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Abstract
Writing accurate equations requires accepting the point of view that the general equation of motion must describe the

most general (turbulent) flow regime. The implementation of this point of view became possible by applying the

operation of isolating the velocity rotor from the expressions for strain rates and from the Laplace operator of velocity. In

this case, the second form of the equation was used for the total acceleration of a liquid particle in the Gromeka-Lamb

form, which includes the angular velocity of rotation of the particles [4]. The equations are derived for continuous media

in which shear stresses are described using strain rates in the corresponding plane - two models of a Newtonian fluid and

one model of a non-Newtonian fluid with a power-law rheological law. Thus, the main task of the derivation was to find

the term characterizing the influence of the viscous friction force on the turbulent flow regime. In any version of the

derivation, the initial equation is the motion of a continuous medium in stresses.
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Introduction 

 

Turbulent and laminar flows have a great influence on natural processes, as well 

as on energy and transport. To effectively use the capabilities of these processes, it is 

necessary to have the most accurate mathematical description of the movement of 

continuous media. This description is based on the law of conservation of momentum 

and uses partial differential equations. The most common flow regime is turbulent, 

which is characterized by the presence of three types of motion - translational, 

rotational and oscillatory. Currently, mathematical models are used, implemented in 

the form of a combination of exact and semi-empirical equations that do not take into 

account rotational motion [1–4]. In this paper, problems are considered within the 

framework of an averaged turbulence model, which takes into account the influence 

of translational and rotational motion [1, 2, 4]. 

 The laws of motion of working bodies as a continuous medium are studied in 

fluid mechanics, the mathematical basis of which is the equations of motion in 

stresses (Navier). 

 In the classical literature, there are two exact three-dimensional special cases of 

these equations: the equation of motion for a rigid body (elasticity theory) and the 

Navier-Stokes equation for a liquid. The theory of elasticity has proven the high 

quality of calculations and has a clear structure of equations [5, 6]. In fluid mechanics 

there is no similar structure for all flow regimes, which led to a large share of 

experimentation and, accordingly, to a high labor intensity of research. 

 Writing accurate equations requires accepting the point of view that the general 

equation of motion must describe the most general (turbulent) flow regime. 

 The implementation of this point of view became possible by applying the 

operation of isolating the velocity rotor from the expressions for strain rates and from 

the Laplace operator of velocity. In this case, the second form of the equation was 

used for the total acceleration of a liquid particle in the Gromeka-Lamb form, which 

includes the angular velocity of rotation of the particles [4]. 
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 The equations are derived for continuous media in which shear stresses are 

described using strain rates in the corresponding plane - two models of a Newtonian 

fluid and one model of a non-Newtonian fluid with a power-law rheological law.

 Thus, the main task of the derivation was to find the term characterizing the 

influence of the viscous friction force on the turbulent flow regime. 

 In any version of the derivation, the initial equation is the motion of a 

continuous medium in stresses. 
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, 

 

     where , ,xx yy zzp p p are normal stresses, , ,yx zx yzt t t are shear stresses, 

 , ,X Y Z   - specific mass force, , ,x y zu u u - velocity projections, t - time. 

 

          The search for general integrals and partial solutions was carried out for two 

problems: flow around a horizontal plate and flow in a straight circular pipe in 

turbulent and laminar flow regimes. Particular solutions were compared with known 

analytical and semi-empirical equations. 

 The differential equations in this work were obtained for an incompressible 

fluid; the influence of pulsations of all thermodynamic quantities was not taken into 

account. 
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1. Non-Newtonian fluid

Let us apply system (1) to derive the equation of motion of one group of Non-

Newtonian liquids ( Ostwald de Waele model ), which has a power-law rheological 

equation nkt = ×e , (where ԑ - strain rate in the corresponding plane, k = const, 

n = const) [7, 8].

Transformation conditions:

1. Normal stress 
ii

p and pressure 
i

p have opposite directions. xx xp p= - , 

yy yp p= - , zz zp p= - (where are , ,x y zp p p - the pressure projections).

2. Let's accept meaning constants k = m, (where m is the dynamic viscosity of the 

liquid).

3. Let us express the total acceleration of a liquid particle using Gromeka -Lamb 

equation [4].

This form is equivalent to the standard formula, but allows one to establish the 

influence of linear and angular velocity on the total acceleration of a fluid particle.

