WEIGHTED m-GENERALIZED GROUP INVERSE IN *-BANACH ALGEBRAS

HUANYIN CHEN AND YUEMING XIANG

ABSTRACT. Recently, Gao, Zuo and Wang introduced the W-weighted m-weak group inverse for complex matrices which generalized the (weighted) core-EP inverse and the WC inverse. The main purpose of this paper is to extend the concept of W-weighted m-weak group inverse for complex matrices to elements in a Banach *-algebra. This extension is called w-weighted m-generalized group inverse. We present various properties, presentations of such new weighted generalized inverse. Related (weighted) m-generalized core inverses are investigated as well. Many properties of the W-weighted m-weak group inverse are thereby extended to wider cases.

1. Introduction

Let \mathcal{A} be a Banach algebra. An element $a \in \mathcal{A}$ has group inverse provided that there exists $x \in \mathcal{A}$ such that

$$xa^2 = a, ax^2 = x, ax = xa.$$

Such x is unique if exists, denoted by $a^{\#}$, and called the group inverse of a (see [14]). As is well known, a square complex matrix A has group inverse if and only if $rank(A) = rank(A^2)$.

A Banach algebra is called a Banach *-algebra if there exists an involution $*: x \to x^*$ satisfying $(x+y)^* = x^* + y^*, (\lambda x)^* = \overline{\lambda} x^*, (xy)^* = y^* x^*, (x^*)^* = x$. The involution * is proper if $x^*x = 0 \Longrightarrow x = 0$ for any $x \in \mathcal{A}$, e.g., in a Rickart *-algebra, the involution is always proper. Let $\mathbb{C}^{n \times n}$ be the Banach algebra of all $n \times n$ complex matrices, with conjugate transpose * as the involution. Then the involution * is proper. In [21], Zou et al. extended the notion of weak group inverse from complex matrices to elements in a ring with proper involution.

²⁰²⁰ Mathematics Subject Classification. 15A09, 16U90, 46H05.

Key words and phrases. weighted generalized Drazin inverse; m-generalized group inverse; m-weak group inverse; m-weakly core inverse; Banach *-algebra.

Let \mathcal{A} be a Banach algebra with a proper involution *. An element a in a \mathcal{A} has weak group inverse if there exists $x \in \mathcal{A}$ such that

$$x = ax^{2}, (a^{*}a^{2}x)^{*} = a^{*}a^{2}x, a^{n} = xa^{n+1}$$

for som $n \in \mathbb{N}$. Such x is unique if it exists and is called the weak group inverse of a. We denote it by $a^{\textcircled{m}}$ (see [21, 22]). A square complex matrix A has weak group inverse X if it satisfies the system of equations:

$$AX^2 = X, AX = A^{\mathbb{Q}}A.$$

Here, $A^{\textcircled{0}}$ is the core-EP inverse of A (see [11, 23]). Weak group inverse was extensively studied by many authors, e.g., [8, 17, 20, 21, 22].

In [2], the authors extended weak group inverse and introduced generalized group inverse in a Banach algebra with proper involution. An element a in A has generalized group inverse if there exists $x \in A$ such that

$$x = ax^{2}, (a^{*}a^{2}x)^{*} = a^{*}a^{2}x, \lim_{n \to \infty} ||a^{n} - xa^{n+1}||^{\frac{1}{n}} = 0.$$

Such x is unique if it exists and is called the generalized group inverse of a. We denote it by $a^{\textcircled{e}}$. Many properties of generalized group inverse were presented in [2]. Mosić and Zhang introduced and studied weighted weak group inverse for a Hilbert space operator A in $\mathcal{B}(X)$ (see [17]). Furthermore, the weak group inverse was generalized to the m-weak group inverse (see [11, 18, 24]). Recently, Gao et al. further introduced and studied the W-weighted m-weak group inverse in [11].

The main purpose of this paper is to extend the concept of W-weighted m-weak group inverse for complex matrices to elements in a Banach *-algebra. This extension is called weighted m-generalized group inverse.

An element $a \in \mathcal{A}$ has generalized w-Drazin inverse x if there exists unique $x \in \mathcal{A}$ such that

$$awx = xwa, xwawx = x \text{ and } a - awxwa \in \mathcal{A}^{qnil}.$$

We denote x by $a^{d,w}$ (see [19]). Here, $\mathcal{A}^{qnil} = \{x \in \mathcal{A} \mid \lim_{n \to \infty} ||x^n||_{n=0}^{\frac{1}{n}} = 0\}$. We denote $a^{d,1}$ by a^d . Evidently, $a^{d,w} = x$ if and only if $x = a[(wa)^d]^2$. We introduce a new weighted generalized inverse as follows:

Definition 1.1. An element $a \in \mathcal{A}$ has w-weighted m-generalized group inverse if $a \in \mathcal{A}^{d,w}$ and there exists $x \in \mathcal{A}$ such that

$$x = a(wx)^{2}, [(wa)^{d}]^{*}(wa)^{m+1}wx = [(wa)^{d}]^{*}wa,$$

$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

The preceding x is called the w-weighted m-generalized group inverse of a, and denoted by $a^{\textcircled{g}_m,w}$.

The w-weighted m-generalized group inverse is a natural generalization of the m-generalized group inverse which was introduced in [1]. Let $a^{\textcircled{e}_m}$ be the m-generalized group inverse of a. Evidently, $a^{\textcircled{e}_m} = a^{\textcircled{e}_m,1}$. We list some characterizations of m-generalized group inverse.

Theorem 1.2. (see [1, Theorem 2.3, Theorem 3.1 and Theorem 4.1]) Let \mathcal{A} be a Banach *-algebra, and let $a \in \mathcal{A}$. Then the following are equivalent:

- (1) $a \in \mathcal{A}^{\mathfrak{g}_m}$.
- (2) There exist $x, y \in A$ such that

$$a = x + y, x^*a^{m-1}y = yx = 0, x \in \mathcal{A}^{\#}, y \in \mathcal{A}^{qnil}.$$

- (3) $a \in \mathcal{A}^d$ and there exists $x \in \mathcal{A}$ such that $x = ax^2, (a^d)^* a^{m+1} x = (a^d)^* a^m, \lim_{n \to \infty} ||a^n xa^{n+1}||^{\frac{1}{n}} = 0.$
- (4) $a \in \mathcal{A}^d$ and there exists $x \in \mathcal{A}$ such that $x = ax^2, (a^d)^* a^{m+1} x = (a^d)^* a^m, \lim_{n \to \infty} ||a^n xa^{n+1}||^{\frac{1}{n}} = 0.$
- (5) $a \in \mathcal{A}^d$ and there exists an idempotent $p \in \mathcal{A}$ such that $a + p \in \mathcal{A}^{-1}$, $[(a^m)^*a^mp]^* = a^*ap$ and $pa = pap \in \mathcal{A}^{qnil}$.
- (6) $a \in \mathcal{A}^d$ and there exists $x \in \mathcal{A}$ such that $(a^d)^*a^dx = (a^d)^*a^m$.

In Section 2, we investigate elementary properties of w-weighted m-generalized group inverse in a Banach *-algebra. Many new properties of the weak group inverse for a complex matrix and Hilbert space operator are thereby obtained.

Following [3], an element a in \mathcal{A} has generalized w-core-EP inverse if there exist $x \in \mathcal{A}$ such that

$$a(wx)^2 = x, (wawx)^* = wawx, \lim_{n \to \infty} ||(aw)^n - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

The preceding x is unique if exists, and we denote it by $a^{\textcircled{\tiny{0}},w}$. We denote $a^{\textcircled{\tiny{0}},1}$ by $a^{\textcircled{\tiny{0}}}$. Evidently, $a^{\textcircled{\tiny{0}},w}=x$ if and only if $x=a[(wa)^{\textcircled{\tiny{0}}}]^2$ (see [3, Theorem 2.1]). In Section 3, we investigate the representations of m-generalized group inverse under weighted generalized core-EP invertibility.

