

Bouncing Bubble - A fast algorithm for Minimal Enclosing Ball problem

Tian Bo
1

Fig 1 An example of MEB covering German cities, ϵ = 10-4, solved in 0.025s

Abstract

In this paper, a new algorithm for solving MEB problem is proposed based on new

understandings on the geometry property of minimal enclosing ball problem. A substitution of

Ritter's algorithm is proposed to get approximate results with higher precision, and a 1+ϵ

approximation algorithm is presented to get approximation with specified precision within much

less time comparing with present algorithms.

With the new 1+ϵ approximation algorithm , A large case d=2048, n=128k, ϵ=10
-6

 can be solved in

a few minutes, which has not been done with previous solvers.

1. Introduction

Also known as bounding sphere problem or Smallest Enclosing Ball problem, Minimal Enclosing

Ball (MEB) problem is to find out the minimal enclosing ball for a given set of points P ⊂ ℝd. The

MEB problem was well studied for its large number of applications, which include computational

graphic, high dimensional data mining etc. See more reference in Fischer [1], or Kumar [2].

Data mining techniques such as clustering, nearest neighbor searching usually involves MEB

problems in high dimensions, which become very time consuming or even impractical to be

1
 Freelancer; Kaspar-Kerll Str. 4a. 81245, Munich, Germany; tmsfld@googlemail.com

solved for traditional exact solver such as Welzl's method [3] or approach of Gärtner et al.

Ritter's solution [6] is an attempt for providing a bounding sphere. The fascinating thing of

Ritter's approach is its simplicity of implementation and its short execution time. However, it

provides only very coarse result with around 15% error. In comparison, the substitution provide

results with 1%~2% error.

Bădoiu et al introduced an approach that apply Second Order Cone Programming (SOCP) on a

subset of the data set (referred as core set) to get an approximate result, any point outside 1+ϵ

approximation will be added into the core set until all points reside in the 1+ϵ approximation.

This approach yield to a computational complexity of O ���
��

+ ��
�
��� log

�

�
� [5]. Kumar et al

improved this approach by solving the problem with incremental precision [2]. The result

computational complexity is O ���
�

+
�

��.�
log

�

�
	�.

Another noticeable contribution is the approach by Fischer et al. They proposed an exact solver

with O(nd
2
) complexity [1].

These two algorithm are quite successful since they were proposed. However, alternative

approaches to solve MEB problem can be even more efficient in practice.

Instead of using core-set, new approach maintains a expanding ball (referred as "Bubble") that is

always smaller than MEB, and inflates it until its 1+ϵ ball contains all points. In each inflation,

only one point is involved, so that the computation is very minimal. The algorithm is called

Bouncing Bubble algorithm because during the inflating process, the bubble is moving around

like bouncing among the points. With this new algorithm, MEB 1+ϵ approximation can be solved

in O�nd� + O ��

��
�.

This paper is organized in this way: the background of the problem and related work will be

introduced in section 2. Some mathematic observations on the MEB problem will be discussed in

section 3. Section 4 will present algorithms and some discussions on the behavior of the

algorithms. In section 5, a more sophisticate algorithm to cope with arbitrary precision and exact

solution is presented. And finally experimental results and conclusions will be given in section 6.

2. Related Works

In this section, some previous work will be briefly described. Since this is not a review paper, only

most related works are listed here.

Ritter's bounding sphere

Ritter proposed a simple algorithm to find a "bounding sphere" around data set P. The algorithm

can be described as follows:

1. Pick a point x from P, search a point y in P, which has the largest distance from x;

2. Search a point z in P, which has the largest distance from y. set up an initial ball B, with its

centre as the midpoint of y and z, the radius as half of the distance between y and z;

3. If all points in P is within ball B, then we get a bounding sphere. Otherwise, let p be the

point outside the ball, which has distance d from the boundary of B. Move the centre of B

towards p by d/2, and increase radius by d/2 to get a new ball.

The beauty of Ritter's algorithm is its simplicity. With only 3 walks through the data set, it

produce a reasonable small bounding sphere.

In brief, Ritter's algorithm tries to find a ball as large as possible (As shown in step 1,2, which was

first introduced by Egecioglu and Kalantari in [7]), and then enlarges it further more to cover all

points in P. The final step ensure all points in P is enclosed by the given ball. In this paper, step 3

will be referred as "Ritter's enclosing approach", and will be used as final step for some proposed

algorithms.

