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ABSTRACT

This publication contains a mathematical approach for a reinterpretation of the calculation of

the magnetic moment for the Einstein de Haas experiment under the assumption of a magne-

tic field density from the elaboration ''The reinterpretation of the 'Maxwell equations'[1]''. The

basis for this is Faraday's unipolar induction, which has proven itself in practice in combinati-

on with the calculation rules of vector analysis and differential calculus. The newly calculated

''Maxwell equations'' offer a generally valid calculation approach for the Einstein de Haas ex-

periment and its problem that the difference between measurement and calculation is a factor

of 2. This connection is established mathematically in this work.

It is shown that the magnetic moment can be derived mathematically by using one of the

newly calculated basic equations of electrodynamics from the elaboration ''The reinterpretati-

on of the 'Maxwell equations'[1]''. The gradient of the magnetic flux density grad B⃗  and its

mathematical consequences regarding the divergence of the magnetic flux density div B⃗

will play an important role here in this essay. By formulating that the trace of the gradient of

the magnetic flux density (Sp)grad B⃗  corresponds to the divergence of the magnetic flux

density  div B⃗  a direct connection of the magnetic flux density field itself with the field

density of the magnetic flux density is revealed. It also explains and corrects the difference

between measurement and calculation in the Einstein de Haas experiment. This is successful

because: In this experiment, alternating current and alternating voltage were used to carry out

the experiment [2]. Due to this fact, the ''Maxwell equations'' can be used for calculation and

therefore also their new formulation from the article ''The reinterpretation of the 'Maxwell

equations'[1]''.
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1. INTRODUCTION

The Einstein de Haas experiment was carried out by Albert Einstein (March 14, 1879 - April

18, 1955) and Wander Johannes de Haas (March 2, 1878 - April 26, 1960), in 1915. The ex-

periment showed how a magnetic moment is generated in a body. This effect is now better

known as the ''Einstein de Haas effect''. The interpretation of this effect was that the elemen-

tary particles in the body generate a magnetic moment through rotation. The experiment was

later repeated several times by different scientists. It turned out that the measurement result of

the experiment is generally a factor of 2 larger than the corresponding calculation.

A solution  to  this  problem is  offered  in  the  paper  ''The  reinterpretation  of  the  'Maxwell

equations'[1]''. Therefore, the elaboration ''The reinterpretation of the Maxwell equation'[1]''

serves as the basis for this work. In particular, the newly formulated approach to induction

and the associated magnetic field density are the core of the following chapters. Only the

solution to the problem of factor 2, between measurement and calculation for the Einstein de

Haas experiment, is focused on.

2. IDEAS AND METHODS

2.1 IDEA FOR REINTERPRETING THE ''EINSTEIN DE HAAS EFFECT''

 

First of all, it must be clarified that ''The reinterpretation of the Einstein de Haas effect'' is not

a reinterpretation but rather a reformulation of the calculation on the topic, since the effect

itself does not need to be reinterpreted. The basic idea for the development: ''The reinterpreta-

tion of the Einstein de Haas effect'' is based on carrying out of the following experiments:

1. Albert Einstein und Wander Johannes de Haas, 1915, Verhandlungen der Deutschen Physi-

kalischen Gesellschaft, Bad Honnef, Experimenteller Nachweis der Ampèreschen Molekular-

ströme[2].

2. Polykarp Kusch und Henry M. Foley, 1955, Physical Review , USA, The Magnetic Mo-

ment of the Electron 
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3. Samuel Goudsmit und Georg Uhlenbeck, 1925, Zeitschrift für Physik, Deutschland, Erset-

zung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inne-

ren Verhaltens jedes einzelnen Elektrons  

Based on the elaboration of ''The reinterpretation of the 'Maxwell equations'[1]'' and the asso-

ciated mathematical requirement of a magnetic field density, the magnetic moment can now

be reformulated. 

All physical and mathematical descriptions used in this work are listed below.