In vector form, this equation looks like:

[ ]
2

2 .
2

du u u
grad u

dt t
w

æ ö¶
= + + × ´ç ÷¶ è ø

]]]
                                          

(2)

In projections on the coordinate axes:

2

2 ( )
2

x x
z y y z

du u u
u u

dt t x
w w

æ ö¶ ¶
= + + × -ç ÷¶ ¶ è ø

2

2 ( )
2

y y

x z z x

du u u
u u

dt t y
w w

¶ æ ö¶
= + + × -ç ÷¶ ¶ è ø

2

2 ( ).
2

z z
y x x y

du u u
u u

dt t z
w w

æ ö¶ ¶
= + + × -ç ÷¶ ¶ è ø

The convective part of the total acceleration in (2) also follows from the formula

vector analysis ( ) ( )2 / 2u u = grad u + rot u×u×Ñ) ( )2u u = grad u + rot u×u) ( )2 / 2
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4. Let us transform the terms characterizing viscous friction using the X axis as 

an example (1). 

Let's add zero to the derivatives inside the brackets, presenting it in the form of 

two specially selected terms with opposite signs. 

 Then we get: 
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Where - for tangential stresses [1, 2, 4]:                          - for the velocity rotor: 
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 After similar transformations for other coordinate axes we get: 

[ ]
21

2 ( , , ) 2 ,
2

n u u
G divp f u n grad u

t

æ ö ¶
- + × × - = + ´ç ÷ ¶è ø

n w w
r

                          (3) 

 where the projections of the friction function ( , , )f u nw have the form: 
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 Accounting influence linear ( u ) and angular velocity ( ω ) rotation particles 

indicates that  equation (3) describes turbulent regime within the framework of the 

averaged turbulence model. 

1.1. Analysis of the equation of motion (3) 

 

 Equation (3) has three special cases: 

1. n = 1 . 

 This special case describes the flow of a Newtonian fluid with a rheological 

equation = grad ut m × and has the form: 

[ ]
21

2 ( , ) 2 .
2

u u
G divp f u grad u

t

æ ö ¶
- + × × - = + ´ç ÷ ¶è ø

n w w
r

                         (5) 

This equation was obtained in a different way in [9]. 

Equation (5) breaks down into two special cases: 

 - for laminar flow regime (ω = 0 ). 

21
2 ( ) .

2

u u
G divp f u grad

t

æ ö ¶
- + × × - =ç ÷ ¶è ø

n
r

                               (6) 

 - for the vortex flow regime ( u = 0 ). 

1 ( )
2 ( ) .

r
G divp f

t

¶ ×
- + × × =

¶
w

n w
r

 

2. ω = 0 . 

 After eliminating the angular velocity ω from (3), we obtain: 

21
2 ( , ) .

2

n u u
G divp f u n grad

t

æ ö ¶
- + × × - =ç ÷ ¶è ø

n
r

 



9 

 

 By definition (6) describes the laminar flow regime of a Non-Newtonian fluid. 

3. u = 0 . 

 After eliminating the linear velocity u from (3), we obtain: 

1 ( )
2 ( , ) .n r

G divp f n
t

¶ ×
- + × × =

¶
w

n w
r

 

 This equation describes the vortex flow regime with a fixed axis of rotation. 

 In Fig. 1 shows the place of these equations among other equations of motion 

of a continuous medium. 

 

 

Fig. 1. Connections between various equations of motion of a continuous medium. 

  

 In the fig. 1 shows two versions of the Newtonian fluid, which differ in the 

system of assumptions. When deriving the Navier-Stokes equation, restrictions are 

imposed on the tangential ( tij ) and normal stresses (p xx = – p +2 · m· du x / dx ) [4]. 

Equation (5) describes flows in which the same Newton’s rheological law is used, but 

normal stresses (pressure) can change arbitrarily. 

 The equation of motion (3) breaks down into two special cases when angular or 

linear velocity is excluded. This indicates the existence of a third flow regime, the 

dynamics of which depends on the particle rotation velocity ω .  
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2. Newtonian fluid 

2.1. Turbulent flow regime 

 

Let us find the simplest special cases of equations (1, 5). 

We will use two methods for finding the integrals for the velocity distribution on 

the plate and in the round pipe u x ( y ) and u z ( r ) [10]. 

1. Let's find a special case (1) for a one-dimensional flow, and then use 

Newton's rheological law. 

2. Let’s use (5), which in coordinate form has the form: 

2 2

2

1
2 ,

yx x z z xp u u du
X

x y x z y z dt

¶wé ù¶ ¶ ¶ ¶w
- + n + + + =ê úr ¶ ¶ ¶ ¶ ¶ ¶ë û  

2

2

1
2 ,

y y yx x z
p u duu

Y
y z x y z x dt

é ù¶ ¶ ¶ ¶w ¶w
- + n + + + =ê ú
r ¶ ¶ ¶ ¶ ¶ ¶ê úë û                                

(7) 

22

2

1
2 .

y yz z x z
up u du

Z
z x y z x y dt

é ù¶ ¶w¶ ¶ ¶w
- + n + + + =ê ú
r ¶ ¶ ¶ ¶ ¶ ¶ê úë û  

Let us find a one-dimensional special case (7) and integrate it. 