Recall that an element $a \in \mathcal{A}$ has Moore-Penrose inverse if there exist $x \in \mathcal{A}$ such that $axa = a, xax = x, (ax)^* = ax, (xa)^* = xa$. The preceding x is unique if it exists, and we denote it by a^{\dagger} . An element a in \mathcal{A} has weak core inverse provided that $a \in \mathcal{A}^{\mathfrak{W}} \cap \mathcal{A}^{\dagger}$ (see [16, 23]). In [4], the authors introduced and

studied the generalized core inverse. The m-weak core inverse and weighted weak core inverse were investigated in [10, 15]. Recently, Ferreyra and Mosić introduced the W-weighted m-weak core inverse for complex matrices which generalized the (weighted) core-EP inverse, the weak group inverse and m-weak core inverse (see [7]). A square complex matrix A has W-weighted m-weak core inverse X if

$$X = A^{\mathfrak{M}_m, W} (WA)^m [(WA)^m]^{\dagger}.$$

Here, $A^{\bigotimes_{m},W}$ is the W-weighted m-weak group inverse of A, i.e., $(WA)^{m}$ has weak group inverse (see [20]). Let $a, w \in \mathcal{A}, m \in \mathbb{N}$. Set $a \in \mathcal{A}^{\dagger_{m},w}$ if $(wa)^{m} \in \mathcal{A}^{\dagger}$. We have

Definition 1.3. An element $a \in \mathcal{A}$ has w-weighted m-generalized core inverse if $a \in \mathcal{A}^{\bigotimes_m, w} \cap \mathcal{A}^{\dagger_m, w}$.

In Section 4, We present various properties, presentations of such weighted generalized group inverse combined with weighted Moore-Penrose inverse. We extend the properties of generalized core inverse in Banach *-algebra to the general case(see [4]). Many properties of the W-weighted m-weak core inverse are thereby extended to wider cases, e.g. Hilbert operators over an infinitely dimensional space.

Finally, in Section 5, we give the applications of the w-weighted m-generalized group (core) inverse in solving the matrix equations.

Throughout the paper, all Banach algebras are complex with a proper involution *. We use \mathcal{A}^{\dagger} , $\mathcal{A}^{d,w}$, $\mathcal{A}^{\textcircled{\tiny 0}}$, $\mathcal{A}^{\textcircled{\tiny 0}}$ and $\mathcal{A}^{\textcircled{\tiny 0}}$ to denote the sets of all Moore-Penrose invertible, weighted generalized Drazin invertible, generalized core-EP invertible, generalized group invertible and weak group invertible elements in \mathcal{A} , respectively.

2. WEIGHTED m-GENERALIZED GROUP INVERSE

In this section we introduce and establish elementary properties of weighted m-generalized group inverse which will be used in the next section. This also extend the concept of w-weighted m-weak group inverse from complex matrices to elements in a Banach algebra (see [11]). We begin with

Theorem 2.1. Let $a, w \in A$. Then the following are equivalent:

- (1) $a \in \mathcal{A}^{\mathfrak{g}_m,w}$.
- (2) $wa \in \mathcal{A}^{\mathfrak{G}_m}$.

In this case, $a^{\textcircled{g}_m,w} = a[(wa)^{\textcircled{g}_m}]^2$.

Proof. (1) \Rightarrow (2) By hypothesis, we can find $x \in \mathcal{A}$ such that

$$x = a(wx)^{2}, [(wa)^{d}]^{*}(wa)^{m+1}wx = [(wa)^{d}]^{*}wa,$$

$$\lim_{n \to \infty} ||(aw)^{n-1} - (xw)(aw)^{n}||^{\frac{1}{n-1}} = 0.$$

Furthermore, we have

$$||(wa)^{n} - (wx)(wa)^{n+1}||^{\frac{1}{n}}$$

$$= ||w(aw)^{n-1}a - wxw(aw)^{n}a||^{\frac{1}{n}}$$

$$= ||w[(aw)^{n-1} - xw(aw)^{n}]a||^{\frac{1}{n}}$$

$$\leq ||w||^{\frac{1}{n}}[||(aw)^{n-1} - xw(aw)^{n}||^{\frac{1}{n-1}}]^{\frac{n-1}{n}}||a||^{\frac{1}{n}}.$$

Therefore

$$\lim_{n \to \infty} ||(wa)^n - (wx)(wa)^{n+1}||^{\frac{1}{n}} = 0.$$

Obviously, $wx = (wa)(wx)^2$. Hence,

$$wa \in \mathcal{A}^{\mathfrak{S}_m}$$
 and $(wa)^{\mathfrak{S}_m} = wx$.

Accordingly,

$$x = a(wx)^2 = a[(wa)^{\mathfrak{G}_m}]^2,$$

as desired.

(2)
$$\Rightarrow$$
 (1) Let $x = a[(wa)^{\textcircled{\mathfrak{D}}_m}]^2$. Then $a \in \mathcal{A}^{d,w}$ and we verify that
$$a(wx)^2 = awa[(wa)^{\textcircled{\mathfrak{D}}_m}]^2wa[(wa)^{\textcircled{\mathfrak{D}}_m}]^2$$
$$= a[(wa)^{\textcircled{\mathfrak{D}}_m}]^2 = x.$$

One easily checks that

$$[(wa)^d]^*(wa)^{m+1}wx = [(wa)^d]^*(wa)^{m+1}wa[(wa)^{\mathfrak{G}_m}]^2$$

$$= [(wa)^d]^*(wa)^{m+1}(wa)^{\mathfrak{G}_m}$$

$$= [(wa)^d]^*wa.$$

Since

$$\begin{array}{lcl} (xw)(aw)^{n+1} & = & a[(wa)^{\circledcirc_m}]^2w(aw)^{n+1} \\ & = & (aw)^n - a[(wa)^{n-1} - (wa)^{\circledcirc_m}(wa)^n]w \\ & - & a(wa)^{\circledcirc_m}[(wa)^n - (wa)^{\circledcirc_m}(wa)^{n+1}]w, \end{array}$$

we have

$$||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}}$$

$$\leq ||a||^{\frac{1}{n}}||(wa)^{n-1} - (wa)^{\textcircled{@}_{m}}(wa)^{n}||^{\frac{1}{n}}||w||^{\frac{1}{n}}$$

$$+ ||a(wa)^{\textcircled{@}_{m}}||^{\frac{1}{n}}||(wa)^{n} - (wa)^{\textcircled{@}_{m}}(wa)^{n+1}||^{\frac{1}{n}}||w||^{\frac{1}{n}}.$$

Therefore

$$\lim_{n \to \infty} ||(aw)^n - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0,$$

the result follows.

The preceding unique solution x is called the w-weighted generalized mgroup inverse of a, and denote it by $a^{\textcircled{\mathfrak{D}}_m,w}$. That is, $a^{\textcircled{\mathfrak{D}}_m,w}=a[(wa)^{\textcircled{\mathfrak{D}}_m}]^2$. We use $\mathcal{A}^{(g)_{m},w}$ to denote the set of all w-weighted generalized m-group invertible elements in A. By the argument above, we have

Corollary 2.2. Let $a, w \in A$. Then

- (1) $a^{\mathfrak{D}_m,w} = x$. (2) $wa \in \mathcal{A}^{\mathfrak{D}_m}$ and $(wa)^{\mathfrak{D}_m} = wx$.

Corollary 2.3. Let $a, w \in A$. Then $a \in A^{\bigotimes_m, w}$ if and only if

- (1) $a \in \mathcal{A}^{d,w}$;
- (2) There exists $x \in \mathcal{A}$ such that

$$x = a[wx]^{2}, [(wa)^{*}(wa)^{m+1}wx]^{*} = (wa)^{*}(wa)^{m+1}wx,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Proof. \Longrightarrow Obviously, $a \in \mathcal{A}^{d,w}$. By hypothesis, there exists $x \in \mathcal{A}$ such that

$$x = a[wx]^{2}, [(wa)^{d}]^{*}(wa)^{m+1}wx = [(wa)^{d}]^{*}wa,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

In this case, $x = a[(wa)^{\textcircled{g}_m}]^2$. Then

$$(wa)^*(wa)^{m+1}wx = (wa)^*(wa)^{m+1}wa[(wa)^{\mathfrak{G}_m}]^2 = (wa)^*(wa)^{m+1}(wa)^{\mathfrak{G}_m}, ((wa)^*(wa)^{m+1}wx)^* = (wa)^*(wa)^{m+1}wx.$$

 \iff By hypothesis, there exists $x \in \mathcal{A}$ such that

$$x = a[wx]^{2}, [(wa)^{*}(wa)^{m+1}wx]^{*} = (wa)^{*}(wa)^{m+1}wx,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Clearly, $wx = (wa)[wx]^2$. Observing that

$$\begin{aligned} ||(wa)^{n+1} - (wx)(wa)^{n+2}|| &= ||w(aw)^n - (w(xw)(aw)^{n+1}a|| \\ &\leq ||w||||(aw)^n - (xw)(aw)^{n+1}||||a||, \end{aligned}$$

we see that

$$\lim_{n \to \infty} ||(wa)^n - (wx)(wa)^{n+1}||^{\frac{1}{n}} = 0.$$

This implies that $wa \in \mathcal{A}^{\otimes_m}$. According to Theorem 2.1, $a \in \mathcal{A}^{\otimes_m,w}$, as asserted.

