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Abstracs 

The growing interest in dark energy and dark matter has made studies on the energy 

density in the universe a very current topic. Furthermore, new cosmological 

measurements are calling into question the validity of the ΛCDM model, and it is 

necessary to review it in depth. To solve these new challenges, Professor Fulvio Melia 

has developed a linear expansion universe model, the Rh=ct universe, which is giving 

very good results in relation to the new cosmological measurements. In this report we 

have developed, within this model of the universe, an equation that allows us to 

calculate the value of the energy density as a function of the age of the universe. The 

result in reference to the current experimental value of the energy density obtained by 

Mission Planck coincides with the value obtained by our equation 0,97.10-26 Kg/m3. For 

this reason, we believe that our equation can be useful when determining energy 

densities of the universe at earlier and later times. With this wish we present our work. 
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1.- The linear expansion universe Rh = ct 

The standard cosmological model ΛCDM cannot respond to some important new results 

of modern cosmology. Challenges arise such as Microwave Background Uniformity, the 

Hubble Stress, the El Gordo collision or impossible galaxies (z > 10) that the standard 

cosmological model does not resolve. On the other hand, other models are proposed as 

alternatives. 

Professor Fulvio Meliá's linear expansion universe, Rh=ct universe, solves these 

challenges, where the standard model fails. This model is based on the restriction Rh = 

ct where Rh is the gravitational horizon, which coincides with the Hubble radius, t the 

age of the universe and c the speed of light in a vacuum. The model is already 

theoretically based []4], and constitutes an important tool for analyzing the universe, 

being today key to its understanding [1] 

 

2.- The value of energy density 

We are going to calculate the energy density in the universe Rh=ct; For this, we introduce 

the equation (1) obtained by us in Annex I. Equation that relates the curvature density 

parameter to the energy density parameter. Is the next: 
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Ωk/Ωρ = 8πG/3c2 

Ωk = R/ρc 

Ωρ = ρ/ρc 

Rh =ct 

According to the equations obtained in Annex II for the Gaussian curvature Kgauss, and 

the  curvature scalar R: 

R = 2Kgauss  

Kgauss= GM/c2r3 

(Rs = Schwarzschild radius) Rs = 2GM/c2 

Let's calculate the energy density for a value of r = Rh = Rs 

R = 2GM/c2r3 = 1/Rh
2 

Ωk/Ωρ = R/ρ = 8πG/3c2 = 1/ρRh
2  

ρ = 3/8πGt2  

In the Rh=ct universe it is true that:  

H=1/t 

Then: 

ρ = 3H2/8πG = ρc 

Ωρ = ρ/ρc = 1 

 

 

3.- Discussion 

We have obtained an equation for the energy density of the universe; this equation 

relates the energy density to the age of the universe and in principle it is valid where the 

Rh=ct universe is valid. Furthermore, we get that the energy density is equal to the 

critical energy density at any given moment, being therefore the energy density 

parameter will always be unity. Therefore, the energy density predicted by our equation 

for the current age of the universe is 0,97.10-26 Kg/m3. This result is in agreement with 

the experimental measurements of Mission Planck [3]. For this reason, we think that this 

equation found can give correct results when we determine energy densities at other 

cosmological times and that it provides the Rh=ct universe with a new tool for analyzing 

the cosmos. 

We summarize these results quantitatively through the following Table and graph: 
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ENERGY DENSITIES IN THE Rh =ct UNIVERSE 

685 million years          386.10-26  Kg/m3 

               761  million years          313.10-26  Kg/m3 

               856  million years          247.10-26  Kg/m3 

               979  million years          189.10-26  Kg/m3 

           1.142  million years          139.10-26  Kg/m3 

           1.370  million years            96.10-26  Kg/m3 

           1.713  million years            62.10-26  Kg/m3 

           2.283  million years            35.10-26  Kg/m3 

           3.425  million years            15.10-26  Kg/m3 

           6.850  million years               4.10-26  Kg/m3 

         13.700  million years               0,97.10-26  Kg/m3 

ρ = 3/8πGt2 = ρc 

Ωρ = 1 

 