Flow on a horizontal plate 

 

 

Fig. 2. Calculated flow diagram on a plate (1 – turbulent boundary layer, 2 – laminar 

sublayer). 

 

Let us apply the Navier equation (1) to find the distribution of shear stress in the 

boundary layer (Fig. 2). For the x coordinate we have: 

1 1
.

yxx zx xp du
X

x y z dt

¶tæ ö¶ ¶t
- + + =ç ÷
r ¶ r ¶ ¶è ø

 

 
After simplification for one-dimensional and steady flow we obtain: 
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.
yxx

ddp
=

dx dy

t
 

 

After integration with dpx /dx=const we find 

 

1( ) .x
x

dp
y y c

dx
t = +      (8) 

 

We find the velocity distribution normal to the surface of the plate using 

Newton’s equation for viscous friction: 

1( ) x x
x

dp du
y y c

dx dy
t = + = m

 

 

after integration 

 

2

1 2

1
( ) .

2

x
x

dp
u y y c y c

dx
= + +

m                                     (9) 

 

Let us use the second method of finding the velocity distribution using (7) and 

taking into account the rotation of particles. Because  velocity u x is changing only 

along the y axis : 

2

2
2 .z x xu p

y y x

æ ö¶w ¶ ¶
m + =ç ÷

¶ ¶ ¶è ø
 

By calculating the function zw you can get:  

2

2

1
.x xu p

y x

¶ ¶
=

¶ m ¶
                             (10) 

Integrating (10) with (1/ m) · dp x / dx = const we find the general integral, which 

coincides with (9). 

Flow in a round pipe 

 

Let us use the general equation of motion of a continuous medium in stresses in 

coordinates ( r, θ, z). For the z coordinate, the general equation has the form [2, 4]: 
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1 1 1
,z zr r zr zp du

Z
z r r r dt

q¶ ¶t ¶t tæ ö
- + + + =ç ÷r ¶ r ¶ ¶qè ø

            (11)
 

where p z =– p z z – pressure along the z axis, which, according to the sign rule, is 

opposite to the normal stress p z z . 

Let us simplify (11), assuming that there are no mass forces and rotation around 

the pipe axis.  

Then we get: 

.zr zr zp

r r z

¶t t ¶
+ =

¶ ¶  

With a constant pipe diameter dp z / dz = const, the solution has the form: 

1 .
2

z

zr

dp
rc dz

r

×
t = +  

Because 

11
,

2

z z
zr

du dp c
r

dr dz r
t = m = +  

then after integration we get: 

2

1 2

1
( ) ln .

4

z
z

dp
u r r c r c

dz
= + +

m                            (12) 

Let us use the second solution method, for which (7) in a cylindrical coordinate 

system for the z axis takes the form: 

1 1 1
2 ( .z z z z

r

p u u u du
Z

z r r r z r r dt

q
q q

æ ö¶ ¶ ¶ ¶ ¶ ¶é ù é ù é ù
- + n w + + w + + w + =ç ÷ê ú ê ú ê úr ¶ ¶ ¶ ¶q ¶ ¶ë û ë û ë ûè ø

 

 

For this problem, the flow velocity changes only along the radius and the 

derivative along the z axis can be neglected. We will also assume that the velocity 

does not change depending on the angle θ (the flow does not rotate around the pipe 

axis). 

Then, calculating ω r and making reductions, we find: 
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2

2

1 1
.z z zu u p

r r r z

¶ ¶ ¶
+ =

¶ ¶ m ¶                                                                                 (13) 

 

After integrating (13) with (1/ m) · dp z / dz = const we again obtain (12). 

Thus, the general integral for the velocity distribution in a turbulent regime is 

equation (12). 

In Fig. 3 shows a diagram for obtaining general integrals for finding tangential 

stresses and velocity distribution for a turbulent flow regime. 

 

 

Fig. 3. Two ways to find the general integral for turbulent flow in a round pipe. 

 

 Table 1. General integrals for turbulent flow 

  

Mod

e 
Pipe flow Flow on the plate 

Turbulent 
2

1 2

1
( ) ln

4

z
z

dp
u r r c r c

dz
= + +

m  
2

1 2

1
( )

2

x
x

dp
u y y c y c

dx
= + +

m
 

 

Private solutions 

 

1. We will find a particular solution for the velocity distribution in the pipe from 

the general solution (12) using the variable y (Fig. 4). 
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Fig. 4. Calculation scheme for searching for a particular solution ( y = r 0 – r ). 

 

Let us apply to these equations the boundary conditions characteristic of the pipe 

axis: 

for y= r 0 , τ=0 and u z (y)= u max . 