Theorem 2.4. Let $a, w \in A$. Then $a \in A^{\bigotimes_m, w}$ if and only if

- (1) $a \in \mathcal{A}^{d,w}$;
- (2) There exists $x \in \mathcal{A}$ such that

$$x = a[wx]^{2}, [((wa)^{m})^{*}(wa)^{m+1}wx]^{*} = ((wa)^{m})^{*}(wa)^{m+1}wx,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Proof. \Longrightarrow Clearly, $a \in \mathcal{A}^{d,w}$. In view of Theorem 2.1, $wa \in \mathcal{A}^{\mathfrak{G}_m}$. According to Theorem 1.2, There exists $z \in \mathcal{A}$ such that

$$z = (wa)z^{2}, [((wa)^{m})^{*}(wa)^{m+1}z]^{*} = ((wa)^{m})^{*}(wa)^{m+1}z,$$
$$\lim_{n \to \infty} ||(wa)^{n} - z(wa)^{n+1}||^{\frac{1}{n}} = 0.$$

Here,
$$z = (wa)^{\textcircled{@}_m} = wa[(wa)^{\textcircled{@}_m}]^2$$
. Set $x = a[(wa)^{\textcircled{@}_m}]^2$. Then
$$[((wa)^m)^*(wa)^{m+1}wz]^* = ((wa)^m)^*(wa)^{m+1}wz,$$
$$\lim_{n \to \infty} ||(aw)^n - (zw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Moreover, we have

$$wx = wa[(wa)^{\mathfrak{G}_m}]^2 = (wa)^{\mathfrak{G}_m},$$

and then

$$a(wx)^2 = a[(wa)^{\mathfrak{D}_m}]^2 = x.$$

In this case, $a^{\textcircled{g}_m,w} = x$, as desired.

= By hypothesis, there exists $x \in \mathcal{A}$ such that

$$x = a(wx)^{2}, [((wa)^{m})^{*}(wa)^{m+1}wx]^{*} = ((wa)^{m})^{*}(wa)^{m+1}wx,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Then $wx = wa(wx)^2$. In view of Theorem 1.2, $wa \in \mathcal{A}^{\mathfrak{g}_m}$. According to Theorem 2.1, $a \in \mathcal{A}^{\mathfrak{g}_m,w}$, as asserted.

Corollary 2.5. Let $a, w \in A$. Then $a \in A^{\mathfrak{W}, w}$ if and only if

- (1) $a \in \mathcal{A}^{D,w}$;
- (2) There exists $x \in \mathcal{A}$ such that

$$x = a[wx]^{2}, [(wa)^{*}(wa)^{2}wx]^{*} = (wa)^{*}(wa)^{2}wx,$$
$$\lim_{n \to \infty} ||(aw)^{n} - (xw)(aw)^{n+1}||^{\frac{1}{n}} = 0.$$

Proof. This is obvious by Theorem 2.4.

Set $im(x) = \{xr \mid r \in A\}$. We are ready to prove:

Theorem 2.6. Let $a, w \in A$. Then the following are equivalent:

$$(1) \ a^{\mathfrak{G}_m,w} = x.$$

- (2) $awx = a(wa)^{\mathfrak{G}_m}, a(wx)^2 = x.$
- (3) $wawx = wa(wa)^{\textcircled{@}_m}, im(x) \subseteq im(aw)^d$.
- (4) $awx = a(wa)^{\mathfrak{G}_m}, im(x) \subseteq im(aw)^d$.

Proof. (1) \Rightarrow (2) In view of Theorem 2.1, $x = a[(wa)^{\textcircled{\mathbb{G}_m}}]^2$. Then $a(wx)^2 = x$ and

$$awx = (aw)a[(wa)^{\mathfrak{G}_m}]^2$$
$$= a(wa)[(wa)^{\mathfrak{G}_m}]^2$$
$$= a(wa)^{\mathfrak{G}_m}.$$

 $(2) \Rightarrow (3)$ Obviously, $wawx = w(awx) = w[a(wa)^{\textcircled{g}_m}] = wa(wa)^{\textcircled{g}_m}$. Moreover, we have

$$x = a(wx)^{2} = (awx)wx = a(wa)^{\mathfrak{G}_{m}}wx$$

$$= a(wa)^{d}(wa)(wa)^{\mathfrak{G}_{m}}wx$$

$$= a[(wa)^{d}]^{2}w(awa)(wa)^{\mathfrak{G}_{m}}wx$$

$$= (aw)^{d}(awa)(wa)^{\mathfrak{G}_{m}}wx.$$

Therefore $im(x) \subseteq im(aw)^d$, as desired.

 $(3) \Rightarrow (4)$ Since $im(x) \subseteq im(aw)^d$, we see that

$$awx = aw[(aw)(aw)^{d}x] = (aw)^{d}a[wawx]$$

$$= (aw)^{d}a[wa(wa)^{\mathfrak{G}_{m}}]$$

$$= a[(wa)^{d}]^{2}(wa)^{2}(wa)^{\mathfrak{G}_{m}}$$

$$= awa)(wa)^{d}(wa)^{\mathfrak{G}_{m}}$$

$$= a(wa)^{\mathfrak{G}_{m}},$$

as desired.

 $(4) \Rightarrow (1)$ Write $x = (aw)^d z$ for some $z \in R$. Then

$$\begin{array}{rcl} x & = & aw(aw)^d x = (aw)^d (awx) \\ & = & (aw)^d [a(wa)^{\textcircled{\textcircled{\$}_m}}] \\ & = & (aw)^d (aw) a [(wa)^{\textcircled{\textcircled{\$}_m}}]^2 \\ & = & a [(wa)^{\textcircled{\textcircled{\$}_m}}]^2. \end{array}$$

This completes the proof by Theorem 2.1.

Corollary 2.7. Let $a \in A$. Then the following are equivalent:

- $(1) \ a^{\mathfrak{G}_m} = x.$
- $(2) ax = aa^{\mathfrak{G}_m}, ax^2 = x.$
- (3) $ax = aa^{\mathfrak{G}_m}, im(x) \subseteq im(a^d).$

Proof. This is a direct consequence of Theorem 2.6.

We are ready to prove:

Theorem 2.8. Let $a \in \mathcal{A}^{\textcircled{g}_m,w}$. Then $wawa^{\textcircled{g}_{m+1},w} = wa^{\textcircled{g}_m,w}wa$.

Proof. In view of Theorem 2.1, we see that

$$wawa^{\textcircled{@}_{m+1},w} = wawa[(wa)^{\textcircled{@}_{m+1}}]^2$$

 $= wa(wa)^{\textcircled{@}_{m+1}}$
 $wa^{\textcircled{@}_m,w}wa = wa[(wa)^{\textcircled{@}_m}]^2wa$
 $= (wa)^{\textcircled{@}_m}wa.$

In view of [1, Corollary 2.4], we have

$$(wa)^{\mathfrak{G}_{m+1}} = [(wa)^{\mathfrak{G}_m}]^2 wa.$$

Therefore

$$wawa^{\textcircled{@}_{m+1},w} = wa(wa)^{\textcircled{@}_{m+1}}$$

= $wa[(wa)^{\textcircled{@}_{m}}]^{2}wa$
= $(wa)^{\textcircled{@}_{m}}wa$
= $wa^{\textcircled{@}_{m},w}wa$.

This completes the proof.

Corollary 2.9. Let $a \in \mathcal{A}^{\mathfrak{G}_m}$. Then $aa^{\mathfrak{G}_{m+1}} = a^{\mathfrak{G}_m}a$.

Proof. This is obvious by choosing w = 1 in Theorem 2.8.

3. Representations of m-generalized group inverse

In this section, we present the representations of m-generalized group inverse under weighted generalized core-EP invertibility.