Fig. 1. Energy density of the universe as a function of his age 
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4. – Conclusions 

Introducing the equation found by us, which relates the curvature scalar with the energy 

density, in the universe of linear expansion Rh=ct, we have obtained an equation that 

relates the anergy density of the universe with its age in a way that allows us to 

calculate the value of energy density at different cosmic times. Furthermore, this 

equation has led us to the conclusion that at all times the energy density is the critical 

energy density, and therefore the value of the energy density parameter is always 

unity. Our equation leads to a current energy density value of 0,97.10-26 Kg/m3, that 

matches the experimental value given by the Planck Mission [3] in 2018. Thus, this 

equation can be very useful in cosmological calculations and will always be a tool for 

analyzing the cosmos.  

 

Annex I 

In this annex we deduce the equation that relates the energy density to curvature. 

 

1. - The cosmic spacetime  

We are going to study a uniform and isotropic spacetime from a physical point of view, 

this is equivalent from a geometric point of view to being invariant under translations 

and rotations. 

According to Professor Fulvio Meliá in reference [1], we define “cosmic spacetime” as 

the set of points (t, r, Ø Φ) that satisfy the FLRW metric, that is, that satisfy the 

equation: 

ds2 = c2dt2 – a(t)2(
𝑑𝑟2

1−𝑘𝑟2 + r2dΩ2) 

We define each of the "3D hypersurfaces" of cosmic spacetime as the set of points that 

have the same temporal coordinate. Thus, cosmic spacetime will have a different 

hypersurface for each time t. As we have defined them, these hypersurfaces do not 

intersect, that is, they have no common points and the set of all of them constitutes 

cosmic spacetime. 

It is in these 3D hypersurfaces where we are going to calculate the curvature scalar that 

constitute the object of this Annex 

 

2. - Calculating the curvature scalar in the 3D hypersurfaces of cosmic spacetime 

First, we are going to calculate the curvature scalar of a 3D hypersurface of our 

homogeneous and isotropic cosmic spacetime with a matter density ρ. 
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2.1- Birkhoff–Jebsen theorem  

We make a brief comment on this theorem of mathematics applied to the theory of 

generalized relativity. First, we summarize Professor Fulvio Melia in reference [2] to 

explain it.  

“If we have a spherical universe of mass-energy density ρ and radius r and within it a 

concentric sphere of radius rs smaller than r, it is true that the acceleration due to gravity 

at any point on the surface of the sphere of relative radius rs to an observer at its origin, 

depends solely on the mass-energy relation contained within this sphere”. 

Thus, according to this, to calculate the curvature of the gravitational field of a point 

located at a distance "rs" from the geometric center that we are considering in our 

continuous universe, it is only necessary to consider its interaction with the points that 

are at a radius smaller than "rs", therefore, the mass "m" to be considered will only be 

that contained in the sphere of radius "rs". 

In general relativity Birkhoff´s theorem states that any spherically symmetric solution of 

the vacuum field equations must be statically and asymptotically flat. This means, that 

the outer solution (that is, the spacetime outside a gravitational, non-rotating, spherical 

body) must be the Schwarzschild metric. 

 

2.2- Calculating the spatial curvature constant 

Let's consider our 3D hypersurface and a sphere of radius r inside, the Birkhoff–Jebsen 

theorem assures us that if we want to calculate the curvature at a point on its surface, 

we must consider only the interaction with the gravitational mass found inside, the 

gravitational mass inside for the sphere external point that we are considering behaves 

as a point mass of equal magnitude to that of the mass of the sphere and located at its 

central point. In this case we are already in the Schwarzschild model, and we can use its 

equations to calculate the corresponding curvature.  

For all this, we can treat the problem of calculating the curvature scalar in each of the 

3D hypersurfaces of our cosmic spacetime as a problem to be solved by the 

Schwarzschild model and calculate the curvature scalar from that model. In this model, 

spacetime is reduced to a 2D surface and so Gaussian curvatures are easily calculated; 

the scalar curvature in this case is twice the Gaussian curvature.  

