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Fig 1 An example of MEB covering German cities, ϵ = 10-4, solved in 0.025s 

Abstract 

In this paper, a new algorithm for solving MEB problem is proposed based on new 

understandings on the geometry property of minimal enclosing ball problem. A substitution of 

Ritter's algorithm is proposed to get approximate results with higher precision, and a 1+ϵ 

approximation algorithm is presented to get approximation with specified precision within much 

less time comparing with present algorithms.  

With the new 1+ϵ approximation algorithm , A large case d=2048, n=128k, ϵ=10
-6

 can be solved in 

a few minutes, which has not been done with previous solvers. 

1. Introduction 

Also known as bounding sphere problem or Smallest Enclosing Ball problem, Minimal Enclosing 

Ball (MEB) problem is to find out the minimal enclosing ball for a given set of points P ⊂ ℝd. The 

MEB problem was well studied for its large number of applications, which include computational 

graphic, high dimensional data mining etc. See more reference in Fischer [1], or Kumar [2].  

Data mining techniques such as clustering, nearest neighbor searching usually involves MEB 

problems in high dimensions, which become very time consuming or even impractical to be 
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solved for traditional exact solver such as Welzl's method [3] or approach of Gärtner et al. 

Ritter's solution [6] is an attempt for providing a bounding sphere. The fascinating thing of 

Ritter's approach is its simplicity of implementation and its short execution time. However, it 

provides only very coarse result with around 15% error. In comparison, the substitution provide 

results with 1%~2% error. 

Bădoiu et al introduced an approach that apply Second Order Cone Programming (SOCP) on a 

subset of the data set (referred as core set) to get an approximate result, any point outside 1+ϵ 

approximation will be added into the core set until all points reside in the 1+ϵ approximation. 

This approach yield to a computational complexity of O ���
��

+ ��
�
��� log

�

�
� [5]. Kumar et al 

improved this approach by solving the problem with incremental precision [2]. The result 

computational complexity is O ���
�

+
�

��.�
log

�

�
	�. 

Another noticeable contribution is the approach by Fischer et al. They proposed an exact solver 

with O(nd
2
) complexity [1].  

These two algorithm are quite successful since they were proposed. However, alternative 

approaches to solve MEB problem can be even more efficient in practice.  

Instead of using core-set, new approach maintains a expanding ball (referred as "Bubble") that is 

always smaller than MEB, and inflates it until its 1+ϵ ball contains all points. In each inflation, 

only one point is involved, so that the computation is very minimal. The algorithm is called 

Bouncing Bubble algorithm because during the inflating process, the bubble is moving around 

like bouncing among the points. With this new algorithm, MEB 1+ϵ approximation can be solved 

in O�nd� + O ��

��
�. 

This paper is organized in this way: the background of the problem and related work will be 

introduced in section 2. Some mathematic observations on the MEB problem will be discussed in 

section 3. Section 4 will present algorithms and some discussions on the behavior of the 

algorithms. In section 5, a more sophisticate algorithm to cope with arbitrary precision and exact 

solution is presented. And finally experimental results and conclusions will be given in section 6. 

 

2. Related Works 

In this section, some previous work will be briefly described. Since this is not a review paper, only 

most related works are listed here. 

Ritter's bounding sphere 

Ritter proposed a simple algorithm to find a "bounding sphere" around data set P. The algorithm 

can be described as follows: 

1. Pick a point x from P, search a point y in P, which has the largest distance from x;  



 

 

2. Search a point z in P, which has the largest distance from y. set up an initial ball B, with its 

centre as the midpoint of y and z, the radius as half of the distance between y and z; 

3. If all points in P is within ball B, then we get a bounding sphere. Otherwise, let p be the 

point outside the ball, which has distance d from the boundary of B. Move the centre of B 

towards p by d/2, and increase radius by d/2 to get a new ball. 

The beauty of Ritter's algorithm is its simplicity. With only 3 walks through the data set, it 

produce a reasonable small bounding sphere.  

In brief, Ritter's algorithm tries to find a ball as large as possible (As shown in step 1,2, which was 

first introduced by Egecioglu and Kalantari in [7] ), and then enlarges it further more to cover all 

points in P. The final step ensure all points in P is enclosed by the given ball. In this paper, step 3 

will be referred as "Ritter's enclosing approach", and will be used as final step for some proposed 

algorithms.  