Then we get: 

2 2 2 0
0 0 max

1
( ) 2 ln .

4

z
z

dp r
u y y r r u

dz y

æ ö
= - + +ç ÷

m è ø
                                   (14) 

 

This solution is not applicable to calculating the velocity on the wall ( y = 0) , 

since near the wall there is a laminar sublayer that separates the core of the turbulent 

flow from the wall. 

In Fig. 5 shows a comparison of the velocity distribution constructed according 

to (14) and the semi-empirical equation u z (y)= u max (y/ r 0 ) 0.16 [4]. 

 

 
 

Fig. 5. Comparison of the theoretical velocity distribution in a pipe for a turbulent flow 

regime - solid , for a power-law semi-empirical equation - dots. 

 

 

2. Let us consider a particular solution for turbulent flow on a plate. Let us set 

the conditions on the outer boundary of the boundary layer and apply them to the 

integral of Table 1. 

0 0.025 0.05 0.075 0.1
0

0.375

0.75
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1.5
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ut1 y( )
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When y= d(x), τ x (y)=0, and u x (y)= u f . 

Then we get: 

2 21
( ) ( ) 2 ( ) .

2

x
x f

dp
u y y x y x u

dx
é ù= + d - ×d +ë ûm

                     (15) 

In Fig. 6 shows a comparison of the velocity distribution found from (16) and 

from the well-known semi-empirical equation ue (y)= u x (y)= u f [y/ d(x)] 1/7 [4]. 

 

  

Fig. 6. Comparison of the theoretical velocity distribution for turbulent flow on a plate 

(15) – solid line and semi-empirical – points / Re x =2·10 5,  

dp x / dx = –35 Pa/m, air 

 

As follows from a comparison of the curves, in the range y/ d(x) = 0...0.1 there 

is a sharp discrepancy between the theoretical and semi-empirical dependence. 

This is due to the presence of a laminar sublayer in which there is no rotation of 

particles and the velocity distribution in this range y/ d(x) must be calculated using a 

different equation. 

In table 2 shows particular solutions that were obtained as a result of applying 

boundary conditions to the previously found general integrals. 

 

 Table 2. Particular solutions for turbulent flow 

Mode Pipe flow Flow on the plate 

Turbule

nt 
2 2 2 0

0 0 max

1
( ) 2 ln

4

z
z

dp r
u y y r r u

dz y

æ ö
= - + +ç ÷

m è ø
 

2 21
( ) ( ) 2 ( )

2

x
x f

dp
u y y x y x u

dx
é ù= + d - ×d +ë ûm

 

Note: d(x) is the thickness of the boundary layer. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

7.5

15

22.5

30

30

0

u y( )

ue y( )

10 y

δ x( )
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2.2. Laminar flow regime. 

 

 Let's consider the flow on a horizontal plate and in a round pipe, find general 

integrals and particular solutions. 

Flow on a horizontal plate 

 

Fig. 7. Scheme of laminar flow on a plate. 

 

To find the general integrals, we will use the well-known calculation scheme 

(Fig. 7) and (6) in coordinate form. 

 

2 2

2

1
2 ,x x z xp u u du

X
x y x z dt

é ù¶ ¶ ¶
- + n + =ê úr ¶ ¶ ¶ ¶ë û  

2

2

1
2 ,

y y yx
p u duu

Y
y z x y dt

é ù¶ ¶ ¶
- + n + =ê ú
r ¶ ¶ ¶ ¶ê úë û                                       

(16) 

22

2

1
2 .

yz z z
up u du

Z
z x y z dt

é ù¶¶ ¶
- + n + =ê ú
r ¶ ¶ ¶ ¶ê úë û

 

 

Let us find a particular solution by simplifying (16) for a one-dimensional 

steady flow with its subsequent integration. 

Then 

 
2

2

1

2

x xd u dp

dy dx
=

m  

 

Let us assume that the dynamic viscosity is constant and the pressure drop along 

the x axis does not change
1

.
2

xdp
const

dx

æ ö
=ç ÷

mè ø
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After integration : 

2

1 2

1
( )

4

x
x

dp
u y y c y c

dx
= + +

m . 

Private solution 

 

For a laminar flow regime, the boundary layer begins at the wall and the 

boundary conditions will be as follows: for y= d(x), u x (y)= u f , and for y=0, u x 

(y)=0 . As a result, we obtain for laminar flow: 

     

21
( ) - ( )

4 ( )

x
x f

dp y
u y y y x u

dx x
é ù= × d +ë ûm d

                                                  

(17) 

                                                             

Let us compare the solution (17) with the Blasius solution , which is presented 

in tabular form [4]. When constructing the graph, the dimensionless coordinates 

( ) /
2

u
y f

u y u f
x f x

æ ö
ç ÷= h =ç ÷u×ç ÷
è ø

adopted in [ 4] were used . The numerical data correspond to the 

laminar flow regime at a distance x from the leading edge. 