Theorem 3.1. Let $a \in \mathcal{A}^{\textcircled{\tiny{0}},w}$. Then $a \in \mathcal{A}^{\textcircled{\tiny{0}}_m,w}$ and

$$a^{\textcircled{g}_m,w} = [a^{\textcircled{d},w}w]^{m+1}(aw)^{m-1}a.$$

Proof. In view of [3, Theorem 2.1], $a^{\textcircled{\tiny d},w} = a[(wa)^{\textcircled{\tiny d}}]^2$; hence, $wa^{\textcircled{\tiny d},w} = (wa)^{\textcircled{\tiny d}}$. Then we easily check that

$$\begin{array}{lcl} [a^{\tiny\textcircled{\tiny d},w}w]^{m+1}(aw)^{m-1}a & = & a^{\tiny\textcircled{\tiny d},w}[wa^{\tiny\textcircled{\tiny d},w}]^mw(aw)^{m-1}a \\ & = & a^{\tiny\textcircled{\tiny d},w}[(wa)^{\tiny\textcircled{\tiny d}}]^m(wa)^m \\ & = & a[(wa)^{\tiny\textcircled{\tiny d}}]^2[(wa)^{\tiny\textcircled{\tiny d}}]^m(wa)^m \\ & = & a[(wa)^{\tiny\textcircled{\tiny d}}]^{m+2}(wa)^m. \end{array}$$

Thus,

$$w[a^{\tiny\textcircled{\tiny\dag},w}w]^{m+1}(aw)^{m-1}a=wa[(wa)^{\tiny\textcircled{\tiny\dag}}]^{m+2}(wa)^m=[(wa)^{\tiny\textcircled{\tiny\dag}}]^{m+1}(wa)^m.$$
 Set $x=[(wa)^{\tiny\textcircled{\tiny\dag}}]^{m+1}(wa)^m.$ Then

$$(wa)x^2 = (wa)[(wa)^{\textcircled{@}}]^{m+1}(wa)^m[(wa)^{\textcircled{@}}]^{m+1}(wa)^m$$

$$= (wa)[(wa)^{\textcircled{@}}]^{m+1}(wa)^{\textcircled{@}}(wa)^m$$

$$= [(wa)^{\textcircled{@}}]^{m+1}(wa)^m$$

$$= x,$$

$$((wa)^d)^*(wa)^{m+1}x = ((wa)^d)^*(wa)^{m+1}[(wa)^{\textcircled{@}}]^{m+1}(wa)^m$$

$$= ((wa)^d)^*(wa)(wa)^{\textcircled{@}}(wa)^m$$

$$= ((wa)^d)^*[(wa)(wa)^{\textcircled{@}}]^*(wa)^m$$

$$= [(wa)((wa)^{\textcircled{@}})^2]^*(wa)^m$$

$$= ((wa)^d)^*(wa)^m,$$

$$\lim_{n\to\infty} ||(wa)^n - x(wa)^{n+1}||^{\frac{1}{n}} = 0.$$

This implies that

$$(wa)^{\textcircled{g}_m} = [(wa)^{\textcircled{d}}]^{m+1} (wa)^m.$$

According to Theorem 2.1, we prove that $a \in \mathcal{A}^{\textcircled{\mathfrak{D}}_m,w}$ and

$$a^{\textcircled{\mathfrak{D}}_{m},w} = a[(wa)^{\textcircled{\mathfrak{D}}_{m}}]^{2}$$

$$= a[((wa)^{\textcircled{\mathfrak{D}}})^{m+1}(wa)^{m}]^{2}$$

$$= a[((wa)^{\textcircled{\mathfrak{D}}})^{m+1}(wa)^{m}][((wa)^{\textcircled{\mathfrak{D}}})^{m+1}(wa)^{m}]$$

$$= a((wa)^{\textcircled{\mathfrak{D}}})^{m+1}(wa)^{\textcircled{\mathfrak{D}}}(wa)^{m}$$

$$= a[(wa)^{\textcircled{\mathfrak{D}}}]^{m+2}(wa)^{m}$$

$$= [a^{\textcircled{\mathfrak{D}},w}w]^{m+1}(aw)^{m-1}a,$$

as required.

Corollary 3.2. Let $a \in \mathcal{A}^{\textcircled{@}}$. Then $a \in \mathcal{A}^{\textcircled{@}_m}$ and

$$a^{\mathfrak{G}_m} = (a^{\mathfrak{G}})^{m+1} a^m.$$

Proof. This is obvious by choosing w = 1 in Theorem 3.1.

We call x is the (1,3)-inverse of a if x satisfies the equations axa = a and $(ax)^* = ax$. We use $\mathcal{A}^{(1,3)}$ to denote the set of all (1,3)-invertible elements in \mathcal{A} . Let $a \in \mathcal{A}^{\textcircled{@},w}$ and $a(wa)^{\textcircled{@}}w \in \mathcal{A}^{(1,3)}$. By using [3, Theorem 2.5], $aw, wa \in \mathcal{A}^{\textcircled{@}}$. Let $p = (aw)(aw)^{\textcircled{@}}, q = (wa)(wa)^{\textcircled{@}}$. Then $p, q \in \mathcal{A}$ are projections.

Lemma 3.3. Let $a \in \mathcal{A}^{\textcircled{\tiny 0},w}$ and $a(wa)^{\textcircled{\tiny 0}}w \in \mathcal{A}^{(1,3)}$. Then

$$a = \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix}_{p,q}, w = \begin{pmatrix} w_1 & w_2 \\ 0 & w_3 \end{pmatrix}_{q,p},$$

where $a_1 \in [pAq]^{-1}$, $w_1 \in [qAp]^{-1}$ and a_3w_3 and w_3a_3 are quasinilpotent.

Proof. We easily verify that

$$\begin{array}{rcl} (1-p)aq & = & [1-(aw)(aw)^{\scriptsize\textcircled{\tiny\dag}}]a(wa)(wa)^{\scriptsize\textcircled{\tiny\dag}}\\ & = & [1-(aw)(aw)^{\scriptsize\textcircled{\tiny\dag}}]awa(wa)^n[(wa)^{\scriptsize\textcircled{\tiny\dag}}]^{n+1}\\ & = & [1-(aw)(aw)^{\scriptsize\textcircled{\tiny\dag}}](aw)^{n+1}a[(wa)^{\scriptsize\textcircled{\tiny\dag}}]^{n+1}\\ & = & aw[(aw)^n-(aw)^{\scriptsize\textcircled{\tiny\dag}}(aw)^{n+1}]a[(wa)^{\scriptsize\textcircled{\tiny\dag}}]^{n+1}. \end{array}$$

Then

$$||(1-p)aq||^{\frac{1}{n}} \le ||aw||^{\frac{1}{n}}||(aw)^n - (aw)^{\textcircled{d}}(aw)^{n+1}||^{\frac{1}{n}}||a[(wa)^{\textcircled{d}}]^{n+1}||^{\frac{1}{n}}.$$

Since $\lim_{n\to\infty} ||(aw)^n - (aw)^{\textcircled{\tiny 0}}(aw)^{n+1}||^{\frac{1}{n}} = 0$, we see that $\lim_{n\to\infty} ||(1-p)aq||^{\frac{1}{n}} = 0$. This implies that (1-p)aq = 0. Likewise, we prove that

$$(1 - q)wp = [1 - (wa)(wa)^{\textcircled{1}}]w(aw)(aw)^{\textcircled{1}} = 0.$$

Moreover, we have

$$[(aw)(aw)^{\textcircled{@}}a(wa)(wa)^{\textcircled{@}}][(wa)(wa)^{\textcircled{@}}w(aw)^{\textcircled{@}}(aw)(aw)^{\textcircled{@}}]$$

$$= (aw)(aw)^{\textcircled{@}}(aw)a(wa)^{\textcircled{@}}w(aw)^{\textcircled{@}}$$

$$= (aw)a(wa)^{\textcircled{@}}w(aw)^{\textcircled{@}}$$

$$= (aw)(aw)^{\textcircled{@}},$$

$$[(wa)(wa)^{\textcircled{@}}w(aw)^{\textcircled{@}}(aw)(aw)^{\textcircled{@}}][(aw)(aw)^{\textcircled{@}}a(wa)(wa)^{\textcircled{@}}]$$

$$= (wa)(wa)^{\textcircled{@}}w(aw)^{\textcircled{@}}a(wa)(wa)^{\textcircled{@}}$$

$$= (wa)(wa)^{\textcircled{@}}wa(wa)^{\textcircled{@}}$$

$$= (wa)(wa)^{\textcircled{@}}.$$

Then $a_1 = paq \in [p\mathcal{A}q]^{-1}$. Similarly, $w_1 = qwp \in [q\mathcal{A}p]^{-1}$. Also we easily see that

$$a_3w_3 = [1 - (aw)(aw)^{\textcircled{d}}]a[1 - wa(wa)^{\textcircled{d}}]w[1 - (aw)(aw)^{\textcircled{d}}]$$

 $\in \mathcal{A}^{qnil}.$

Thus, a_3w_3 is quasinilpotent. By using Cline's formula, w_3a_3 is quasinilpotent. This completes the proof.

