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Abstract
The values assumed by the Riemann Zeta function on even natural integers con-
tribute to the calculation of the total energy of an ideal Fermi gas in a non-relativistic
and strongly degenerate regime.

The Fermi-Dirac integral

If Rt = [0, +00), let’s consider
Rt — R (1)
t—sf(t), ViERT

Precisely, f is the Fermi-Dirac function:

1
fy) = ——Fg— (2)
e v +1

where y > 0 is a parameter, while f; € C* (R") is positive in RTand not necessarily equipped
with an elementary expression.
Let’s define the function

A(t) = lim f(ty) (3)
y—0t
It £,(0) % 1, >0
B —o0, 0<t<t
lim t=hily) =4 +oo, t>1 , (4)
y=0t 0 ¢ =t

SO

A(t) = f(y,0) =

In Fig. 1 we report the trend of f (y,0).

{ L_—17, 0<t<t,

f(t,0)

Figure 1: Trend of the Fermi-Dirac function for y = 0.

In Quantum Statistical Mechanics (QSM) [1] some quantities are represented by a class
of functions that cannot be expressed in elementary terms:
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Definition 1 Fermi-Dirac integral

R = | oW f )t (6)

where f (t,y) is the Fermi-Dirac function (2), while ¢ (t) > 0 is a function with derivatives
of a high order and such as to make the integral on the second member of the equation
convergent (6).

From (6):

+00

- [ S0 1)
0 e v +1

From the study of the sign of the integrating function in (7) and from known properties of

generalized integrals, we have 0 < Fp (y) < +oo, Yy € RY, where the inequality in the

strict sense < 400 follows from the hypothesis of convergence of the corresponding integral.

Given this, the theorem holds:

Theorem 2 (Sommerfeld expansion)
For 0 <y < f1(0), up to exponentially small terms:

Fp(y) = (fi () +2y> ux (y) (8)

k=1

where:

o)~ [ o) dt ©)

u (y) = y* LoD (fi(y) (1 —272%) ¢ (2k)

d2k:71

Here is o=V (1) = L3— (t), while ¢ is the Riemann zeta function [2].

Dimostrazione. Performing the variable change:

Y
The integral (7) becomes:

(11)

Fp (y) = y/+o° o (fi (y) + zy) da

1) et +1

Yy

For the decomposition property:

0 +00
¢ (f1(y) +zy)dx / ¢ (f1(y) + zy)dx
F — 12
b (y) y/_fl(m e’ +1 Y 0 e’ +1 (12)
“n)
In I; (y) we set 2’ = —zx

f1

(y)
m — 7' dx’
h= [ et e




Redefining the mute variable 2’

f1w)

v (fi(y) —xy) de
1 = 13
R (13)
Furthermore
Lo,
e 4+1 e’ +1
which when replaced (13) returns
o (f ) — o) de
Ly=Ly- [ =22 14
(W =L)- [ 2 (14)
where
hw
def v
o)™ [T o) - (15
0
If in the integral (15) we set 2/ = —z and then redefine the integration variable, we obtain:
0
L) = [, ¢+ (16)
Restoring the old variable t = f; (y) + xy we have:
1 [
Lo = [ e (1
YJo
Replacing (17) in (14):
1 [hw 5 o (fi (y) — ay)da
I = — t)dt — 18
= [ e | 9 (18)
From (12):
+oo
+xy)dx
Fo() =y )+ [ LA (19
0 e’ +1
Replacing (18) in (19):
1) = —ay) dz
)= [ pa—y [ A=) (20)
0 0 er +1
+oo d
+y/ ¢ (1 (y) +xy)de
0 et + ].

which is an exact expression for Fp (y). In QSM the limit 0 < y < f; (0) = t is important.
Considering y < fi (y) for 0 < y < t, in the second integral on the second member of (20)
we can place 400 in the upper limit of integration. This approximation is legitimate thanks
to the speed of convergence due to the exponential in the denominator!. In that order of
approximation:

fi(y) +o0 xy) — | — 7

! This is equivalent to neglecting exponentially small terms.
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For the hypotheses made on ¢ (t), we can develop ¢ (f1 (v) + xy) — ¢ (f1 (y) — xy) in power
series of  and then perform a series integration:

o (fr () +29) — 0 (1 () — ) ZH ot —o(hw) —ay)| o

=0

Calculating the derivatives

dk kp(k) .