Comparison results of the graph in Fig. 8 and the table data for the Blasius 

solution show their satisfactory agreement. 

 
Fig. 8. Theoretical velocity distribution over the thickness of the laminar boundary layer 

on the plate ( Re x =5.8·10 3 , dp x / dx =–3.2 Pa/m, air) . 

 

Flow in a round pipe 

 

In Fig. Figure 9 shows a design diagram of a stabilized flow in a round pipe. 

 

0 0.5 1 1.5 2 2.5 3
0
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0.6
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1

1

0

u y( )

uf
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Fig. 9. Calculation scheme for laminar flow in a round pipe. 

 

A special case (16) for a one-dimensional flow in coordinates r , z has the form: 

2

2

1
.

2

z zu p

r z

¶ ¶
=

¶ m ¶      
       (18)

 

 

After double integration at (1/2 m) dp z / dz = const we find: 

 

2

1 2

1
( ) .

4

z
z

dp
u r r c r c

dz
= × + +

m                   (19) 

 

 
Table 3. General integrals for laminar flow regime. 

 

Mode Pipe flow Flow on the plate 

Laminar 
2

1 2

1
( )

4

z
z

dp
u r r c r c

dz
= × + +

m
 

2

1 2

1
( )

4

x
x

dp
u y y c y c

dx
= × + +

m
 

 

Private solution 

 

Let us find a particular solution for pipe (19) under the following boundary 

conditions: 

If r=0 , then o du z / dr =0 , and when r= r 0 , u z =0 . Then we obtain the velocity 

distribution along the radius, which coincides with the known equation Poiseuille  

[1, 2, 4]. 

( )2 2

0

1
( ) / ,

4
z zu r p z r r= ¶ ¶ × -

m
 

 
In Fig.11 shows a diagram for deriving the general equation of motion (5) and 

obtaining particular solutions for flow in a pipe and on a plate. 
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Fig. 11. Scheme for obtaining private solutions 

 

 Thus, to find exact solutions for the laminar flow regime, it is necessary to use 

equation (6). 

3. Stokes liquid 

3.1. Analysis of Assumptions 

 

The Stokes equation is derived in two ways: using general theorems of 

mathematics and using the equation of motion in stresses (1) [2, 4].  Let's consider 

the analysis of assumptions for the second option for deriving the equation. 

 

 Table 5. Constraints for transforming equation (20). for deriving equation (20). 

N Restrictions Stress 

1 . 2 x
xx

u
p p

x
m
¶

= - +
¶

 Normal 

2 . 
2

y

yy

u
p p

y
m
¶

= - +
¶

 Normal 

3 . 2 z
zz

u
p p

z
m
¶

= - +
¶

 Normal 

4 .  grad ut m= ×  Tangents 

5 . ρ = const  

 

From Table 5 it follows that the restrictions in the Stokes equation apply to all 

components of the surface force. This means that normal and shear stresses must 
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change according to certain rules. (In equation (5), normal stresses can change 

arbitrarily.) 

Let us analyze the Stokes equation for an incompressible fluid: 

 

21
 ,

du
G grad p u

dt
n

r
- + ×Ñ =                                               (20) 

 

From (20) it follows that the main factor taking into account the dynamics of 

the flow is the linear velocity, which affects the terms of the force of viscous friction 

and inertia. 

3.2. Second form and special cases 

 

Let us reduce the Stokes equation to a form more convenient for subsequent 

analysis and combine the terms that take into account viscosity. Let's perform the 

transformation using the x coordinate as an example . 

– From the limit for normal stress (Table 5): 

2 x
xx x

u
p p p

x
m
¶

= - + = -
¶

 or 2 ,x
x

u
p p

x
m
¶

= +
¶

  

where normal stress p xx = – p x according to the sign rule. 

Then the pressure term will take the form: 

 

2

2

1 1 1
2 2 .x x x

x

p u p u
p

x x x x x
m n

r r r
¶ ¶ ¶ ¶ ¶æ ö- = - + = - -ç ÷¶ ¶ ¶ ¶ ¶è ø

                                 (21) 

  

– Let us transform the Laplace operator and select terms that take into account 

the influence of linear and angular velocity. 

Then    
2 2 2

2

2 2 2
.x x x

x

u u u
u

x y z

¶ ¶ ¶
Ñ = + +

¶ ¶ ¶
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Let's express the second and third terms in terms of the first derivative, add a 

zero in parentheses and present it in the form of two identical terms with different 

signs. 

