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I. INTRODUCTION

The great success of quantum mechanics (cf. [1—7]) is
recognized by the scientific community for physical the-
ories. Between the articles of research for constructing
theoretical quantum algorithms [8] it may be mentioned
as follows. In 1985, the Deutsch algorithm was intro-
duced and constructed for the function property problem
[9—11]. In 1993, the Bernstein—Vazirani algorithm was
proposed for identifying linear functions [12, 13]. Gen-
eralization of the Bernstein—Vazirani algorithm beyond
qubit systems is reported [14]. In 1994, Simon’s algo-
rithm [15] and Shor’s algorithm [16] were discussed for
period finding of periodic functions. In 1996, Grover [17]
provided an algorithm for unordered object finding and
the motivation for exploring the computational possibil-
ities offered by quantum mechanics. In 2020, a parallel
computation for all of the combinations of values in vari-
ables of a logical function was proposed by Nagata and
Nakamura [18, 19].

Continuous-variable quantum information is the area
of quantum information science that makes use of phys-
ical observables, such as the strength of an electromag-
netic field, whose numerical values belong to continuous
intervals. In 1998, Braunstein studied error correction
for continuous quantum variables [20] and quantum er-
ror correction for communication with linear optics [21].
In 1999, Lloyd and Braunstein proposed quantum com-
putation over continuous variables [22]. The same year,
Ralph considered continuous-variable quantum cryptog-
raphy [23]. In 2000, Hillery discussed quantum cryp-
tography with squeezed states [24], while Reid described
quantum cryptography with a predetermined key us-
ing continuous-variable Einstein-Podolsky-Rosen corre-
lations [25].

In 2001, secure quantum key distribution us-
ing squeezed states was studied by Gottesman and
Preskill [26]. A year later, continuous-variable quantum
cryptography using coherent states was first proposed by
Grosshans and Grangier [27]. Efficient classical simu-

lation of continuous-variable quantum information pro-
cesses is studied by Bartlett, Sanders, Braunstein, and
Nemoto [28]. Continuous-variable quantum computing
and its applications to cryptography are discussed by
Diep, Nagata, and Wong [29].

Recently, Nagata and Nakamura discuss a quantum al-
gorithm of finding the roots of a polynomial function by
using the generalized Bernstein—Vazirani algorithm [30].
However, they restrict themselves to an assumption that
all the roots are in the integers Z. Here, all the roots con-
sidered here are in the complex numbers C. How do we
find all the roots of the polynomial function? It is a very
difficult mathematical problem and we will not discuss
how to solve it. Instead, we discuss necessary and suffi-
cient conditions for finding all the roots of a polynomial
function. We hope our discussions give some insight for
future studies for root-finding problem.

In this paper, necessary and sufficient conditions for
finding all the roots of a polynomial function f(x) =
xm + am−1x

m−1 + ... + a1x + a0 are studied in term of
quantum computing. We hope our discussions give some
insight for future studies for root-finding problem.

II. NECESSARY AND SUFFICIENT

CONDITIONS FOR THE ROOT-FINDING

PROBLEM

Let us consider necessary and sufficient conditions for
finding the roots of a polynomial function f(x) = xm +
am−1x

m−1 + ... + a1x + a0. Here the roots are in the
complex numbers; |r1| ≤ |r2| ≤ ... ≤ |rm|, rj ∈ C, f(x) ∈
C, x ∈ C, and aj ∈ R. Here, |rj | =

�
(ℜrj)2 + (ℑrj)2.

Suppose the following relation:

d ≥ |a0| = |r1||r2|...|rm| ≥ |rm|, (1)

where |a0| is the absolute value of the constant of the
polynomial function, |rm| is the largest absolute value of
the roots of the function, and d is a very large natural
number. Here the problem is of searching necessary and
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sufficient conditions for finding the roots of the polyno-
mial function.

Let us discuss the structure of quantum computing.
To this end, we introduce the transformation Uf defined
by the mapping

Uf |x�|j� = |x�|(|f(x)|+ j) mod d�, (2)

where |f(x)| =
�

(ℜf(x))2 + (ℑf(x))2. We define a
quantum state |φd� as follows:

|φd� =
1√
d

� d

0

djω(d)d−j |j�, (3)

where ω(d) = e2πi/d. By the phase kickback [31] (See
Appendix A) we have the following formula:

Uf |x�|φd� = ω(d)|f(x)||x�|φd�. (4)

Notice that

(Uf )
d|x�|j� = |x�|(d|f(x)|+ j) mod d� = |x�|j�. (5)