Lemma 3.4. Let $a \in \mathcal{A}^{\textcircled{\tiny 0},w}$ and $a(wa)^{\textcircled{\tiny 0}}w \in \mathcal{A}^{(1,3)}$. Then

$$a^{\textcircled{\oplus},w} = \begin{pmatrix} (w_1 a_1 w_1)^{-1} & 0 \\ 0 & 0 \end{pmatrix}_{p,a}.$$

Proof. In view of [3, Theorem 2.1], $a^{\textcircled{\tiny 0},w} = a[(wa)^{\textcircled{\tiny 0}}]^2$. One easily checks that

$$\begin{array}{rcl} pa^{\textcircled{\tiny @},w}(1-q) & = & (aw)(aw)^{\textcircled{\tiny @}}a[(wa)^{\textcircled{\tiny @}}]^2[1-(wa)(wa)^{\textcircled{\tiny @}}] \\ & = & (aw)(aw)^{\textcircled{\tiny @}}a(wa)^{\textcircled{\tiny @}}[(wa)^{\textcircled{\tiny @}}-(wa)^{\textcircled{\tiny @}}(wa)(wa)^{\textcircled{\tiny @}}] = 0, \\ (1-p)a^{\textcircled{\tiny @},w}q & = & [1-(aw)(aw)^{\textcircled{\tiny @}}]a[(wa)^{\textcircled{\tiny @}}]^2(wa)(wa)^{\textcircled{\tiny @}} \\ & = & [1-(aw)(aw)^{\textcircled{\tiny @}}]awa[(wa)^{\textcircled{\tiny @}}]^3(wa)(wa)^{\textcircled{\tiny @}} \\ & = & aw[1-(aw)^{\textcircled{\tiny @}}aw]a[(wa)^{\textcircled{\tiny @}}]^3(wa)(wa)^{\textcircled{\tiny @}} = 0, \\ (1-p)a^{\textcircled{\tiny @},w}(1-q) & = & [1-(aw)(aw)^{\textcircled{\tiny @}}]a[(wa)^{\textcircled{\tiny @}}]^2[1-(wa)(wa)^{\textcircled{\tiny @}}] = 0. \end{array}$$

Moreover, we see that

$$pa^{\textcircled{\tiny{d}},w}q = (aw)(aw)^{\textcircled{\tiny{d}}}a[(wa)^{\textcircled{\tiny{d}}}]^{2}(wa)(wa)^{\textcircled{\tiny{d}}}$$

$$= (aw)(aw)^{\textcircled{\tiny{d}}}a[(wa)^{\textcircled{\tiny{d}}}]^{2}$$

$$= a[(wa)^{\textcircled{\tiny{d}}}]^{2}$$

$$= w_{1}a_{1}w_{1} \in (p\mathcal{A}q)^{-1},$$

thus yielding the result.

Theorem 3.5. Let $a \in \mathcal{A}^{@,w}$ and $a(wa)^{@}w \in \mathcal{A}^{(1,3)}$. Then

$$a^{\mathfrak{G}_m,w} = \left(\begin{array}{cc} \alpha & \beta \\ 0 & 0 \end{array}\right)_{p,q},$$

where

$$\begin{array}{rcl} \alpha & = & (w_1 a_1 w_1)^{-1}, \\ \beta & = & (w_1 a_1 w_1)^{-1} a_2 + [(w_1 a_1 w_1)^{-1} w_1]^{m+1} c_{m-1} a_3 + b_{m+1} (a_3 w_3)^{m-1} a_3; \\ b_1 & = & (w_1 a_1 w_1)^{-1} w_2, b_{n+1} = (w_1 a_1 w_1)^{-1} w_1 b_n, \\ c_1 & = & a_1 w_2 + a_2 w_3, c_{n+1} = a_1 w_1 c_n + (a_1 w_2 + a_2 w_3) (a_3 w_3)^m. \end{array}$$

Proof. Construct two series $\{b_n\}$ and $\{c_n\}$ by the equalities: Here,

$$b_1 = (w_1 a_1 w_1)^{-1} w_2, b_{n+1} = (w_1 a_1 w_1)^{-1} w_1 b_n,$$

$$c_1 = a_1 w_2 + a_2 w_3, c_{n+1} = a_1 w_1 c_n + (a_1 w_2 + a_2 w_3) (a_3 w_3)^m.$$

Then we compute that

$$\begin{bmatrix} \begin{pmatrix} (w_1 a_1 w_1)^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 & w_2 \\ 0 & w_3 \end{pmatrix} \end{bmatrix}^{m+1} = \begin{pmatrix} [(w_1 a_1 w_1)^{-1} w_1]^{m+1} & b_{m+1} \\ 0 & 0 \end{pmatrix},$$

$$\begin{bmatrix} \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix} \begin{pmatrix} w_1 & w_2 \\ 0 & w_3 \end{pmatrix} \end{bmatrix}^{m-1} = \begin{pmatrix} (a_1 w_1)^{m-1} & c_{m-1} \\ 0 & (a_3 w_3)^{m-1} \end{pmatrix}.$$

According to Theorem 3.1 and Lemma 3.4, we derive

$$a^{\textcircled{@}_{m},w} = [a^{\textcircled{@},w}w]^{m+1}(aw)^{m-1}a$$

$$= \begin{pmatrix} [(w_{1}a_{1}w_{1})^{-1}w_{1}]^{m+1} & b_{m+1} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} (a_{1}w_{1})^{m-1} & c_{m-1} \\ 0 & (a_{3}w_{3})^{m-1} \end{pmatrix} \begin{pmatrix} a_{1} & a_{2} \\ 0 & a_{3} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix},$$

where

$$\begin{array}{rcl} \alpha & = & (w_1 a_1 w_1)^{-1}, \\ \beta & = & (w_1 a_1 w_1)^{-1} a_2 + [(w_1 a_1 w_1)^{-1} w_1]^{m+1} c_{m-1} a_3 + b_{m+1} (a_3 w_3)^{m-1} a_3. \end{array}$$

This completes the proof.

Corollary 3.6. Let $a \in \mathcal{A}^{\textcircled{1}}$. Then

$$a^{\mathfrak{G}_m} = \begin{pmatrix} a_1^{-1} & (a_1)^{-(m+1)} b_m \\ 0 & 0 \end{pmatrix}_{s,t},$$

where $b_1 = a_2, b_{m+1} = a_1 b_m + a_2 a_3^m, s = a a^{\textcircled{d}}$ and $t = a^{\textcircled{d}} a$.

Proof. This is immediate by choosing w = 1 in Theorem 3.5.

4. Weighted m-generalized core inverse

The aim of this section is to investigate weighted m-generalized group inverse with weighted Moore-Penrose inverse. We introduce and study weighted m-generalized core inverse in a Banach *-algebra. Let $p_{(wa)^m} = (wa)^m[(wa)^m]^{\dagger}$ be the projection on $(wa)^m$. The following theorem is crucial.

Theorem 4.1. Let $a \in \mathcal{A}^{\odot_m,w}$. Then there exists a unique $x \in \mathcal{A}$ such that

$$xwawx = x, awx = awa^{\mathfrak{G}_m, w} p_{(wa)^m}, x(wa)^m = a^{\mathfrak{G}_m, w} (wa)^m.$$

Proof. Taking $x = a^{\textcircled{g}_m, w}(wa)^m[(wa)^m]^{\dagger}$. Then

$$\begin{array}{rcl} xwawx & = & a^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}wawa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger} \\ & = & a^{\textcircled{@}_{m},w}wawa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger} \\ & = & a^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger} \\ & = & x, \\ awx & = & awa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger} = awa[(wa)^{\textcircled{@}_{m}}]^{2}(wa)^{m}[(wa)^{m}]^{\dagger} \\ & = & a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger} \\ & = & awa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}, \\ x(wa)^{m} & = & a^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}(wa)^{m} = a^{\textcircled{@}_{m},w}(wa)^{m}. \end{array}$$

Suppose that x' satisfies the preceding equations. Then one checks that

$$x' = x'wawx' = a^{\textcircled{@}_{m},w}wawx'$$

$$= a^{\textcircled{@}_{m},w}wawa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a^{\textcircled{@}_{m},w}wawa[(wa)^{\textcircled{@}_{m}}]^{2}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a[(wa)^{\textcircled{@}_{m}}]^{2}wa(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a[(wa)^{\textcircled{@}_{m}}]^{2}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= x,$$

as required.