Bădoiu 's Core set based 1+ϵ approximation

Core set was introduced by Bădoiu et al. The brief idea of the algorithm is to find a subset of the

point set, and compute the MEB of the subset as a solution. It can be detailed as follows:

1. Pick a point x from P, search a point y in P, which has the largest distance from x;

2. Search a point z in P, which has the largest distance from y. Initial core set as {y,z} and set

an initial ball B, with its centre as the midpoint of y and z, the radius as half of the distance

between y and z;

3. If all points in P is within ball (1+ϵ)B, then we get a bounding 1+ϵ approximation. Otherwise,

let p be the farthest point from the centre of B, add p into core set; Compute a new ball B to

be MEB of the core set. Repeat step 3 until 1+ϵ approximation is obtained.

In fact, the first two steps are the same with which was used in Ritter's algorithm. In step 3, the

author use SOCP to obtain MEB of core set.

Kumar's Core set based 1+ϵ approximation

Kumar's improvement is to compute a core set start with coarse precision (say, 2
k
ϵ), and then

compute core set with 2
k-1

ϵ, and so on and so forth, until finally with precision ϵ. In this way, the

size of core set is minimized and therefore computational complexity is also minimized. The

result computational complexity is .

As we can see, since these 1+ϵ approximation requires choosing a subset of data and applying

SOCP on it, the implementation become more complex.

3. Preliminary

This section discuss some basic geometry property of MEB problem and the property of a

"Bubble".

Let's denote B(C, r) as a d-dimensional ball, where C∈ℝd is its centre and r∈ℝ+ is its radius. For

simplicity reason, we denote Bi as B(Ci, ri) when there would be no confusion.

Let B(C*,r*) be the MEB of point set P⊂ ℝd . As proved in [3], B(C*,r*) exists and is unique.

We call ball B(C, r) a "Bubble" when it satisfy the inequality ‖	∗	‖� + r� ≤ r∗
�. See Fig 2.

Fig 2 Definition of a bubble

A bubble is basically a ball that the MEB could cover at least half of it. According to the definition,

any point p∈P is a bubble with its radius equals to zero. MEB itself is also a bubble.

Lemma 1. Let P1, P2 be two points inside B(C*,r*), P1∈B(C*,r*), P2∈B(C*,r*). Let B(C, r) be a

ball where C is the midpoint of P1P2, 	 =
�

�
�
� +
��, r =

�

�
|
�
�|, then B(C, r) is a bubble.

Fig 3 Bubble construction from two points

Proof:

‖	∗	‖� + r� = ‖	∗	‖� + ‖		
�‖� = ‖	∗	‖� + ‖		
�‖�

One of the following inequalities must be true

�‖	∗	‖� + ‖		
�‖� ≤ ‖	∗	
�‖�‖	∗	‖� + ‖		
�‖� ≤ ‖	∗	
�‖�	

Thus

‖	∗	‖� + r� ≤ max�‖	∗	
�‖�,‖	∗	
�‖�� ≤ r∗
�

Recall that the first two steps of Ritter's algorithm is to find a big enough ball, which is actually to

find a big enough bubble.

As an extension to Lemma 1, we have:

Lemma 2. Let S be a subset of P, S⊂P, B(C, r) is the MEB of S, then B(C, r) is a bubble of P.

Proof:

According to lemma 3.1 in Kumar 2003, let hyperplane L pass through C and be perpendicular to

C*C, there exists a point p∈S, p resides on the half space farther from C*. Thus

‖	∗	‖� + r� ≤ ‖	∗	�‖� ≤ r∗
�

This lemma shows that core set based algorithm can be considered as a variant of Bouncing

bubble algorithm which construct inflating bubble in a different fashion.

Lemma 3. Let B(Ci, ri) be a set of bubbles, 1≤i≤n, then B(C, r) is also a bubble, where

	 =
�

�
Σ		, r = �
�

�
�

�
.