Bădoiu 's Core set based 1+ϵ approximation 

Core set was introduced by Bădoiu et al. The brief idea of the algorithm is to find a subset of the 

point set, and compute the MEB of the subset as a solution. It can be detailed as follows: 

1. Pick a point x from P, search a point y in P, which has the largest distance from x;  

2. Search a point z in P, which has the largest distance from y. Initial core set as {y,z} and set  

an initial ball B, with its centre as the midpoint of y and z, the radius as half of the distance 

between y and z; 

3. If all points in P is within ball (1+ϵ)B, then we get a bounding 1+ϵ approximation. Otherwise, 

let p be the farthest point from the centre of B, add p into core set; Compute a new ball B to 

be MEB of the core set. Repeat step 3 until 1+ϵ approximation is obtained. 

In fact, the first two steps are the same with which was used in Ritter's algorithm. In step 3, the 

author use SOCP to obtain MEB of core set. 

Kumar's Core set based 1+ϵ approximation 

Kumar's improvement is to compute a core set start with coarse precision (say, 2
k
ϵ), and then 

compute core set with 2
k-1

ϵ, and so on and so forth, until finally with precision ϵ. In this way, the 

size of core set is minimized and therefore computational complexity is also minimized. The 

result computational complexity is . 

As we can see, since these 1+ϵ approximation requires choosing a subset of data and applying 

SOCP on it, the implementation become more complex. 

3. Preliminary 

This section discuss some basic geometry property of MEB problem and the property of a 

"Bubble".  

Let's denote B(C, r) as a d-dimensional ball, where C∈ℝd is its centre and r∈ℝ+ is its radius. For 

simplicity reason, we denote Bi as B(Ci, ri) when there would be no confusion.  



 

 

Let B(C*,r*) be the MEB of point set P⊂ ℝd . As proved in [3], B(C*,r*) exists and is unique. 

We call ball B(C, r) a "Bubble" when it satisfy the inequality ‖	∗	‖� + r� ≤ r∗
�. See Fig 2. 

 

Fig 2 Definition of a bubble 

A bubble is basically a ball that the MEB could cover at least half of it. According to the definition, 

any point p∈P is a bubble with its radius equals to zero. MEB itself is also a bubble.  

Lemma 1. Let P1, P2 be two points inside B(C*,r*), P1∈B(C*,r*), P2∈B(C*,r*). Let B(C, r) be a 

ball where C is the midpoint of P1P2, 	 =
�

�
�
� + 
��, r =

�

�
|
�
�|, then B(C, r) is a bubble. 

 

Fig 3 Bubble construction from two points 



 

 

Proof: 

‖	∗	‖� + r� = ‖	∗	‖� + ‖		
�‖� = ‖	∗	‖� + ‖		
�‖� 

One of the following inequalities must be true 

�‖	∗	‖� + ‖		
�‖� ≤ ‖	∗	
�‖�‖	∗	‖� + ‖		
�‖� ≤ ‖	∗	
�‖�	
 
Thus 

‖	∗	‖� + r� ≤ max�‖	∗	
�‖�,‖	∗	
�‖�� ≤ r∗
� 

Recall that the first two steps of Ritter's algorithm is to find a big enough ball, which is actually to 

find a big enough bubble.  

As an extension to Lemma 1, we have: 

Lemma 2. Let S be a subset of P, S⊂P, B(C, r) is the MEB of S, then B(C, r) is a bubble of P. 

Proof:  

According to lemma 3.1 in Kumar 2003, let hyperplane L pass through C and be perpendicular to 

C*C, there exists a point p∈S, p resides on the half space farther from C*. Thus 

‖	∗	‖� + r� ≤ ‖	∗	�‖� ≤ r∗
� 

This lemma shows that core set based algorithm can be considered as a variant of Bouncing 

bubble algorithm which construct inflating bubble in a different fashion.  

Lemma 3. Let B(Ci, ri) be a set of bubbles, 1≤i≤n, then B(C, r) is also a bubble, where 

	 =
�

�
Σ		, r = �
�

�
�

�
. 