  

           
2 22

2

(  )
2

y y y yx x z z
u u u uu u rot u

y y y x x x y y x y y

w¶ ¶ ¶ ¶æ ö¶ ¶ ¶ ¶¶
= - + = - = -ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

  

 

             
2 2 2

2

(  )
2 .

y yx x z z z z
rot uu u u u u u

z z z x x x z z x z z

w¶ ¶¶ ¶ ¶ ¶ ¶ ¶¶ æ ö= - + = + = +ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø   

 

From these equations it follows that there is a function ψ( u , w) , which 

depends on two arguments and has a component on the x  axis in the form: 

22 2

2
( , ) 2 .

y yx z z
x

uu u
u

x x y x z z y

w w
y w

¶ ¶æ ö¶ ¶ ¶
= + + + -ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø  

Taking into account the last equation and (21), we obtain: 

 

22 2
2

2

1 1
2 .

y yx x z z
x

up p u u
u

x x x x y x z z y

w w
n n

r r

é ù¶ ¶æ ö¶ ¶ ¶ ¶ ¶
- + ×Ñ = - + - + + + -ê úç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è øë û  

Carrying out similar transformations for the y and z axes we get: 

 

( )
22 2

2
( , ) 2  

yx z
x x

uu u
u rot

x x y x z
j w w

¶¶ ¶
= - + + -

¶ ¶ ¶ ¶ ¶  

( )
22 2

2
( , ) 2  

yx z
y y

uu u
u rot

x y y y z
j w w

¶¶ ¶
= - + -
¶ ¶ ¶ ¶ ¶                           

(22)
  

( )
22 2

2
( , ) 2  ,

yx z
z z

uu u
u rot

x z y z z
j w w

¶¶ ¶
= + - -
¶ ¶ ¶ ¶ ¶

 

 

Where - ( ) ( ) ( ) ;   ;   .
y yx xz z

x y z
rot rot rot

y z z x x y

w ww ww w
w w w

¶ ¶¶ ¶¶ ¶
= - = - = -
¶ ¶ ¶ ¶ ¶ ¶
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Taking into account (22) and the total derivative in form (2), the Stokes 

equation can be written:

( )
22 2 2

2

1
2  2( )

2

yx x xz
z y y zx

up u uu u
X rot u u

x x x y x z x t
n w w w

r

é ù¶ æ ö¶ ¶ ¶¶ ¶
- + × - + + - - = + -ê ú ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ê ú è øë û

( )
22 2 2

2

1
2  2( )

2

y yx x z
x z z xy

u up u u u
Y rot u u

y x y y y z y t
n w w w

r

é ù¶ ¶æ ö¶ ¶ ¶ ¶
- + × - + - - = + -ê ú ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ê ú è øë û         

(23)

( )
22 2 2

2

1
2  2( ).

2

yxz z z
y x x yz

uup u uu
Z rot u u

z x z y z z z t
n w w w

r

é ù¶ æ ö¶¶ ¶ ¶¶
- + × + - - - = + -ê ú ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ê ú è øë û

In this form of recording, the terms taking into account viscous friction and 

inertia have the same influencing factors - ( u , w). In brief form, system (23) can be 

written:

[ ]
21

 ( , ) 2 .
2

u u
G div p u grad u

t
n j w w

r
æ ö ¶

- + × - = + ´ç ÷ ¶è ø
]]]                             (24)

From (24) it follows that the Stokes equation describes the turbulent flow 

regime within the framework of an averaged model.

The derivation of this equation was carried out without the use of additional 

restrictions. This means that (24) can be considered the second form of writing the 

Stokes equation (20).

Let's consider some special cases (24).

1. By eliminating viscosity ( ν = 0) , we obtain a general equation for inviscid 

flow from which we can obtain the Bernoulli equation for an ideal fluid:

[ ]
21

 2 .
2

u u
G div p grad u

t
w

r
æ ö ¶

- - = + ´ç ÷ ¶è ø
]]]                                   (25)

2. For a laminar flow regime, the angular velocity ( ), , 0x y zw = and equation 

(24) will take the form:
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22 2 2

2

1
.

2

yxz z z
uup u uu

Z
z x z y z z z t

n
r

æ ö¶ æ ö¶¶ ¶ ¶¶
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. 

In short form, system (26) has the form: 

 ( )
21

 .
2

u u
G div p u grad

t
n j

r
æ ö ¶

- + × - =ç ÷ ¶è ø
              (27) 

3. When ( ), , 0u x y z = from (24) we obtain the equation for a standing vortex 

1 ( )
 ( ) .

r
G div p

t

¶
- - × =

¶
w

n j w
r

 

Particular problems 

 

 Let us find the integrals for the cases of flow on a horizontal plate and in a 

straight circular pipe. 

Flow on a horizontal plate 

 

The goal of solving the problem is to find the velocity distribution normal to 

the surface. 