E⃗  = electric field strength 

v⃗  = velocity

B⃗  = magnetic flux density

×  = cross product

s⃗  = distance

t  = time

δ  = delta

rot  = rotation

div  = divergence

grad  = gradient 

m⃗  = magnetic moment

m⃗(t )  = time-dependent magnetic moment

I  = electrical current strength

i(t )  = electrical current strength (alternating current)

U  = electrical voltage

u( t)  = electric voltage (alternating voltage)

R  = electrical resistance

A⃗  = area

Sp  = trace/track

Unipolar induction according to Farady:

E⃗  = v⃗  × B⃗                                                                                                                (2.1.1)

Magnetic moment:

m⃗  = I  ⋅ A⃗                                                                                                                   (2.1.2)
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2.2 BASICS OF VECTOR CALCULATION

In order to be able to derive the equation for the induction from the newly formulated equati-

on for the reformulation of the Einstein de Haas experiment, the basics of vector calculation

used for this are described in this chapter.

First of all, three meta-vectors  a⃗ ,  b⃗  and  c⃗  are introduced at this point. The three

meta-vectors will be used in the following basic mathematical description. In Equation 2.2.1,

these three meta-vectors are used to represent the cross product.

c⃗  = a⃗  × b⃗                   (2.2.1)

In equation 2.2.1, the rotation operator ( rot ) is now applied to both sides of the equation.

This creates equation 2.2.2.

rot  c⃗  = rot  (a⃗  × b⃗ )                               (2.2.2)

Now the right-hand side of equation 2.2.2 is rewritten according to the calculation rules of

vector calculation. This results in equation 2.2.3.

rot c⃗  =  rot (a⃗×b⃗)  =  (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  div b⃗  − b⃗  div a⃗                   (2.2.3)

On the right side of equation 2.2.3 two vector gradients arise, to be exact  (grad a⃗ )  and

(grad b⃗ ) . In addition, two vector divergences arise, to be exact (div a⃗)  and (div b⃗) .

From equation 2.2.3, for equation 2.1.1 follows, by applying the rotation operator ( rot ),

the equation 2.2.4.

E⃗  = v⃗  × B⃗                                                                                                                (2.1.1)

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                        (2.2.4)

The relationship between the expressions (grad a⃗ )  and div a⃗  is described by equation

2.2.5.

(Sp)(grad a⃗)  =  div a⃗                                                                                                  (2.2.5)
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The connection of equation 2.2.5 also applies to the connections of equations 2.2.6, 2.2.7 and

2.2.8. Equations 2.2.7 and 2.2.8 refer to equation 2.2.4.

(Sp)(grad b⃗)  =  div b⃗                                                                                                  (2.2.6)

(Sp)(grad B⃗)  =  div B⃗                                                                                                 (2.2.7)

(Sp)(grad v⃗ )  =  div v⃗                                                                                                  (2.2.8)

Equation 2.2.7 will still play an important role in the reformulation of the magnetic pole mo-

ment m⃗ . First, however, the magnetic pole moment m⃗  is explained in Chapter 2.3.

2.3 THE MAGNETIC POLE MOMENT

Since there are a number of formal descriptions of the magnetic pole moment m⃗ , of which

only the one used by Einstein and de Haas is needed to meet the goal of this work, only this

will be discussed [2]. Equation 2.1.2 describes this magnetic pole moment m⃗ . In equation

2.1.2, I  stands for the electric current and A⃗  stands for the area that is penetratesd by

the magnetic field in the direction of the magnetic pole moment m⃗ .

m⃗  =  I ⋅A⃗                                                                                                                     (2.1.2)

The formulation described in Equation 2.1.2 states that the magnetic pole moment m⃗  is

calculated by multiplying the area A⃗  that is penetrated by the magnetic field with the elec-

tric current I  that encloses this area. 

However, in the Einstein de Haas experiment an alternating current  i(t )  was used, which

means that equation 2.1.2 must be reformulated into equation 2.3.1.

m⃗(t )  =  i(t )  ⋅⃗A                                                                                                                (2.3.1)

Starting from equation 2.3.1, it will now be shown why only half of the measured value for

the magnetic pole moment  m⃗  can be calculated by using the ''Maxwell equations''. For

this purpose, the newly formulated ''Maxwell equations'' from the elaboration ''The reinterpre-
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tation of the 'Maxwell equations'[1]'' will be used, which results in a calculated value for the

time-dependent magnetic pole moment m⃗(t ) , that also corresponds to the actual measured

value for the time-dependent magnetic pole moment m⃗( t ) .