Proof:

Let �	 = 	∗ − 		

‖	∗	‖� = �	∗ −
1

n
Σ		�

�

= �1
n

Σ�	∗ − 		��
�

= �1
n

Σ�	�
�

=
1

n�
��		 ⋅ �

	

≤
1

n�
�‖�	‖��
�
	

= �∑ |�	|	� �
�

≤
∑ |�	|�	 �

Thus it's obvious that

‖	∗	‖� + r� ≤
∑ |�	|�	 � +

∑ r	
�

	� =
1

���‖�	‖� + r	
��

�

≤ r∗
�

This lemma shows that an affine combination of bubbles is also a bubble. This lemma is listed

here only for completeness, it's not referenced in the rest of the paper.

Lemma 4. Let B(C1, r1) be a bubble, p∈P, p∉ B(C1, r1), Let B(C2, r2) be the smallest ball witch

go through p and covers at least a hemisphere of B(C1, r1). Then B(C2, r2) is also a bubble.

Proof:

Fig 4 Bubble Inflation

As shown in above figure, obviously C2 is on pC1.

Let A be a point on the intersection of boundary of B(C1, r1) and B(C2, r2).

If ∠pC2C* ≥ π/2, then

‖	∗	�‖� + r�
� = ‖	∗	�‖� + ‖�	�‖�

≤ ‖�	∗‖�

≤ 	 r∗�

if ∠pC2C* ≤ π/2 . then

‖	∗	�‖� + r�
� = ‖	∗	�‖� + ‖	��‖�

= ‖	∗	�‖� + ‖	�	�‖� + ‖	��‖�

≤ ‖	∗	�‖� + ‖	��‖�

= |	∗	�|� + r�
�

≤ r∗
�

Thus the new constructed ball is also a bubble.

Lemma 5. Let B(C2, r2) be the bubble constructed from bubble B(C1, r1) and point p∈P

according to Lemma 4. We have

r� =
1

2
�α +

1

α
� r� > r�

	� =
1

2
��1 +

1

α�
�	� + �1 −

1

α�
���

Where α =
‖���‖

��
> 1

according to Pythagorean theorem

‖	��‖� = ‖	�	�‖� + ‖	��‖�

Thus

r�
� = �‖�	�‖ − r��� + r�

�

Solve this equation, the lemma is proved.

Let B(C1, r1) be a point in P, i.e. C1∈P, r1=0, then we have Lemma 1. Thus Lemma 1 can be

considered as a special case of Lemma 5.

Lemma 4 and Lemma 5 show that a larger bubble can be constructed from an existing bubble

and a point outside the bubble. These two lemmas form the foundation of our algorithm

presented in this paper.

4. Basic Bouncing Bubble algorithm

Algorithm 1. Basic Bouncing Bubble

Procedure BouncingBubbleBasic(S)

begin

B1≔ any point p∈S;

for i :=1 to 2

for each p∈S

if ‖�	‖ > �

construct new Bubble Bi+1 according to Lemma 5

Call Ritter's enclosing approach;

end;

This algorithm is easy to be implemented as there is no LP, nor SCOP. It uses only simple

iterations to compute a approximation. Thus the computational complexity is minimized. In fact,

it walks through the data set only 3 times (same as Ritter's algorithm does).

As simple as it is, in all cases we tested it produces better results than Ritter's approach. In most

cases, the error is less than 2%, where Ritter's approach usually result in around 15% error. Thus

we propose this algorithm as a substitution of Ritter's algorithm.

Since Ritter's algorithm is also based on the construction of a bubble (according to Lemma 1), we

can consider this algorithm as an extension of Ritter's original.

According to Lemma 4, it's easy to see that the radius grows very fast when the bubble is small.

As we can see in Fig 5 which shows a plot of
�

�
�α +

�

�
� against α. Another merit we have is that

the probability of finding a new outside point is also larger as the bubble is small. This property

ensures that we can get an approximation in relatively short time.

Fig 5 plot of
�

�
�α +

�

�
�

The inflation slows down only when the bubble become close to MEB. At that time α is close to 1,

�

�
�α +

�

�
� → 1 +

�

�
(� − 1)� is also very close to 1, and finding a new outside point become

harder.