According to Annex II, we have found an equation that relates the Gaussian curvature 

Kgauss of the spacetime of the Schwarzschild model, with the cosmological parameters 

mass M and universal gravitation constant G. We are going to use this equation to solve 

our problem. This equation is the following:  

Kgauss= -GM/c2r3 

Since in our case it is a sphere, its mass will be given by  
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M = 4πr3ρ/3 

Kgauss = -4πG ρ/3c2  

The curvature scalar R in bidimensional spaces, 2D surfaces, will be given by twice the 

Gaussian curvature Kgauss, thus:  

R/ρ = -8πG/3c2    (1) 

 R curvature scalar, spatial curvature constant (m-2) and ρ is the matter density (Kg/m3) 

 

2.3- Studying the spatial curvature constant 

We study the ratio between the curvature parameter ΩK and the energy density 

parameter Ωρ  

Ωρ = ρ/ρc  

R/ρ = -8πG/3c2  

Dividing the two terms of the fraction by ρc, we get: 

 (R/ρc) /Ωρ = 8πG/3c2 

Defining: 

Ωk = R/ρc 

Result:  

Ωk/Ωρ = 8πG/3c2    (1) 

Annex II 

In this annex we obtain an equation that relates the Gaussian curvature of the 

Schwarzschild spacetime with several physical parameters. 

The Flamm paraboloid, J. Droste's spacetime solution to the problem studied by 

Schwarzschild, [5], is a 2D surface inserted in an R3 space. Its geometry allows us to 

parameterize the paraboloid as a function of the observer's distance from the point mass 

“r” and the azimuth angle “φ”. The problem admits a mathematical treatment of 

differential geometry of surfaces [6], and with it we are going to calculate the Gaussian 

Curvature. (Rs = Schwarzschild radius =2GM/c2)  

Surface parameters (r, φ) 

0 ≤ r < ∞,   0 ≤  𝜑 < 2π   

which has this parametric equation: 

x = r cosφ 

y = r senφ 
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z = 2(Rs (r- Rs))1/2 

Vector Equation of the Surface 

f (x,y,z) = (r cosφ,  r senφ,  2(Rs(r- Rs))1/2) 

Determination of velocity, acceleration, and normal vectors to the surface 

ðf/ðφ = (-r senφ, rcosφ, 0)  

ðf/ðr= (cosφ, senφ, (r/Rs -1)-1/2) 

ð2f/ðφ2 = (-r cosφ, -r senφ, 0) 

ð2f/ðr2 = (0, 0, (-1/2Rs). (r/Rs -1)-3/2) 

ðf/ðφðr = (-senφ, cosφ, 0) 

n=  
(ðf/ðφ x ðf/ðr)  

[
ðf

ðφ
x

ðf

ðr
]  

 

(ðf/ðφ x ðf/ðr)  = (rcosφ/(r/Rs  -1)1/2,   rsenφ/(r/Rs  -1)1/2,   -r) 

[
ðf

ðφ
x

ðf

ðr
] = r ((1/(r/Rs  -1)) +1)1/2  

Curvature and curvature parameters  

Gauss curvature      Kgauss = LN-M2/EG-F2 

 L = ð2f/ðφ2. n = -r(r/Rs)-1/2 

N = ð2f/ðr2. n = (1/2Rs) (r/Rs)-1/2 (r/Rs - 1)-1      

M =(ðf/ðφðr). n = 0 

E = ðf/ðφ.  ðf/ðφ = r2 

G = ðf/ðr. ðf/ðr = 1 + (1/ (r/Rs – 1)) 

F = ðf/ðφ. ðf/ðr = 0 

Kgauss = -Rs/2r3 =- GM/c2r3 

In 2D problems it is true that the curvature scalar R is twice the Gauss curvature at each 

point 

R = 2Kgauss 
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