Finding solutions is done in two ways. The first method uses the Navier 

equation (1), and the second uses the Stokes equation (20). 

Using the first method, the shear stress distribution is found, and then the 

velocity distribution is found using Newton's law for viscous friction. Using the 

second method, the velocity distribution is found by integrating the one-dimensional 

second-order equation of motion. Both methods complement each other and should 

give the same result. 

Let us apply the Navier equation (1) to find the shear stress distribution. For the 

x coordinate we get ( p xx = — p x ): 
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1 1
.

yxx zx xp du
X

x y z dt

t t
r r

¶æ ö¶ ¶
- + + =ç ÷¶ ¶ ¶è ø

 

  

After simplification in accordance with previously accepted assumptions: 

yxx
ddp

=
dx dy

t
. 

After integration with dp x / dx = const we find: 

1
.x

yx

dp
y c

dx
t = +  

We find the velocity distribution normal to the surface of the plate using the 

equation: 

1
.x x

du dp
y c

dy dx
m = +  

After integrating [ (1/ μ )·( dp x / dx )= const ] we obtain equation (9). 

Let us use the Stokes equation in the form (20), which after simplification takes 

the form: 

2

2

1
.xd u dp

dy dxm
=  

After double integration, we obtain the equation of motion for turbulent flow 

(9): 

2

1 2

1
( ) .

2
x

dp
u y y c y c

dxm
= + +  

In Fig.12 shows a diagram for finding general integrals for the distribution of 

tangential stress and velocity during flow on a plate. 

 

Fig. 12. Scheme for finding integrals for turbulent flow on a plate. 
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To find the velocity distribution in the laminar sublayer, it is necessary to use 

equation (27), but there is no term d 2ux / dy 2. This means that it is impossible to find 

the velocity distribution for laminar flow. 

Let us find a particular solution to equation (9), excluding the assumption that 

the flow sticking hypothesis on the wall is fulfilled. Let us use the boundary 

conditions only on the outer boundary of the boundary layer: for y = d( x ) , τ x ( y )=0 

, and u x (y = d)= u f . 

Then we get: 

2 21
( ) ( ) 2 ( ) .

2

x
x f

dp
u y y x y x u

dx
é ù= + d - ×d +ë ûm                               (28) 

Equation (28) coincides with (15). 

Flow in a round pipe 

 

Let us consider the flow in a straight circular pipe and find the general integrals 

for the distribution of tangential stress and velocity along the radius of the pipe.  

 

Fig. 13. Calculation scheme of flow in a pipe (1-turbulent core, 2-laminar sublayer) 

 

Let us use the Stokes equation in the form (20) in ( r , z ) coordinates. Since the 

flow is steady and one-dimensional, the equation has the form: 

 

2

2

1 1
.z zd u du dp

dr r dr dzm
+ =  

After double integration we get ( )( )1 dp dz constm =é ùë û : 

 

2

1 2

1
( ) ln .

4
z

dp
u r r c r c

dzm
= + +

                                       
(29) 
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Let's solve the same problem using the Navier equation . 

From the equation (1): 

 

1 1 1
,z zr r zr z

p du
Z

z r r r dt

qt t t
r r q
¶ ¶ ¶æ ö- + + + =ç ÷¶ ¶ ¶è ø

                                   (30) 

 

where p z – pressure along the z axis, which, according to the sign rule, is 

opposite to the normal stress p z z .  

Let us simplify (30), assuming that there are no mass forces and rotation of the 

flow around the pipe axis. 

Then we get: 

.zr zr z
p

r r z

t t¶ ¶
+ =

¶ ¶
                                                          (31) 

 

At a constant pipe diameter ( dp z / dz = const ), solution (31) has the form: 

 

1 .
2

z

zr

dp
rc dz

r
t

×
= +  

 

Let's use Newton's equation z
zr

du

dr
t m= × : 

 

1
1

.
2

z z
du dp с

r
dr dz r

m = +  

 

After integration we obtain equation (29). 

In Fig. 14 shows a diagram for finding integral (29) in two ways. 
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Fig. 14. Scheme for finding the integral for turbulent flow in a pipe. 

 

Private solutions 

 

Let's find the quotient solution equation ( 29 ) for the following boundary 

conditions : at y= r 0 , τ= 0 and u z = u max . 

Then we get: 

2 2 2 0
0 0 max

1
( ) 2 ln .

4

z
z

dp r
u y y r r u

dz y

æ ö
= - + +ç ÷

m è ø
                                 (32) 

The result coincides with (14). 

Thus, particular solutions of the Stokes equation coincide with similar solutions 

for a Newtonian fluid in a turbulent flow regime. 

 

Laminar flow regime 

For the laminar flow regime there are no derivatives 

2

2

xu

y

¶
¶ and 

2

2

zu

r

¶

¶ and it is not 

possible to find the velocity distribution. 