To estimate the error of the result, let P be a uniformly distributed data set, B(C, r) be a bubble,

γ=|CC*|, after a new point is examined(could be inside or outside B), we have a new

bubble(could be the same ball when new point is inside B) where:

E�r� =
1

V∗

� ‖�	‖� + r�

2‖�	‖ d�
�∈���,�∉�

+
V�∩���

V∗

r

E�γ� =
1

V∗

� ‖	′	∗‖dv

�∈���,�∉�

+
V�∩���

V∗

γ

2 3 4 5

1.5

2.0

2.5

E(r), E(γ) can be estimated using numeric integration. The following plot shows E(r)/r against r for

dimension 3, 32 and 256.

As shown in Fig 6, it's little bit

surprising that the acceleration in

high dimension is higher than those

in low dimension. This is because

points tend to accumulate close to

the surface in higher dimensions

thus the probability of finding a

outside point is proximately

1 − � �

�
∗

��, which is close to 1 for

high dimensional data set when r<r*.

However, the differences among

higher dimensions become very minimal (for instance, the difference between d=32 and d=256 is

almost indistinguishable).

Use E(r) and E(γ) for next iteration,

we can get a view of how radius

grows. The first observation is that

the position of initial ball is not

important because it converges very

fast. Fig 7 demonstrates the process.

In this demonstration, without losing

generality, we set r*=1. The iterations

start from 3 different locations

(represented by radius and distance

between C and C*).

As we can see, the iteration is not sensitive to the initial position. The difference become

indistinguishable after only 20 iterations.

As we already knew, it's easier to get

an approximate result for higher

dimensional point set. As shown in

Fig 8.

Fig 6 Acceleration in different dimensions

Fig 7 Convergence from different start points (d=8)

Fig 8 Convergence in different dimension

Based on the observation mentioned above, we know that one can expect a good result from

this algorithm for large high dimensional data set. But for small data set in low dimension space,

we may need to add more iterations in step 2.

5. Pruning Bouncing Bubble algorithm

As we discussed, Basic Bouncing Bubble algorithm is simple to implement and works well in low

precision situation thus can be applied in many applications. However, there are two major

reasons to develop a more sophisicated version.

First, it's always good to know the boundary of error. Basic version produce good results in most

cases, but there is no way to tell the exact error. Second, when we need a more precise result,

say ϵ=10
-4

or higher, even for very large high dimensional data set we have nd≪1/ϵ
2
 , we have to

walk through data set repeatedly thus cause longer execution time.

Definition: 1+ϵ approximation

We will refer a ball as 1+ϵ approximation to MEB of set P, when its radius is less than r*, and its

1+ϵ expansion covers set P.

Lemma 6. There exists a bubble constructed from set P, which is a 1+ϵ approximation to

MEB of set P.

Proof:

Let B(C0, r0) be an arbitrary point in P.

If there is no point p∈P, such that ‖� − 		‖ > �1 + ϵ�r		 , then B(Ci, ri) is the 1+ϵ

approximation to MEB of set P.

If there is a point p∈P, and ‖� − 		‖ > �1 + ϵ�r	, then we can construct a new bubble from Bi

and p according to Lemma 5.

In this case we have:

r	�� =
1

2
�α +

1

α
� r	

where α =
‖���‖

��
> 1 + ϵ

⇒
�r	�� − r	�

r	
=

1

2
�α +

1

α
� − 1 >

ϵ�

2�1 + ϵ�

This show each time when we find a new point, the radius of bubble will increase at least
��

������

times.

As r*, r0 are finite numbers, this leads to a conclusion that this process will come to a end after

�
∗

��

������

��
	operations.

This lemma suggest a new approach to get 1+ϵ approximation other than the algorithm

proposed by Bădoiu [5] or Kumar [2].

Algorithm 2. 1+ϵ Bouncing Bubble Algorithm

Procedure BouncingBubble1PlusEpsilon(S, ϵ)

begin

do

for each p∈S

if ‖�	‖ > �1 + ϵ�r

construct new Bubble B(C,r) according to Lemma 5

changed = true;

while(changed);

Call Ritter's enclosing approach;

end;

Another observation is that after each walk through the entire data set, most points will be

always inside the bubble, thus we can prune them off to avoid useless computation.

Lemma 7. Let ball B(C, r) be a 1+ϵ approximation to MEB of set P, any point inside B(C, (1-ϵ)r)

will be inside B(C*, r*).