Therefore, the mapping Uf is a cyclic transformation.
Here, we define the input state as follows:

|ψ�d =
1√
d

� d

0

dx|x�|φd�. (6)

By applying Uf , to |ψ�d, we obtain the following out-
put state by the phase kickback:

Uf |ψ�d =
1√
d

� d

0

dxω(d)|f(x)||x�|φd�. (7)

So, by looking at the state Uf |ψ�d, we see the phase factor

ω(d)|f(x)|.
Again, we define the input state as follows (d and e are

relatively prime and d < e):

|ψ�e =
1√
e

� e

0

dx|x�|φe�. (8)

By applying Uf , to |ψ0�, we obtain the following output
state by the phase kickback:

Uf |ψ�e =
1√
e

� e

0

dxω(e)|f(x)||x�|φe�. (9)

So, by looking at the state Uf |ψ�e, we see the phase factor

ω(e)|f(x)|.
We have several necessary and sufficient conditions for

finding all the roots of a polynomial function.

|f(r)| = 0

⇔ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1

⇔ Uf = I

⇔ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e, (10)

where d and e are relatively prime and d < e.
Proposition 1

|f(r)| = 0⇒ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1. (11)

Proof: If |f(r)| = 0, then ω(d)0 = 1 and ω(e)0 = 1.
QED
Proposition 2

|f(r)| = 0⇐ ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1. (12)

Proof: If ω(d)|f(r)| = 1, then |f(r)| = 0 or |f(r)| =
dp, (p = 1, 2, 3, ...). If ω(e)|f(r)| = 1, then |f(r)| = 0 or
|f(r)| = eq, (q = 1, 2, 3, ...). d and e are relatively prime
and d < e. Thus |f(r)| = dp and |f(r)| = eq are not
realized. Therefore, ω(d)|f(r)| = 1∧ω(e)|f(r)| = 1 implies
|f(r)| = 0.

QED
Proposition 3

ω(d)|f(r)| = 1 ∧ ω(e)|f(r)| = 1

⇐ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e. (13)

Proof: Obvious.
Proposition 4

Uf = I ⇒ Uf |ψ�d = |ψ�d ∧ Uf |ψ�e = |ψ�e. (14)

Proof: Obvious.
Proposition 5

|f(r)| = 0⇒ Uf = I. (15)

Proof: If |f(r)| = 0, then Uf |r�|j� = |r�|(|f(r)| +
j) mod d� = |r�|j�.

QED
We hope our discussions give some insight for future

studies for root-finding problem.

III. CONCLUSIONS

Necessary and sufficient conditions for finding all the
roots of a polynomial function f(x) = xm+am−1x

m−1+
...+a1x+a0 have been studied in term of quantum com-
puting. We have hoped our discussions give some insight
for future studies for root-finding problem.
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Appendix A: The phase kickback

We have the following formula by the phase kick-back
[31]:

Uf |x�|φd� = ω(d)|f(x)||x�|φd�. (A1)

where ω(d) = e2πi/d and |f(x)| =�
(ℜf(x))2 + (ℑf(x))2.
In what follows, we discuss the rationale behind the

above relation (A1). Consider the action of the Uf gate

on the state |x�|φd�. Each term in |φd� is of the form
ωd−j |j�. We observe that

Ufω
d−j |x�|j� = ωd−j |x�|(|f(x)|+ j) mod d�. (A2)

A variable k is introduced such that |f(x)|+ j = k, from
which it follows that d − j = d + |f(x)| − k. Thus, (A2)
becomes

Ufω
d−j |x�|j� = ω|f(x)|ωd−k|x�|k mod d�. (A3)

If k < d we have that |k mod d� = |k� and thus the terms
in |φd� for which k < d are transformed as follows:

Ufω
d−j |x�|j� = ω|f(x)|ωd−k|x�|k�. (A4)

On the other hand, as both |f(x)| and j are bounded
from above by d, k is strictly less than 2d. Thus, when
d ≤ k < 2d, we have |k mod d� = |k− d�. Let k− d = m.
We have

ω|f(x)|ωd−k|x�|k mod d� = ω|f(x)|ω−m|x�|m�
= ω|f(x)|ωd−m|x�|m�. (A5)

Hence, the terms in |φd� for which k ≥ d are transformed
as follows:

Ufω
d−j |x�|j� = ω|f(x)|ωd−m|x�|m�. (A6)

Finally, regarding (A4) and (A6), we have

Uf |x�|φd� = ω|f(x)||x�|φd�. (A7)

Therefore, the relation (A1) holds.
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