We denote the preceding unique x by $a^{\bigcirc_m,w}$.

Corollary 4.2. Let $a \in \mathcal{A}^{\bigcirc_m, w}(m \geq 2)$. Then the following are equivalent:

- (1) $a^{\odot_m,w} = x$.
- (2) The equation system

$$awx = a(wa)^{\textcircled{g}_m} p_{(wa)^m}, a(wx)^2 = x$$

is consistent and its unique solution $x = a^{\mathbb{C}_m, w}$.

Proof. $(1) \Rightarrow (2)$ In view of Theorem 4.1, we have

$$awx = awa^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}$$

= $awa[(wa)^{\textcircled{@}_{m}}]^{2}(wa)^{m}[(wa)^{m}]^{\dagger}$
= $a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger}.$

Moreover, we have

$$\begin{array}{lll} a(wx)^2 & = & awa^{\textcircled{@}_{m},w}(wa)^m[(wa)^m]^{\dagger}wa^{\textcircled{@}_{m},w}(wa)^m[(wa)^m]^{\dagger} \\ & = & awa[(wa)^{\textcircled{@}_{m}}]^2(wa)^m[(wa)^m]^{\dagger}wa[(wa)^{\textcircled{@}_{m}}]^2(wa)^m[(wa)^m]^{\dagger} \\ & = & awa[(wa)^{\textcircled{@}_{m}}]^2(wa)[(wa)^{\textcircled{@}_{m}}]^2(wa)^m[(wa)^m]^{\dagger} \\ & = & a[(wa)^{\textcircled{@}_{m}}]^2(wa)^m[(wa)^m]^{\dagger} \\ & = & a^{\textcircled{@}_{m},w}(wa)^m[(wa)^m]^{\dagger} \\ & = & x. \end{array}$$

 $(2) \Rightarrow (1)$ Suppose that the equation system

$$awx = a(wa)^{\mathfrak{G}_m}(wa)^m[(wa)^m]^{\dagger}, a(wx)^2 = x$$

is consistent. In view of [1, Corollary 2.4], we have

$$x = (awx)wx = (a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger})wx$$

$$= a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger})wa(wx)^{2}$$

$$= a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger})(wa)^{m}(wx)^{m+1}$$

$$= a(wa)^{\textcircled{@}_{m}}(wa)^{m}(wx)^{m+1}$$

$$= a(wa)^{\textcircled{@}_{m}}wx$$

$$= a[(wa)^{\textcircled{@}_{m-1}}]^{2}w(awx)$$

$$= a[(wa)^{\textcircled{@}_{m-1}}]^{2}w[a(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger}]$$

$$= a[(wa)^{\textcircled{@}_{m-1}}]^{2}(wa)[(wa)^{\textcircled{@}_{m}}(wa)^{m}[(wa)^{m}]^{\dagger}]$$

$$= a(wa)^{\textcircled{@}_{m}}[(wa)^{\textcircled{@}_{m}}(wa)^{m}((wa)^{m})^{\dagger}]$$

$$= a[(wa)^{\textcircled{@}_{m}}]^{2}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a^{\textcircled{@}_{m},w}(wa)^{m}[(wa)^{m}]^{\dagger}$$

$$= a^{\textcircled{@}_{m},w}.$$

as asserted.

Let $a \in \mathcal{A}^{\odot_m,w}$. In view of Theorem 4.1, $a^{\odot_m,w} = a^{\odot_m,w}(wa)^m[(wa)^m]^{\dagger}$. Set $c = a(wa)^{\textcircled{g}_m}(wa)^m$. We now establish necessary and sufficient conditions under which a has weighted m-generalized core inverse.

Theorem 4.3. Let $a \in \mathcal{A}^{\mathbb{O}_m,w}$. The following are equivalent:

- (1) $a^{\bigodot_m, w} = x$.
- (2) $awx = c[(wa)^m]^{\dagger}$ and $x\mathcal{A} \subseteq a^{d,w}\mathcal{A}$. (3) $awx = c[(wa)^m]^{\dagger}$ and $a(wx)^2 = x$.

Proof. (1) \Rightarrow (2) In view of Theorem 4.1, we have

$$\begin{array}{rcl} awx & = & awa^{\textcircled{\textcircled{\otimes}_m},w}(wa)^m[(wa)^m]^{\dagger} \\ & = & c[(wa)^m]^{\dagger}. \end{array}$$

By virtue of Theorem 2.1, we have

$$x\mathcal{A} = a^{\mathfrak{G}_m,w}(wa)^m[(wa)^m]^{\dagger}\mathcal{A}$$

$$\subseteq a^{\mathfrak{G}_m,w}\mathcal{A}$$

$$= a[(wa)^{\mathfrak{G}_m}]^2\mathcal{A}$$

$$\subseteq a(wa)^d\mathcal{A}$$

$$\subseteq a[(wa)^d]^2\mathcal{A}$$

$$\subseteq a^{d,w}\mathcal{A}.$$

 $(2) \Rightarrow (1)$ Since $awx = c[(wa)^m]^{\dagger}$, we have $awx = a(wa)^{\textcircled{\mathfrak{g}}_m}(wa)^m[(wa)^m]^{\dagger} =$ $awa[(wa)^{\mathfrak{G}_m}]^2(wa)^m[(wa)^m]^{\dagger} = awa^{\mathfrak{G}_m,w}(wa)^m[(wa)^m]^{\dagger}.$

Since $xA \subseteq a^{d,w}A$, we derive that $a^{d,w}wawa^{d,w} = a^{d,w}$. Hence, $a^{d,w}wawx = x$. In view of Theorem 2.1, $a(wa)^{\textcircled{@}_m} \subseteq a[(wa)^d]^2wA = (aw)^dA$. Then $(aw)^dawa(wa)^{\textcircled{@}_m} = a(wa)^{\textcircled{@}_m}$. We deduce that

$$\begin{array}{lll} x & = & a^{d,w}w(awx) = a[(wa)^d]^2w(awx) \\ & = & a[(wa)^d]^2wawa^{\textstyle \textcircled{\textcircled{e}}_m,w}(wa)^m[(wa)^m]^\dagger \\ & = & (aw)^dawa^{\textstyle \textcircled{\textcircled{e}}_m,w}(wa)^m[(wa)^m]^\dagger \\ & = & (aw)^dawa[(wa)^{\textstyle \textcircled{\textcircled{e}}_m]^2}(wa)^m[(wa)^m]^\dagger \\ & = & a[(wa)^{\textstyle \textcircled{\textcircled{e}}_m]^2}(wa)^m[(wa)^m]^\dagger \\ & = & a^{\textstyle \textcircled{\textcircled{e}}_m,w}(wa)^m[(wa)^m]^\dagger. \end{array}$$

Therefore $a^{\odot_m,w} = x$, as desired.

- $(1) \Rightarrow (3)$ By the argument above, we have $awx = c[(wa)^m]^{\dagger}$. In view of Theorem 2.1, $x = a^{\bigoplus_{m}, w} (wa)^m [(wa)^m]^{\dagger}$. By using Corollary 4.2, we have $a(wx)^2 = x$, as required.
- (3) \Rightarrow (1) Since $awx = c[(wa)^m]^{\dagger}$, we see that $awx = a(wa)^{\textcircled{@}_m}(wa)^m[(wa)^m]^{\dagger}$. As $a(wx)^2 = x$, by virtue of Corollary 4.2, $x = a^{\textcircled{@}_m,w}(wa)^m[(wa)^m]^{\dagger} = a^{\textcircled{@}_m,w}$, as required.

Let $X \in \mathbb{C}^{n \times n}$. The symbol $\mathcal{R}(X)$ denote the range space of X. We now derive

Corollary 4.4. Let $A \in \mathbb{C}^{n \times n}$. The following are equivalent:

- $(1) A^{\mathfrak{W},\dagger} = X.$
- (2) $\overrightarrow{AWX} = AA^{\textcircled{M}}AA^{\dagger}$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A^D)$.
- (3) $AWX = A(WA)^{\textcircled{M}}WAA^{\dagger}$ and $\overline{A}(WX)^{2} = X$.

Proof. Since $A \in \mathbb{C}^{n \times n}$, we easily see that $A^{\odot_1, w} = A^{\odot, \dagger}$. Therefore we complete the proof by Theorem 4.3.