Fig 9 1-ϵ ball

Proof: As shown in Fig 9 1-ϵ ball, ‖� − 	‖ < �1 − ϵ�r, according to triangle inequality,

‖� − 	∗‖ ≤ ‖� − 	‖ + ‖	∗ − 	‖

= ‖� − 	‖ + ‖� − 	‖ − ‖	∗ − �‖

< �1 − ϵ�r + �1 + ϵ�r − r

= r

≤ r∗

Since only those points on the surface of MEB will affect the size of MEB, thus this lemma shows

that when a 1+ϵ approximation was obtained, we can eliminate all the points inside the 1-ϵ ball

to get a small point set P' for further processing.

Algorithm 3. Pruning Bouncing Bubble algorithm

Procedure PruningBouncingBubble(S, ϵ)

begin

do

for each p∈S

 if ‖pC‖ > r

 construct new Bubble B(C,r) according to Lemma 5;

ϵ� = max
�∈�

�‖�	‖�1

� − 1;

for each p∈S

 if‖pC‖<(1-ϵ')r

 drop p from S;

 changed = true;

while(changed);

call BouncingBubble1PlusEpsilon(S, ϵ);

end;

This algorithm is supposed to be very adaptive to different distributions: if the points in the data

set are concentrated in the centre area, they will tend to be pruned; if they are concentrated in

the surface area of MEB, each of them will be very likely contributed to inflate the bubble.

Time complexity

The pruning phase takes approximately O(nd) time. After pruning, the remaining points are

closed to or exactly on the surface of MEB. There is constant probability to encounter a surface

points which will contribute to the radius growth by at least
��

�
. Thus the time complexity of the

final step is O ��

��
�.

So we have the time complexity for algorithm 3 as O�nd� + O ��

��
�. When ϵ is small enough, the

size of data set becomes trivial.

Extension for exact solver

Algorithm 3 can be easily extended to an exact solver by replace last step to an off-the-shelf exact

solver (Fischer's algorithm, for instance).

Implementation

We implemented our algorithm in C++. Intel SSE instructions are used in distance functions.

6. Experimental Results

Experimental platform

All test results reported in this paper were done on a desktop computer with following components:

CPU: Intel Core i5-2500K CPU (3.3GHz)

Memory: 16G

Operating System: Windows 7

Test Data Set

We use 3 different distributed data sets for testing:

� Uniform distribution in unit hypersphere (HS for short)

� Uniform distribution in unit hypercube (Cube for short)

� Regular Simplex(RS for short)

points are random combination of vertexes of a d dimensional regular simplex.

Comparison Method

For Basic Bouncing Bubble algorithm, since the computational complexity is the same as Ritter's

algorithm, so we will not compare the execution time. Instead, we will compare the precision of

the results provided by both algorithms.

For Pruning Bouncing Bubble algorithm, we will not provide direct comparison with Kumar's

algorithm or Fischer's algorithm. Kumar provided a test result on Matlab, which is incomparable

with our implementation. However, Fischer provided a test result showing its algorithm's

superiority over Kumar's. Thus we only need to compare with Fischer's algorithm.

Fischer's algorithm is an exact solver. To compare with it, we set precision as 10
-6

, which is close

to float precision limit and almost indistinguishable with exact solution in most applications.

Fischer's test results were done on a 400Mhz Sun Ultra 4 workstation. However, platform

difference could not explain the huge performance difference (over 10
3
 times in some cases) in

execution time.

Basic Bouncing Bubble

We proposed Basic Bouncing Bubble as a substitution of Ritter's algorithm, thus we compared

the error of results from both algorithm. As shown as follows:

Fig 10 Precision comparison (against Size, dimension = 16)

In this test case, each test result is average from 10 independent tests (the same below). As we

can see, our algorithm produce more precise results than Ritter's. The only exception is

uniform distribution points in hypercube, to which Ritter's algorithm produce similar result with

ours.

Test against dimension shows similar results, as shown as follows:

Fig 11 Precision comparison (against dimension, size = 30k)

Since it's relatively easy to handle uniform distribution point set in Hypercube, the following test

were done only on uniform distribution point set in Hypersphere and Regular Simplex cases.

As an observation, Basic Bouncing Bubble algorithm produce coarser results for small data set in

low dimensional space, which has important applications in computational graphic. Thus we

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

8 64 512 4096 32768 262144

E
rr
o
r

Size

Precision against Size

Ritter HS BBB HS Ritter RS

BBB RS Ritter Cube BBB Cube

-5%

0%

5%

10%

15%

20%

25%

0 20 40 60 80 100 120 140

E
rr
o
r

Dimension

Precision against Dimension

Ritter HS BBB HS Ritter RS

BBB RS Ritter Cube BBB Cube

conducted an extra comparison in such case.