2.4 DERIVATION OF THE FORMULA FOR THE MAGNETIC MOMENT

In the following chapters, the time-dependent magnetic moment m⃗(t )  is connected to Hea-

viside's ''Maxwell equations'', specifically to the law of induction. This is done in order to cre-

ate the conditions for subsequently connecting the time-dependent magnetic moment m⃗(t )

with the newly formulated ''Maxwell equations'' from the elaboration: ''The reinterpretation of

the 'Maxwell equations'[1]''. These new ''Maxwell equations'' can be used to explain why the

measurement result from the experiments on the time-dependent magnetic moment  m⃗(t )

assumes twice the value from the associated calculation. 

The derivation adequately explains this discrepancy by introducing a magnetic field density

(div B⃗) .

2.4.1 THE MAGNETIC MOMENT AND ''THE MAXWELL EQUATIONS''

In order to explain the time-dependent magnetic moment m⃗(t ) , a simple technical setup is

first used here theoretically, in which the electric current and the area play a role. Considering

a simple loop of wire through which an electric current flows, this current creates a magnetic

field, twisted at a 90° angle, around and through the loop of the wire. The strength of this ma-

gnetic field depends on the strength of the electric current and the size of the area of the wire

loop. The area enclosed by the wire loop therefore contains a part of the magnetic field gene-

rated by the electric current, to be exact the part that is relevant for calculating the magnetic

moment. The magnetic moment is now a vector that is perpendicular, at a 90° angle, to the

surface enclosed by the conductor loop. If the conductor loop is now subjected to an alterna-

ting current, both the magnetic field and the magnetic moment change direction depending on

time, with the frequency of the alternating current by 180°. In order to derive the time-depen-

dent magnetic moment m⃗(t ) , a comparison is made at this point. The starting point for the

derivation of the magnetic moment will be equation 2.3.1 in combination with the ''Maxwell

equations'', first according to the well-known simplified formulation by Oliver Heaviside and

then according to the formulation from the elaboration ''The reinterpretation of the 'Maxwell

equations'[1]''. The differences between the two formulations are highlighted. In a first step,
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however, a formulation must be found that connects the „Maxwell equations“ with the time-

dependent magnetic moment m⃗(t ) . To do this, the basic formula for the magnetic moment

from equation 2.3.1 is used as an introduction. 

m⃗(t )  =  i(t )  ⋅⃗A                                                                                                                (2.3.1)

If Ohm's law applied to the time-dependent electric current i(t ) , the expression from equa-

tion 2.4.1 is created.

i(t )  = 
u(t )

R
                                                                                                                    (2.4.1)

The time-dependent electrical voltage u(t)  can now be reformulated as −
δ B⃗
δ t

 ⋅ A⃗ . It is

assumed here that the area A⃗  enclosed by the conductor is constant and points vectorially

in the same direction as the resulting time-dependent magnetic flux density  
δ B⃗
δ t

. If this

expression for the time-dependent voltage  U(t )  is inserted into equation 2.4.1, equation

2.4.2 results.

i(t )  = 
(−

δ B⃗
δ t

 ⋅ A⃗)

R
                                                                                                       (2.4.2)

Now the formulation for the time-dependent electric current  i(t )  from equation 2.4.2 can

be inserted back into equation 2.3.1 for the time-dependent magnetic moment m⃗(t ) , resul-

ting in equation 2.4.3.

m⃗(t )  =  (
(−

δ B⃗
δt

 ⋅ A⃗)

R
)  ⋅ A⃗                                                                                            (2.4.3)
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In this way, the formulation for the time-dependent magnetic moment m(t )  was connected

to the ''Maxwell equations''. Here this happens specifically using the expression  −
δ B⃗
δ t

.

This expression represents part of the law of induction.

At this point the time-dependent magnetic moment m(t )  would be sufficiently described,

taking into account  the ''Maxwell  equations''  according to  Heaviside.  In the next  chapter,

equation 2.4.3 is used and the calculation for the time-dependent magnetic moment  m⃗(t ) is

carried out, taking into account the newly formulated ''Maxwell equations'' from the elabora-

tion ''The reinterpretation of the 'Maxwell equations'[1]'' improved.

