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ABSTRACT: In this paper, we provide a remarkable method for construction of continued fraction
based on a given power series. Then we establish a new continued fraction approximation for the Lugo
and Euler–Mascheroni constants. Especially, we analytically determine the coefficients of the Lugo’s
asymptotic formula and all parameters of the continued fraction by Bernoulli numbers.
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1. Introduction
The mathematical constants and special functions such as the Euler-Mascheroni constant and the

gamma function arise in many fields of pure and applied mathematics such as theory of probability,
applied statistics, number theory and so on.

The Euler-Mascheroni constant γ, now universally known as gamma, was introduced by the Swiss
mathematician Leonhard Euler (1707-1783) in 1734, which is defined as the limit of the sequence
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The constant γ is generally accepted to be the most significant of the ’constant’ and as such is the
important special constant of mathematics, after π and e. It is deeply related to the gamma function

(z) by means of the familiar Weierstrass formula [1, p. 255, Equation (6.1.3)] (see also [12, Chapter
1, Section 1.1]):
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Lugo[3] considered the sequence nL , which is essentially an interesting analogue of the sequence

nD , defined by
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We can easily find that
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where L is called Lugo’s constant.
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As you can see, the Lugo and Euler-Mascheroni constants are related to each other.
In this field, the most important problem is to find more accurate approximation for them, so

during the past several decades, many mathematicians and scientists have worked on this subject.
Up to now, many researchers made great efforts in this area of establishing more accurate

approximations for the Lugo and Euler-Mascheroni constant and had lots of inspiring results.
Lugo[9] proved the following asymptotic formula:
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Chen and Srivastava[4] established new analytical representations for the Euler Mascheroni
constant γ:
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in terms of the psi (or digamma) function defined by )( z defined by
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Recently, authors have focused on continued fractions in order to obtain new approximations.
[10,11,13-15]

For example, Lu[6] provided faster sequence convergent to γ as follows.
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Moreover, he used continued fraction approximation to consider new classes of sequences for the
Euler–Mascheroni constant as follows.[7]
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In [8], he introduced new classes of sequences.
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In [2], a sequence concerning the Lugo’s constant is provided.
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In this paper, we provide a method for construction of continued fraction based on a given power
series. Then we establish a new continued fraction approximation for the Lugo and Euler–Mascheroni
constants. Especially, we analytically determine the coefficients of the Lugo’s asymptotic formula and
all parameters of the continued fraction by Bernoulli numbers.

The rest of this paper is arranged as follows.
In Sect. 2, some useful lemmas are given. In Sect. 3, a main method to construct continued fraction

and a new continued fraction approximation for the Lugo and Euler–Mascheroni constants are
provided. In the last section, the conclusions are given.

2. Lemmas
In this section, some useful lemmas are given. Especially, we analytically determine the

coefficients of the Lugo’s asymptotic formula.
Lemma 2.1. The psi function  has the asymptotic formulas as follows;
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where nB (n ∈ ℕ0 ≔ ℕ∪ {0}) denotes the Bernoulli numbers defined by the generating formula







 0 !1 n

n

nz n
zB

e
z

, 2z , (2.3)

then the first few terms of nB are as follows.
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We can find expressions above by differentiating expressions (3.14) and (5.4) in [3].
Lemma 2.2. The following asymptotic formula holds true:
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Proof. From (1.3) and (1.6), we can get
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Substituting (2.1) and (2.2) into (2.5) ,
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Thus,
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The proof of Lemma 2.2 is complete.
Remark 2.1. As you can see, (2.4) is equivalent to Lugo’s asymptotic formula (1.5). A remarkable



point is that we analytically determine the coefficients of the asymptotic formula.
The first few terms of coefficients are as follows.
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Lemma 2.3.(The Euler connection [5, p.19, Eq. (1.7.1, 1.7.2)]) Let }{ kc be a sequence in ℂ \ {0} and
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Since 10     ,  nn fff , n ∈ ℕ, there exists a continued fraction )/(0 mm baKb  with nth approximant nf 

for all n. This continued fraction is given by
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3. Main results
In this section, we provide a main method for construction of continued fraction based on a given

power series. Then we establish a new continued fraction approximation for the Lugo and
Euler–Mascheroni constants.

Theorem 3.1. Let }{ kc be a sequence in ℝ \ {0}. Then for every 0x ,
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Proof. Assume that
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The left-side of (3.1) is equal to )(xgn .
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using Lemma 2.3,
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The middle expression of (3.1) is equal to
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The proof of Theorem 3.1 is complete.
Theorem 3.2. We have a new continued fraction approximation for the Lugo and Euler–Mascheroni
constants:
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From (3.7) and Theorem 3.1,
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Thus, our new continued fraction approximation can be obtained.
Remark 3.1. As you can see, our new continued fraction approximation for the Lugo and



Euler–Mascheroni constants is equal to Lugo’s asymptotic formula but the expression is totally
different.
From (3.1), we have another expression of (3.9) as follows:
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For the convenience of readers, we rewrite.
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4. Conclusion
As mentioned above, in our investigation, we provide a generally applicable and useful method to

construct continued fraction based on a given power series. Then we establish a new continued fraction
approximation for the Lugo and Euler–Mascheroni constants. Especially, we analytically determine the
coefficients of the Lugo’s asymptotic formula and all parameters of the continued fraction by Bernoulli
numbers.
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