This property can be interpreted as the absence of a laminar flow regime. 

Thus, in a Stokes fluid only a turbulent regime is possible and the velocity 

distribution is described by equation (14, 15) and Fig. 5, 6. A similar nature of the 

velocity distribution is observed in rarefied gas (Fig. 15 for different Knudsen 

numbers ( Kn ) [11]. 
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Fig. 15. Velocity distribution in a rarefied gas flow in a channel. 

 

To determine the compliance/inconsistency of equations (14, 15) with this flow 

property, it is necessary to conduct additional experiments. 

In Fig. 16 shows a diagram for transforming the classical version of the Stokes 

equation for an incompressible fluid and obtaining partial solutions. 

 

 

 

Fig. 16. Scheme for obtaining partial solutions of the Stokes equation 

 

From Fig. 16 it follows that the equations of motion for particular problems can 

be obtained in two ways. 
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4. Conclusion 

 

The three-dimensional equations found use the same system of forces and have 

the same structure. A comparison of these equations for various models of turbulent 

flow shows that they differ in only one term - for viscous friction. 

The breakdown of these equations according to physically known conditions 

allows us to assume that there are three flow regimes - turbulent, laminar and vortex. 

In Fig. 17 shows an example of the third flow regime over the surface of boiling 

water. 

 

Fig. 17. Vortex tube compressing a cloud of water vapor. 

 

Despite the large amount of information, the properties of the vortex tube have 

not been sufficiently studied and require research from low to the maximum possible 

rotation velocitys [12, 13]. 

Further progress in energy is associated with the theoretical and experimental 

study of the third (vortex) flow mode, which has an increased energy density. The 

mechanical properties of this flow regime make it possible to reduce the requirements 

for the thermal properties of the solid wall of the channel, which can lead to an 

increase in the temperature of the working fluid and will favorably affect the 

efficiency of the heat engine. 

General equations have nine or six unknowns and are not closed. In fluid 

mechanics there are no exact equations for solving the closure problem, but such 

equations exist in another area of continuum mechanics - the theory of elasticity. The 

role of closing equations is played by six second-order Saint-Venant equations, 

written in the form of deformations. This form of recording does not allow these 
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equations to be used to describe the movement of a fluid, because The dynamics of 

the flow depends on the strain rates. The transformation of these equations for a fluid 

medium was carried out in [14], which made it possible to obtain six third-order 

equations, which break down into two special cases according to the same physical 

conditions. 

Saint-Venant's equations refer to a different way of describing motion and are 

derived using the rules of geometry. This allows them to be used for any continuous 

medium. 

Solving the closure problem will allow the use of general equations to improve 

application programs in the field of fluid dynamics. In addition, the possibility of 

drawing up an equation of motion for the electrolyte opens up. 

The analysis of the possibilities of general equations of motion was carried out 

using the example of two well-known one-dimensional problems - flow around a 

horizontal plate (external problem of hydrodynamics) and flow in a straight round 

pipe (internal problem of hydrodynamics). General integrals and some particular 

solutions are found.  A comparison of these solutions with known data showed 

that for a laminar flow regime the velocity distribution coincides with the Blasius 

solution for a plate and with the Poiseuille equation for flow in a round pipe. 

 The velocity distribution for the turbulent flow regime is in satisfactory 

agreement with semi-empirical equations, but requires additional experimental 

verification. 

Integrals for the turbulent regime were obtained in two ways: 

1. From the equation of motion in stresses ( Navier ) taking into account 

Newton’s rheological equation. 

2. By simplifying three-dimensional equations for various fluid models and 

integrating special cases. Both paths lead to the same results. 

Analysis of the Stokes equation showed that it has a second form of notation, 

which includes the angular velocity of particle rotation. This form of the equation 

breaks down into two special cases, similar to other flow models. 
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The search for partial solutions turned out to be possible only for the turbulent 

flow regime. For laminar mode, there are no differential equations for the velocity 

distribution on the plate and in the pipe. This property of the Stokes equation can 

apply to flows in which the laminar regime does not exist. This may mean that the 

sticking hypothesis is not satisfied for solutions of the Stokes equation and the flow 

velocity on the wall is not zero. This conclusion follows from the analysis of 

equations (28) and (32). 

One of the possible variants of such a flow is the movement of a rarefied gas in 

the presence of particle sliding [4,11]. Testing this assumption will make it possible 

to clarify the physical meaning of the Stokes equation and will have a positive impact 

on progress in many areas of energy. 

It is characteristic that special cases of the Navier equation (3, 5, 6) are more 

complex versions of the Bernoulli equation for an ideal fluid. The same applies to the 

second form of the Stokes equation (24). 
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