as follows:

|φd� =
1√
d

� d

0

djω(d)d−j |j�, (20)

where ω(d) = e2πi/d. By the phase kickback [31] (See Appendix A) we have the following formula:

Uf |x�|φd� = ω(d)|f(x)||x�|φd�. (21)

Here, we define the input state as follows:

|ψ�d =
1√
d

� +∞

−∞
dx|x�|φd�. (22)

By applying Uf , to |ψ�d, we obtain the following output state by the phase kickback:

Uf |ψ�d =
1√
d

� +∞

−∞
dxω(d)|f(x)||x�|φd�. (23)

Thus, by looking at the state Uf |ψ�d, we see the phase factor ω(d)|f(x)|. If r is a root of f(x), then f(r) = 0. Thus, by

looking at the state Uf |ψ�d, we do not see the phase factor ω(d)|f(r)|. There are m points, in the interval [−∞,+∞],
such that

Uf |ψ�d = |ψ�d. (24)

Similarly, we have, using e,

Uf |ψ�e = |ψ�e. (25)
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Hence we have

(Uf |ψ�d − |ψ�d) + (Uf |ψ�e − |ψ�e) =






1√
d

� +∞
−∞ dx{ω(d)|f(x)| − 1}|x�|φd�

+ 1√
e

� +∞
−∞ dx{ω(e)|f(x)| − 1}|x�|φe� if f(x) �= 0,

0 if f(x) = 0.

(26)

Therefore, we determine all the m roots by evaluating the relation (26). As a result, we find a simple formula for the
root-finding problem (26). Let r be a root. Then f(r) = 0, thus the oracle becomes the identity operator I. That is,
Uf = U0 = I if f is zero. In more detail, the phase kickback occurs if f is not zero. The phase kickback does not
occur if f is zero.

When f(x) = 0 we have

(Uf |ψ�d − |ψ�d) + (Uf |ψ�e − |ψ�e) = 0, (27)

then, x is a root, that is, x = rk(k = 1, 2, ...,m). When f(x) �= 0 we have

(Uf |ψ�d − |ψ�d) + (Uf |ψ�e − |ψ�e)=
1√
d

� +∞

−∞
dx{ω(d)|f(x)| − 1}|x�|φd�

+
1√
e

� +∞

−∞
dx{ω(e)|f(x)| − 1}|x�|φe� (�= 0), (28)

then, x is not a root. It seems that we need to determine the quantum state ((Uf |ψ�d − |ψ�d) + (Uf |ψ�e − |ψ�e)),
which we think a final procedure like quantum state tomography is needed. Then we can pick up the m roots. We
expect our discussions give some insight for future studies for root-finding problem.

IV. CONCLUSIONS

We have proposed necessary and sufficient conditions for the root-finding problem. A quantum algorithm for finding
the roots of a polynomial function f(x) = xm + am−1xm−1 + ... + a1x + a0 has been studied in term of the phase
kickback as an application of the necessary and sufficient condition. As a result, we have found a simple formula
for the root-finding problem. Here all the roots have been in the real numbers R. All the roots have been different
numbers and the number of the roots is m. We have expected our discussions give some insight for future studies for
root-finding problem.
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Appendix A: The phase kickback

We have the following formula by the phase kickback [31]:

Uf |x�|φd� = ω(d)|f(x)||x�|φd�. (A1)

where ω(d) = e2πi/d and |f(x)| is the absolute value of f(x).
In what follows, we discuss the rationale behind the above relation (A1). Consider the action of the Uf gate on the

state |x�|φd�. Each term in |φd� is of the form ωd−j |j�. We observe that

Ufω
d−j |x�|j� = ωd−j |x�|(|f(x)|+ j) mod d�. (A2)

A variable k is introduced such that |f(x)| + j = k, from which it follows that d − j = d + |f(x)| − k. Thus, (A2)
becomes

Ufω
d−j |x�|j� = ω|f(x)|ωd−k|x�|k mod d�. (A3)

If k < d we have that |k mod d� = |k� and thus the terms in |φd� for which k < d are transformed as follows:

Ufω
d−j |x�|j� = ω|f(x)|ωd−k|x�|k�. (A4)

On the other hand, as both |f(x)| and j are bounded from above by d, k is strictly less than 2d. Thus, when
d ≤ k < 2d, we have |k mod d� = |k − d�. Let k − d = m. We have

ω|f(x)|ωd−k|x�|k mod d� = ω|f(x)|ω−m|x�|m�
= ω|f(x)|ωd−m|x�|m�. (A5)

Hence, the terms in |φd� for which k ≥ d are transformed as follows:

Ufω
d−j |x�|j� = ω|f(x)|ωd−m|x�|m�. (A6)

Finally, regarding (A4) and (A6), we have

Uf |x�|φd� = ω|f(x)||x�|φd�. (A7)

Therefore, the relation (A1) holds.
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