Proof: 

Let �	 = 	∗ − 		 

‖	∗	‖� = �	∗ −
1

n
Σ		�

�

 

= �1
n

Σ�	∗ − 		��
�

 

= �1
n

Σ�	�
�

=
1

n�
��		 ⋅ �


	


 

≤
1

n�
�‖�	‖��
�
	


= �∑ |�	|	� �
�

 

≤
∑ |�	|�	 �  

Thus it's obvious that 



 

 

‖	∗	‖� + r� ≤
∑ |�	|�	 � +

∑ r	
�

	� =
1

���‖�	‖� + r	
��

�

≤ r∗
� 

This lemma shows that an affine combination of bubbles is also a bubble. This lemma is listed 

here only for completeness, it's not referenced in the rest of the paper. 

 

Lemma 4. Let B(C1, r1) be a bubble, p∈P, p∉ B(C1, r1), Let B(C2, r2) be the smallest ball witch 

go through p and covers at least a hemisphere of B(C1, r1). Then B(C2, r2) is also a bubble. 

Proof: 

 

Fig 4 Bubble Inflation 

As shown in above figure, obviously C2 is on pC1. 

Let A be a point on the intersection of boundary of B(C1, r1) and B(C2, r2).  

If ∠pC2C* ≥ π/2, then 

‖	∗	�‖� + r�
� = ‖	∗	�‖� + ‖�	�‖� 

≤ ‖�	∗‖� 

≤ 	 r∗� 

 

if ∠pC2C* ≤ π/2 . then 

‖	∗	�‖� + r�
� = ‖	∗	�‖� + ‖	��‖� 

= ‖	∗	�‖� + ‖	�	�‖� + ‖	��‖� 



 

 

≤ ‖	∗	�‖� + ‖	��‖� 

= |	∗	�|� + r�
� 

≤ r∗
� 

Thus the new constructed ball is also a bubble. 

Lemma 5. Let B(C2, r2) be the bubble constructed from bubble B(C1, r1) and point p∈P  

according to Lemma 4. We have 

r� =
1

2
�α +

1

α
� r� > r� 

	� =
1

2
��1 +

1

α�
�	� + �1 −

1

α�
��� 

Where α =
‖���‖

��
> 1 

according to Pythagorean theorem 

‖	��‖� = ‖	�	�‖� + ‖	��‖� 

Thus  

r�
� = �‖�	�‖ − r��� + r�

� 

Solve this equation, the lemma is proved.  

Let B(C1, r1) be a point in P, i.e. C1∈P, r1=0, then we have Lemma 1. Thus Lemma 1 can be 

considered as a special case of Lemma 5. 

Lemma 4 and Lemma 5 show that a larger bubble can be constructed from an existing bubble 

and a point outside the bubble. These two lemmas form the foundation of our algorithm 

presented in this paper.  

4. Basic Bouncing Bubble algorithm 

Algorithm 1. Basic Bouncing Bubble 

Procedure BouncingBubbleBasic(S) 

begin 

B1≔ any point p∈S; 

for i :=1 to 2 

for each p∈S 

if ‖�	‖ > � 

construct new Bubble Bi+1 according to Lemma 5 

Call Ritter's enclosing approach; 

end; 

This algorithm is easy to be implemented as there is no LP, nor SCOP. It uses only simple 

iterations to compute a approximation. Thus the computational complexity is minimized. In fact, 

it walks through the data set only 3 times (same as Ritter's algorithm does).  

As simple as it is, in all cases we tested it produces better results than Ritter's approach. In most 



 

 

cases, the error is less than 2%, where Ritter's approach usually result in around 15% error. Thus 

we propose this algorithm as a substitution of Ritter's algorithm.  

Since Ritter's algorithm is also based on the construction of a bubble (according to Lemma 1), we 

can consider this algorithm as an extension of Ritter's original. 

According to Lemma 4, it's easy to see that the radius grows very fast when the bubble is small. 

As we can see in Fig 5 which shows a plot of 
�

�
�α +

�

�
� against α. Another merit we have is that 

the probability of finding a new outside point is also larger as the bubble is small. This property 

ensures that we can get an approximation in relatively short time.  