1.e.

o (fi(y) +2y) — o (fi (y) —wy) = QZﬁx%_l

which replaced in (21):

J1(y) +oo ko (k) +oo ,2k—1
y o™ (fi(y)) / x
F = t)dt 42 - dx 22
D), 5 ), eOar Y G [ (22)
We therefore have a series of functions whose terms contain the integrals
+oo ,.2k—1
/ ’ dx
0 et +1
We set
+00 :L,O'fl
J (o) = d >0 23
=] e >0 (23)
We write
L e”
et +1 14e®
(1+ e *)""is the sum of a series:
1 -
— n —nr — T _1 n _—nx
1+ew Z RS 67;( )le
which replaced in (23):
+o0 +00
J (o) = Z (—-1)" e_m/ 27 tem(m e gy (24)
n=0 0

Performing the change of variable y = (n + 1) x

too  1yn +o00
J<a>=2<<—”g | ey (25)

‘ n+1)

The integral is the representation of the Eulerian function gamma foro > 0:

+o0
I'(o)= / Y e Vdy
0
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The series

=y Ry
nzzo(n—l—l)a _; ne

converges for o > 0 and its sum is:

Z(_n?n = (1-2"7)¢ (o) (26)

where ( (0) is the Riemann zeta function [2]. In tal modo otteniamo la seguente espressione
per J (o)

J(o)=(1-2"7)T(0)¢ (o), Vo>0 (27)
In particular . -
/0 = (1- 27 (2K - 1IC(2R) (28)

because I' (2k) = (2k — 1)!. The statement follows from the substitution of (28) in (22). m

Notation 3 ( (2k) is expressed through Bernoulli numbers [2].

1 Physical interpretation

We have: ¢ = ¢ (energy of a single fermion of an ideal Fermi gas); y = © = kgT where kg
is the Boltzmann constant and 7' is the thermodynamic equilibrium temperature of the gas
(therefore O is the temperature expressed in energy units); fi (y) = p(0O) is the chemical
potential of the gas. So the Fermi-Dirac integral can be rewritten:

Fo )= | T _plede (20)

6575(9) +1
The function ¢ (g) can be g () or €g (¢), where g (¢) is the single fermion density of states?:
g (g0) de is the number of energy states € € [gg,e0 + de]. If ¢ (t) = g(e), the Fermi-Dirac
integral is the total number N of fermions in the gas. Since this number does not depend
on the temperature ©, we have the following normalization condition:

“+00 d
N = / A <‘3 < (30)
0 e o +1

N doesn’t depend on ©

“+o00 €
g(e)de "
v-|[TEE] - [eee
0 e 0 +1lp—9 0

where ep = 1 (0) it is the Fermi energy or the energy of the highest level occupied at the
temperature of absolute zero. If G (¢) e ithe number of energy states < ¢ ie. g(e) = deS),
then the functional relation G (er) = N uniquely defines the Fermi energy, and in cases

where G () = N can be made explicit, it allows us to determine e as a function of the

2This quantity is determined starting from the Hamiltonian of a single fermion. The simplest case is that
of a gas not subjected to external force fields.



number N of fermions and therefore, of the density of the number of fermions. It turns out
that e increases as the fermion concentration increases. In this case, the limit © < r which
allows applying the Sommerfeld theorem (8) is also verified for © in the room temperature
range®. This circumstance occurs for the conduction electrons of a metal which with good
approximation make up an ideal Fermi gas. More precisely, the total energy of an ideal
Fermi gas is obtained by assuming ¢ () = €g (¢)

E(0) = /;OO _eg(e)de (31)

e—n(0)

e e +1
In the strong degeneracy limit (O < ep) the Sommerfeld expansion for E (©) is:

() +00 2k—1
E(©)= /o eg(e)de + 2@2@2’C [ddx%—l (eg (8))] (1—2'"72%) ¢ (2k) (32)

e=u(©)

The first integral is the contribution to the total energy coming from fermions having energy
< 1 (©). The series, however, expresses the contribution coming from fermions with energy
> 1 (0). The kth term of the series is proportional to ¢ (2k).
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3In general, for a temperature range © < e, the Fermi gas is said to be degenerate in the sense that it
exhibits a deviation from the behavior predicted by classical statistical mechanics. If ©® < ep, the gas is
strongly degenerate and for © = 0 it is totally degenerate.
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