We are now ready to prove the following.

Theorem 4.5. Let $a, w \in A$. Then the following are equivalent:

- $(1) \ a^{\bigodot_m,w} = x.$
- (2) xwcwx = x, $awx = c[(wa)^m]^{\dagger}$ and $xwc = (aw)^dc$.

Proof. (1) \Rightarrow (2) In view of Theorem 4.1, $x = a^{\textcircled{@}_m, w}(wa)^m[(wa)^m]^{\dagger}$. By virtue of Theorem 4.3, $awx = c[(wa)^m]^{\dagger}$. Moreover, we verify that

as required.

 $(2) \Rightarrow (1)$ By hypothesis, we check that

$$\begin{array}{rcl} x & = & xwcwx = (xwc)wx = [(aw)^dc]wx \\ & = & a[(wa)^d]^2(wcwx) \\ & \in & a^{d,w}\mathcal{A}. \end{array}$$

According to Theorem 4.3, we complete the proof.

Corollary 4.6. Let $A \in \mathbb{C}^{n \times n}$ and $C = A(WA)^{\textcircled{M}}WA$. The following are equivalent:

- (1) $A^{\mathfrak{W},\dagger} = X$.
- (2) XWCWX = X, $AWX = C(WA)^{\dagger}$ and $XWC = (AW)^{D}C$.

Proof. It is immediate by Theorem 4.5 by choosing m = 1.

5. APPLICATIONS

The purpose of this section is to give the applications of the w-weighted m-generalized group (core) inverse in solving the matrix equations. We consider the following equation in \mathcal{A} :

$$[(wa)^d]^*(wa)^{m+1}wx = [(wa)^d]^*(wa)^mb, (5.1)$$

where $a, w, b \in \mathcal{A}$ and $m \in \mathbb{N}$.

Theorem 5.1. Let $a \in \mathcal{A}^{\mathfrak{G}_m,w}$. Then Eq. (5.1) has solution

$$x = a^{\mathfrak{G}_m, w} b + [1 - a^{\mathfrak{G}_m, w} waw] y,$$

where $y \in \mathcal{A}$ is arbitrary.

Proof. Let $x = a^{\mathfrak{G}_m, w}b + [1 - a^{\mathfrak{G}_m, w}waw]y$, where $y \in \mathcal{A}$. Then

$$wx = wa[(wa)^{\mathfrak{G}_m}]^2b + w[1 - a((wa)^{\mathfrak{G}_m})^2waw]y$$

= $(wa)^{\mathfrak{G}_m}b + [w - (wa)^{\mathfrak{G}_m}waw]y.$

Since $[(wa)^d]^*(wa)^{m+1}(wa)^{\mathfrak{G}_m} = (wa)^m$, we verify that

$$\begin{aligned} & [(wa)^d]^*(wa)^{m+1}wx \\ &= [(wa)^d]^*(wa)^{m+1}(wa)^{\textcircled{@}_m}b + [(wa)^d]^*(wa)^{m+1}[w - (wa)^{\textcircled{@}_m}waw]y \\ &= (wa)^d]^*(wa)^mb + [(wa)^d]^*(wa)^{m+1}w - (wa)^d]^*(wa)^mwaw]y \\ &= [(wa)^d]^*(wa)^mb, \end{aligned}$$

as asserted. \Box

Corollary 5.2. Let $a \in \mathcal{A}^{@,w}$. Then the general solution of Eq. (5.1) is

$$x = a^{\mathfrak{G}_m, w}b + [1 - a^{\mathfrak{G}_m, w}waw]y,$$

where $y \in \mathcal{A}$ is arbitrary.

Proof. Let x be the solution of the Eq. (5.1). Then

$$[(wa)^d]^*(wa)^{m+1}wx = [(wa)^d]^*(wa)^mb.$$

In view of Theorem 3.1, $a^{\textcircled{\mathfrak{D}}_m,w} = [a^{\textcircled{\mathfrak{D}},w}w]^{m+1}(aw)^{m-1}a$. Then

$$a^{\textcircled{@}_{m},w}wawx = [a^{\textcircled{@},w}w]^{m+1}(aw)^{m-1}awawx \\ = [a^{\textcircled{@},w}w]^{m+1}(aw)^{m+1}x \\ = [a^{\textcircled{@},w}w]^{m}[a((wa)^{\textcircled{@}})^{2}w](aw)^{m+1}x \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}][(wa)^{\textcircled{@}}wa(wa)^{\textcircled{@}}](wa)^{m+1}wx \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[wa(wa)^{\textcircled{@}}](wa)^{m+1}wx \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[wa(wa)^{\textcircled{@}}]^{*}(wa)^{m+1}wx \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[(wa)^{2}(wa)^{\textcircled{@}}]^{*}[((wa)^{d})^{*}(wa)^{m+1}wx \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[(wa)^{2}(wa)^{\textcircled{@}}]^{*}[((wa)^{d})^{*}(wa)^{m+1}wx] \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[(wa)^{2}(wa)^{\textcircled{@}}]^{*}[((wa)^{d})^{*}(wa)^{m}b] \\ = [a^{\textcircled{@},w}w]^{m}[a(wa)^{\textcircled{@}}](wa)^{\textcircled{@}}[(wa)^{d}(wa)^{2}(wa)^{\textcircled{@}}]^{*}(wa)^{m}b \\ = [a^{\textcircled{@},w}w]^{m}[a((wa)^{\textcircled{@}})^{2}](wa)^{m}b \\ = [a^{\textcircled{@},w}w]^{m}[a((wa)^{\textcircled{@}})^{2}w](aw)^{m-1}ab \\ = [a^{\textcircled{@},w}w]^{m+1}(aw)^{m-1}ab \\ = a^{\textcircled{@}_{m},w}b.$$

Accordingly,

$$x = a^{\mathfrak{G}_m, w} b + [1 - a^{\mathfrak{G}_m, w} waw] x.$$

By using Theorem 5.1, we complete the proof.

Corollary 5.3. Let $a \in \mathcal{A}^{\bigotimes_m, w}$. If x is the solution of Eq. (5.1) and $im(x) \subseteq im((aw)^d)$, then

$$x = a^{\mathfrak{G}_m, w} b.$$

Proof. By virtue of Theorem 5.1, $a^{\bigoplus_m, w}b$ is a solution of Eq. (5.1). Let $x_1, x_2 \in \mathcal{A}$ be the solutions of Eq. (5.1) and satisfy $im(x_i) \subseteq im((aw)^d)$. Write $x_1 = (aw)^d y_1$ and $x_2 = (aw)^d y_2$. Then $x_1 - x_2 = [(aw)^d]^2 a(waw)(x_1 - x_2)$. Hence, $im(x_1 - x_2) \subseteq im((aw)^d)$. By hypothesis, we have

$$[(wa)^d]^*(wa)^{m+1}wx_i = [(wa)^d]^*(wa)^mb$$

for i = 1, 2. Then $[(wa)^d]^*(wa)^{m+1}w(x_1 - x_2) = 0$; and so

$$[(wa)^d]^*(wa)^{m+1}w[(aw)^d]^2a(waw)(x_1 - x_2) = 0.$$

By using Cline's formula, we have $w[(aw)^d]^2a = (wa)^d$, and then

$$[(wa)^d]^*(wa)^d(wa)^{m+2}w(x_1 - x_2) = 0.$$

Since the involution is proper, we have $(wa)^d(wa)^{m+2}w(x_1-x_2)=0$; whence, $(aw)(aw)^d(x_1-x_2)=0$. Thus, $x_1=aw(aw)^dx_1=aw(aw)^dx_2=x_2$. Therefore $x=a^{\bigoplus_{m},w}b$ is the unique solution of Eq. (5.1).

Consider the following matrix equation:

$$[(WA)^D]^*(WA)^{m+1}WX = [(WA)^D]^*(WA)^mB, (5.2)$$
 where $A \in \mathbb{C}^{q \times n}, W \in \mathbb{C}^{n \times q}, B \in \mathbb{C}^{n \times p}$ and $m \in \mathbb{N}$.

Corollary 5.4. (1) The general solution of Eq. (5.2) is

$$X = A^{\mathfrak{W}_m, W} B + [I_n - A^{\mathfrak{W}_m, W} W A W] Y,$$

where $Y \in \mathbb{C}^{n \times p}$ is arbitrary.

(2) If X is the solution of Eq. (5.2) and $\mathcal{R}(X) \subseteq \mathcal{R}((AW)^D)$, then

$$X = A^{\mathfrak{W}_m,W}B.$$

Proof. This is obvious by Corollary 5.2 and Corollary 5.3.