 

 

 

Fig 5 plot of 
�

�
�α +

�

�
� 

The inflation slows down only when the bubble become close to MEB. At that time α is close to 1, 

�

�
�α +

�

�
� → 1 +

�

�
(� − 1)� is also very close to 1, and finding a new outside point become 

harder.  

To estimate the error of the result, let P be a uniformly distributed data set, B(C, r) be a bubble, 

γ=|CC*|, after a new point is examined(could be inside or outside B), we have a new 

bubble(could be the same ball when new point is inside B) where: 

E�r� =
1

V∗

� ‖�	‖� + r�

2‖�	‖ d�
�∈���,�∉�

+
V�∩���

V∗

r 

E�γ� =
1

V∗

� ‖	′	∗‖dv

�∈���,�∉�

+
V�∩���

V∗

γ 
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E(r), E(γ) can be estimated using numeric integration. The following plot shows E(r)/r against r for 

dimension 3, 32 and 256.  

As shown in Fig 6, it's little bit 

surprising that the acceleration in 

high dimension is higher than those 

in low dimension. This is because 

points tend to accumulate close to 

the surface in higher dimensions 

thus the probability of finding a 

outside point is proximately 

1 − � �

�
∗

��,  which is close to 1 for 

high dimensional data set when r<r*. 

However, the differences among 

higher dimensions become very minimal (for instance, the difference between d=32 and d=256 is 

almost indistinguishable). 

Use E(r) and E(γ) for next iteration, 

we can get a view of how radius 

grows. The first observation is that 

the position of initial ball is not 

important because it converges very 

fast. Fig 7 demonstrates the process. 

In this demonstration, without losing 

generality, we set r*=1. The iterations 

start from 3 different locations 

(represented by radius and distance 

between C and C*).  

 

As we can see, the iteration is not sensitive to the initial position. The difference become 

indistinguishable after only 20 iterations. 

As we already knew, it's easier to get 

an approximate result for higher 

dimensional point set. As shown in 

Fig 8. 

 

 

 

 

 

Fig 6 Acceleration in different dimensions 

Fig 7 Convergence from different start points (d=8) 

Fig 8 Convergence in different dimension 



 

 

Based on the observation mentioned above, we know that one can expect a good result from 

this algorithm for large high dimensional data set. But for small data set in low dimension space, 

we may need to add more iterations in step 2.  

5. Pruning Bouncing Bubble algorithm 

As we discussed, Basic Bouncing Bubble algorithm is simple to implement and works well in low 

precision situation thus can be applied in many applications. However, there are two major 

reasons to develop a more sophisicated version. 

First, it's always good to know the boundary of error. Basic version produce good results in most 

cases, but there is no way to tell the exact error. Second, when we need a more precise result, 

say ϵ=10
-4 

or higher, even for very large high dimensional data set we have nd≪1/ϵ
2
 , we have to 

walk through data set repeatedly thus cause longer execution time. 

Definition: 1+ϵ approximation  

We will refer a ball as 1+ϵ approximation to MEB of set P, when its radius is less than r*, and its 

1+ϵ expansion covers set P. 

Lemma 6. There exists a bubble constructed from set P, which is a 1+ϵ approximation to 

MEB of set P. 

Proof:  

Let B(C0, r0) be an arbitrary point in P. 

If there is no point p∈P, such that ‖� − 		‖ > �1 + ϵ�r		  , then B(Ci, ri) is the 1+ϵ 

approximation to MEB of set P.  

If there is a point p∈P, and ‖� − 		‖ > �1 + ϵ�r	, then we can construct a new bubble from Bi 

and p according to Lemma 5.  

In this case we have:  

r	�� =
1

2
�α +

1

α
� r	 

where α =
‖���‖

��
> 1 + ϵ 

⇒
�r	�� − r	�

r	
=

1

2
�α +

1

α
� − 1 >

ϵ�

2�1 + ϵ� 

This show each time when we find a new point, the radius of bubble will increase at least 
��

������
 

times. 

As r*, r0 are finite numbers, this leads to a conclusion that this process will come to a end after 

�
∗

��

������

��
	operations. 