Fig 12 Precision Comparison (small data set, d=2)

In this case, our algorithm produce results with less than 2% error.

As we can see, Bouncing Bubble algorithm produce much precise results in nearly the same time

Ritter's algorithm requires. Thus we can use Bouncing Bubble algorithm as a substitution of

Ritter's algorithm.

Pruning Bouncing Bubble algorithm

Fig 1 shows an example of 2 dimension MEB problem. The data set is taken from STPLIB, it

consists 15112 locations of German cites
2
. It takes only 0.025 second to complete the

computation of ϵ=10
-4

.

Other experimental results are listed below:

We executed performance experiment against the size of data set, the dimension of the space

and required precision.

2
 Data set D15112,

http://neumann.hec.ca/chairelogistique/data/TSPPDL-VNS/d15112.tsp

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 20 40 60 80

E
rr
o
r

Size

Fig 13 Performance against size (ϵ = 0.001, dimension = 16)

As shown in the figure, the execution time is linear against the size of the data set. However, as

we can see in latter cases, execution time become insensitive to the size when ϵ is very small (e.g.

ϵ = 10
-6

).

Fig 14 Performance against dimension (ϵ = 0.001, size = 30000)

The execution time is also linear against the dimension. One noticeable point is the execution

time for regular simplex case is almost const. This is because the points are concentrated in the

centre area and thus been pruned in earlier stage.

0

50

100

150

200

250

300

350

0 50000 100000 150000 200000 250000 300000

T
im

e
(m

s)

Size

Hypersphere Simplex

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140

T
im

e
(m

s)

Dimension

Hypersphere Simplex

Fig 15 Performance against required precision (size = 50k)

The above figure shows the execution time as a function against required precision (both axes in

logarithmic scale). The test data set is uniform distributed points in unit hypersphere. Although

worse case time complexity suggest execution time depends on 1/ϵ
2
, the above plot of

experimental results suggest the execution time has weak dependency on (1/ϵ).

Finally, we made some large case comparison, as shown as follows:

 Algorithm Size Dimension Precision Time(seconds)

1 Fischer 2000 2000 Exact 3500

2 Pruning Bouncing Bubble 2000 2000 10
-6

 141

3 Pruning Bouncing Bubble 131072 2048 10
-6

 226

4 Pruning Bouncing Bubble 262144 1024 10
-6

 129

5 Pruning Bouncing Bubble 262144 1024 10
-3

 5.6

The largest case is only limited by memory we can allocate one process in the platform, which is

1G bytes.

In the above table, we also provide an experimental result for precision 10
-3

 as a comparison. As

high precision may not be critical in all application, ability to have tradeoff between precision

and time saved is also essential.

Compare row 4 with row 3, we can see that the execution time is insensitive to the size of the

data set but linear on the dimension, which is as suggested by the time complexity analysis.

7. Conclusion

In this paper, new approximation algorithms are proposed for minimal enclosing ball problem --

one simple algorithm as a substitution of Ritter's algorithm and one 1+ϵ approximation to

provide arbitrary precision in less time.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 T
im

e
(s
)

precision

d=3 d=64 d=256

Reference

1. K. Fischer, B. Gärtner and M. Kutz: Fast Smallest-Enclosing-Ball Computation in High

Dimensions (2003)

2. P. Kumar, J.S.B. Mitchell and E.A Yıldırım: Computing Core-Sets and Approximate Smallest

Enclosing HyperSpheres in High Dimensions (2003)

3. E. Welzl: Smallest Enclosing Disks (balls and ellipsoids) (1991)

4. B. Gärtner: Fast and Robust Smallest Enclosing Balls (1999)

5. M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. Proc. 34th Annu.

ACM Sympos.on Theory of Computing, pages 250–257, 2002.

6. J. Ritter. An efficient bounding sphere. In Andrew S. Glassner, editor, Graphics Gems.

Academic Press, Boston, MA, 1990.

7. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in the Euclidean

space. Information Processing Letters, 32:205-211, 1989.