Let $a \in \mathcal{A}^{\odot_m,w}$. We now come to consider the following equation in \mathcal{A} :

$$[(wa)^d]^*(wa)^{m+1}wx = [(wa)^d]^*(wa)^{2m}[(wa)^m]^{\dagger}b, (5.3)$$

where $a, w, b \in \mathcal{A}$ and $m \in \mathbb{N}$. The following lemma is crucial.

Lemma 5.5. Let $a \in \mathcal{A}^{\textcircled{\tiny{0}}_m,w}$. Then $a \in \mathcal{A}^{\textcircled{\tiny{0}},w}$.

Proof. By hypothesis, $a \in \mathcal{A}^{\textcircled{\otimes}_m,w} \cap \mathcal{A}^{\dagger_m,w}$. In light of [1, Theorem 2.1], $(wa)^m \in \mathcal{A}^{\textcircled{\otimes}} \cap \mathcal{A}^{\dagger}$. By virtue of [4, Theorem 3.1], $(wa)^m \in \mathcal{A}^{\textcircled{\otimes}}$. Then $wa \in \mathcal{A}^{\textcircled{\otimes}}$. Evidently, $(wa)^{\textcircled{\otimes}} = (wa)^{m-1}[(wa)^m]^{\textcircled{\otimes}}$. Accordingly, $a \in \mathcal{A}^{\textcircled{\otimes},w}$ by [3, Theorem 2.1].

We are ready to prove:

Theorem 5.6. Let $a \in \mathcal{A}^{\mathfrak{S}_m,w}$. Then the general solution of Eq. (5.3) is

$$x = a^{\mathfrak{S}_m, w}b + [1 - a^{\mathfrak{S}_m, w}waw]y,$$

where $y \in \mathcal{A}$ is arbitrary.

Proof. Let $x = a^{\bigotimes_m, w}b + [1 - a^{\bigotimes_m, w}waw]y$, where $y \in \mathcal{A}$. In view of Theorem 4.1, $a^{\bigotimes_m, w} = a^{\bigotimes_m, w}(wa)^m[(wa)^m]^{\dagger}$. Then

$$x = a^{\mathfrak{G}_m, w}[(wa)^m[(wa)^m]^{\dagger}b] + [1 - a^{\mathfrak{G}_m, w}waw]y.$$

By virtue of Theorem 5.1, x is the solution of Eq. (5.3).

In light of Lemma 5.5, $a \in \mathcal{A}^{\textcircled{d},w}$. By using Corollary 5.2,

$$x = a^{\mathfrak{G}_m, w}[(wa)^m [(wa)^m]^{\dagger} b] + [1 - a^{\mathfrak{G}_m, w} waw] y$$

is the general solution of Eq. (5.3), as required.

Corollary 5.7. Let $a \in \mathcal{A}^{\odot_m,w}$. If x is the solution of Eq. (5.3) and $im(x) \subseteq im((aw)^d)$, then

$$x = a^{©_m, w} b.$$

Proof. By virtue of Theorem 5.6, $a^{\bigodot_m,w}b$ is a solution of Eq. (5.3). Let $x_1, x_2 \in \mathcal{A}$ be the solutions of Eq. (5.3) and satisfy $im(x_i) \subseteq im((aw)^d)$. Then they are solutions of the equation:

$$[(wa)^d]^*(wa)^{m+1}wx = [(wa)^d]^*(wa)^m[(wa)^m[(wa)^m]^{\dagger}b],$$

as desired. \Box

Consider the following matrix equation:

$$[(WA)^D]^*(WA)^{m+1}WX = [(WA)^D]^*(WA)^{2m}[(WA)^m]^{\dagger}B, (5.4)$$
 where $A \in \mathbb{C}^{q \times n}, W \in \mathbb{C}^{n \times q}, B \in \mathbb{C}^{n \times p}$ and $m \in \mathbb{N}$.

Corollary 5.8. (1) The general solution of Eq. (5.4) is

$$X = A^{\bigoplus_m, W} B + [I_n - A^{\bigoplus_m, W} WAW] Y,$$

where $Y \in \mathbb{C}^{n \times p}$ is arbitrary.

(2) If X is the solution of Eq. (5.4) and $\mathcal{R}(X) \subseteq \mathcal{R}((AW)^D)$, then

$$X = A^{\bigoplus_m, W} B.$$

Proof. This is obvious by Theorem 5.5 and Corollary 5.6.

References

- [1] H. Chen, m-generalized group inverse in Banach *-algebras, preprint, 2024.
- [2] H. Chen and M. Sheibani, Generalized group inverse in a Banach *-algebra, preprint, 2023. https://doi.org/10.21203/rs.3.rs-3338906/v1.
- [3] H. Chen and M. Sheibani, Weighted generalized core-EP inverse in Banach *-algebras, preprint, 2023. https://doi.org/10.21203/rs.3.rs-3332600/v1.
- [4] H. Chen and M. Sheibani, Generalized core inverse in Banach *-algebra, *Operators and Matrices*, **18**(2024), 173–189.
- [5] J. Gao; W. Kezheng and Q. Wang, A *m*-weak group inverse for rectangular matrices, preprint, arXiv:2312.10704 [math.RA] (2023).
- [6] D.E. Ferreyra; B.S. Malik, The m-weak core inverse, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 118(2024), No. 1, Paper No. 41, 17 p..
- [7] D.E. Ferreyra and D. Mosić, The W-weighted m-weak core inverse, preprint, arX-iv:2403.14196 [math.RA] (2024).

- [8] D.E. Ferreyra; V. Orquera and N. Thome, A weak group inverse for rectangular matrices, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 113(2019), 3727–3740.
- [9] D.E. Ferreyra; V. Orquera and N. Thome, Representations of weighted WG inverse and a rank equation's solution, *Linear and Multilinear Algebra*, **71**(2023), 226–241.
- [10] D.E. Ferreyra; N. Thorme and C. Torigino, The W-weighted BT inverse, Quaest. Math., 46(2023), 359–374.
- [11] Y. Gao and J. Chen, Pseudo core inverses in rings with involution, *Comm. Algebra*, **46**(2018), 38–50.
- [12] W. Li; J. Chen and Y. Zhou, Characterizations and representations of weak core inverses and m-weak group inverses, *Turk. J. Math.*, 47(2023), 1453–1468.
- [13] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37–42.
- [14] N. Mihajlovic, Group inverse and core inverse in Banach and C^* -algebras, Comm. Algebra, 48(2020), 1803-1818.
- [15] D. Mosić and J. Marovt, Weighted weak core inverse of operators Linear Multilinear Algebra, 70(2022), 4991–5013.
- [16] D. Mosić; P.S. Stanimirović, Expressions and properties of weak core inverse, Appl. Math. Comput., 415(2022), Article ID 126704, 23 p.
- [17] D. Mosić and D. Zhang, Weighted weak group inverse for Hilbert space operators, Front. Math. China, 15(2020), 709–726.
- [18] D. Mosić and D. Zhang, New representations and properties of the *m*-weak group inverse, *Result. Math.*, **78**(2023), No. 3, Paper No. 97, 19 p.
- [19] P.S. Stanimirović; V.N. Katsikis and H. Ma, Representations and properties of the W-weighted Drazin inverse, *Linear Multilinear Algebra*, **65**(2017), 1080–1096.
- [20] H. Wang; J. Chen, Weak group inverse, Open Math., 16(2018), 1218–1232.
- [21] M. Zhou; J. Chen and Y. Zhou, Weak group inverses in proper *-rings, *J. Algebra Appl.*, **19**(2020), DOI:10.1142/S0219498820502382.
- [22] M. Zhou; J. Chen; Y. Zhou and N. Thome, Weak group inverses and partial isometries in proper *-rings, *Linear Multilinear Algebra*, **70**(2021), 1–16.
- [23] Y. Zhou and J. Chen, Weak core inverses and pseudo core inverses in a ring with involution, *Linear Multilinear Algebra*, **70**(2022), 6876–6890.
- [24] Y. Zhou; J. Chen and M. Zhou, m-Weak group inverses in a ring with involution, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 115(2021), Paper No. 2, 12 p.

School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China

E-mail address: <huanyinchenfz@163.com>

SCHOOL OF MATHEMATICS AND COMPUTATIONAL SCIENCE, HUAIHUA UNIVERSITY, HUAIHUA 418000, CHINA

E-mail address: <xymls999@126.com>