 

 

This lemma suggest a new approach to get 1+ϵ approximation other than the algorithm 

proposed by Bădoiu [5] or Kumar [2]. 

Algorithm 2. 1+ϵ Bouncing Bubble Algorithm 

Procedure BouncingBubble1PlusEpsilon(S, ϵ) 

begin 

do 

for each p∈S 

if ‖�	‖ > �1 + ϵ�r 

construct new Bubble B(C,r) according to Lemma 5 

changed = true; 

while(changed); 

Call Ritter's enclosing approach; 

end; 

Another observation is that after each walk through the entire data set, most points will be 

always inside the bubble, thus we can prune them off to avoid useless computation. 

Lemma 7. Let ball B(C, r) be a 1+ϵ approximation to MEB of set P, any point inside B(C, (1-ϵ)r) 

will be inside B(C*, r*). 

 

Fig 9 1-ϵ ball 

Proof: As shown in Fig 9 1-ϵ ball, ‖� − 	‖ < �1 − ϵ�r, according to triangle inequality, 

‖� − 	∗‖ ≤ ‖� − 	‖ + ‖	∗ − 	‖ 

= ‖� − 	‖ + ‖� − 	‖ − ‖	∗ − �‖ 

< �1 − ϵ�r + �1 + ϵ�r − r 

= r 

≤ r∗ 



 

 

Since only those points on the surface of MEB will affect the size of MEB, thus this lemma shows 

that when a 1+ϵ approximation was obtained, we can eliminate all the points inside the 1-ϵ ball 

to get a small point set P' for further processing. 

Algorithm 3. Pruning Bouncing Bubble algorithm 

Procedure PruningBouncingBubble(S, ϵ)  

begin 

do 

for each p∈S 

 if ‖pC‖ > r   

 construct new Bubble B(C,r) according to Lemma 5; 

ϵ� = max
�∈�

�‖�	‖�1

� − 1; 

for each p∈S 

 if‖pC‖<(1-ϵ')r   

 drop p from S; 

 changed = true; 

while( changed);  

call BouncingBubble1PlusEpsilon(S, ϵ); 

end; 

This algorithm is supposed to be very adaptive to different distributions: if the points in the data 

set are concentrated in the centre area, they will tend to be pruned; if they are concentrated in 

the surface area of MEB, each of them will be very likely contributed to inflate the bubble. 

Time complexity 

The pruning phase takes approximately O(nd) time. After pruning, the remaining points are 

closed to or exactly on the surface of MEB. There is constant probability to encounter a surface 

points which will contribute to the radius growth by at least 
��

�
. Thus the time complexity of the 

final step is O ��

��
�. 

So we have the time complexity for algorithm 3 as O�nd� + O ��

��
�. When ϵ is small enough, the 

size of data set becomes trivial. 

Extension for exact solver 

Algorithm 3 can be easily extended to an exact solver by replace last step to an off-the-shelf exact 

solver (Fischer's algorithm, for instance).  

Implementation 

We implemented our algorithm in C++. Intel SSE instructions are used in distance functions.  

 



 

 

6. Experimental Results 

Experimental platform 

All test results reported in this paper were done on a desktop computer with following components: 

CPU: Intel Core i5-2500K CPU (3.3GHz) 

Memory: 16G  

Operating System:  Windows 7 

Test Data Set 

We use 3 different distributed data sets for testing: 

� Uniform distribution in unit hypersphere (HS for short)  

� Uniform distribution in unit hypercube (Cube for short) 

� Regular Simplex(RS for short) 

points are random combination of vertexes of a d dimensional regular simplex.  

Comparison Method 

For Basic Bouncing Bubble algorithm, since the computational complexity is the same as Ritter's 

algorithm, so we will not compare the execution time. Instead, we will compare the precision of 

the results provided by both algorithms. 

For Pruning Bouncing Bubble algorithm, we will not provide direct comparison with Kumar's 

algorithm or Fischer's algorithm. Kumar provided a test result on Matlab, which is incomparable 

with our implementation. However, Fischer provided a test result showing its algorithm's 

superiority over Kumar's. Thus we only need to compare with Fischer's algorithm. 

Fischer's algorithm is an exact solver. To compare with it, we set precision as 10
-6

, which is close 

to float precision limit and almost indistinguishable with exact solution in most applications. 

Fischer's test results were done on a 400Mhz Sun Ultra 4 workstation. However, platform 

difference could not explain the huge performance difference (over 10
3
 times in some cases) in 

execution time.  

Basic Bouncing Bubble 

We proposed Basic Bouncing Bubble as a substitution of Ritter's algorithm, thus we compared 

the error of results from both algorithm. As shown as follows: 



 

 

 

Fig 10 Precision comparison (against Size, dimension = 16) 

In this test case, each test result is average from 10 independent tests (the same below). As we 

can see, our algorithm produce more precise results than Ritter's. The only exception is  

uniform distribution points in hypercube, to which Ritter's algorithm produce similar result with 

ours.  

Test against dimension shows similar results, as shown as follows: 

 

Fig 11 Precision comparison (against dimension, size = 30k) 

Since it's relatively easy to handle uniform distribution point set in Hypercube, the following test 

were done only on uniform distribution point set in Hypersphere and Regular Simplex cases.  

As an observation, Basic Bouncing Bubble algorithm produce coarser results for small data set in 

low dimensional space, which has important applications in computational graphic. Thus we 
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conducted an extra comparison in such case. 

 

Fig 12 Precision Comparison (small data set, d=2) 

In this case, our algorithm produce results with less than 2% error. 

As we can see, Bouncing Bubble algorithm produce much precise results in nearly the same time 

Ritter's algorithm requires. Thus we can use Bouncing Bubble algorithm as a substitution of 

Ritter's algorithm. 

Pruning Bouncing Bubble algorithm 

Fig 1 shows an example of 2 dimension MEB problem. The data set is taken from STPLIB, it 

consists 15112 locations of German cites
2
. It takes only 0.025 second to complete the 

computation of ϵ=10
-4

. 

Other experimental results are listed below: 

We executed performance experiment against the size of data set, the dimension of the space 

and required precision.  

                                                             

2
 Data set D15112, 

http://neumann.hec.ca/chairelogistique/data/TSPPDL-VNS/d15112.tsp 
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Fig 13 Performance against size (ϵ = 0.001, dimension = 16) 

As shown in the figure, the execution time is linear against the size of the data set. However, as 

we can see in latter cases, execution time become insensitive to the size when ϵ is very small (e.g. 

ϵ = 10
-6

). 

 

Fig 14 Performance against dimension (ϵ = 0.001, size = 30000) 

The execution time is also linear against the dimension. One noticeable point is the execution 

time for regular simplex case is almost const. This is because the points are concentrated in the 

centre area and thus been pruned in earlier stage.  
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Fig 15 Performance against required precision (size = 50k) 

The above figure shows the execution time as a function against required precision (both axes in 

logarithmic scale). The test data set is uniform distributed points in unit hypersphere. Although 

worse case time complexity suggest execution time depends on 1/ϵ
2
, the above plot of 

experimental results suggest the execution time has weak dependency on (1/ϵ). 

Finally, we made some large case comparison, as shown as follows: 

 Algorithm Size Dimension Precision Time(seconds) 

1 Fischer 2000 2000 Exact 3500 

2 Pruning Bouncing Bubble 2000 2000 10
-6

 141  

3 Pruning Bouncing Bubble 131072 2048 10
-6

 226  

4 Pruning Bouncing Bubble 262144 1024 10
-6

 129  

5 Pruning Bouncing Bubble 262144 1024 10
-3

 5.6  

The largest case is only limited by memory we can allocate one process in the platform, which is 

1G bytes.  

In the above table, we also provide an experimental result for precision 10
-3

 as a comparison. As 

high precision may not be critical in all application, ability to have tradeoff between precision 

and time saved is also essential. 

Compare row 4 with row 3, we can see that the execution time is insensitive to the size of the 

data set but linear on the dimension, which is as suggested by the time complexity analysis.  

7. Conclusion 

In this paper, new approximation algorithms are proposed for minimal enclosing ball problem -- 

one simple algorithm as a substitution of Ritter's algorithm and one 1+ϵ approximation to 

provide arbitrary precision in less time.  
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