2.4.2 THE MAGNETIC MOMENT AND ''THE REINTERPRETATION OF THE
'MAXWELL-EQUATIONS''' 

In the last  chapter (Chapter 2.4.1) the magnetic moment was connected to  the ''Maxwell

equations'' according to Oliver Heaviside. Equation 2.4.3 shows this fact. In connection with

the  ''Maxwell  equations''  according  to  Heaviside,  the  time-dependent  magnetic  moment

m⃗(t )  is adequately described by equation 2.4.3, but not according to the newly formulated

''Maxwell  equations''  from  the  elaboration  ''The  reinterpretation  of  the  'Maxwell

-Equations'[1]''.  Equation  2.4.3  therefore  serves  as  the  basis  for  this  chapter.  The  term

−
δ B⃗
δ t

 in particular will undergo a mathematical and physical reformulation.

m(t )  =  (
(−

δ B⃗
δt

 ⋅ A⃗)

R
)  ⋅ A⃗                                                                                            (2.4.3)

First, the term −
δ B⃗
δ t

 is isolated from equation 2.4.3 and Heaviside's induction law is deri-

ved from it. This is shown by equation 2.4.4.

rot E⃗  = −
δ B⃗
δ t

      (2.4.4)

Since −
δ B⃗
δ t

 represents a vector in equation 2.4.4, it can also be represented in its compo-

nent notation. This is represented by the formulation from Equation 2.4.5.
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rot E⃗  =  −(
δ Bx

δ t
δ B y

δ t
δ B z

δ t
)                                                                                                         (2.4.5)

In the next step, the individual components  
δB x

δ t
,  

δB y

δ t
 and  

δB z

δ t
 from equation

2.4.5 are each added twice to the value 0. This is shown by equation 2.4.6.

rot E⃗  =  −(
δ B x

δ t
 +  0  +  0

0  + 
δ B y

δt
 +  0

0  +  0  + 
δ B z

δ t
)                                                       (2.4.6)

If the individual terms from equation 2.4.6 are now multiplied by the value 1, equation 2.4.7

results. The value 1 is equated here with the expressions 
δ x
δ x

, 
δ y
δ y

 and 
δ z
δ z

.

rot E⃗  =  −(
δ B x

δ t
 ⋅ 

δ x
δ x

 +  0  ⋅ 
δ y
δ y

 +  0  ⋅ 
δ z
δ z

0  ⋅ 
δ x
δ x

 ⋅ + 
δ B y

δt
 ⋅ 

δ y
δ y

 + 0  ⋅ 
δ z
δ z

0  ⋅ 
δ x
δ x

 + 0  ⋅ 
δ y
δ y

 + 
δ B z

δt
 ⋅ 

δ z
δ z

)                                                        (2.4.7)

If the expression from equation 2.4.8 is now applied to equation 2.4.7, equation 2.4.9 is crea-

ted.

0  = 
δ Bx

δt
 = 

δ B y

δ t
 = 

δ B z

δ t
                                                                                            (2.4.8)
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rot E⃗  =  −(
δ Bx

δ t
 ⋅ 

δ x
δ x

 +  
δ Bx

δ t
 ⋅ 

δ y
δ y

 +  
δ Bx

δ t
 ⋅ 

δ z
δ z

δ B y

δ t
 ⋅ 

δ x
δ x

 +  
δ By

δ t
 ⋅ 

δ y
δ y

 +  
δ B y

δ t
 ⋅ 

δ z
δ z

δ Bz

δ t
 ⋅ 

δ x
δ x

 +  
δ B z

δ t
 ⋅ 

δ y
δ y

 + 
δ B z

δ t
 ⋅ 

δ z
δ z

)                                               (2.4.9)

In the next step, the velocity v⃗  is solved from equation 2.4.9 and equation 2.4.10 is crea-

ted. The velocity vector v⃗  can also be expressed as 
δ s⃗
δ t

 and therefore also as (
δ x
δt
δ y
δt
δ z
δt

) .

rot E⃗  =  −(
δ Bx

δ x
 ⋅ 

δ x
δ t

 +  
δ Bx

δ y
 ⋅ 

δ y
δ t

 +  
δ Bx

δ z
 ⋅ 

δ z
δ t

δ B y

δ x
 ⋅ 

δ x
δ t

 +  
δ By

δ y
 ⋅ 

δ y
δ t

 +  
δ B y

δ z
 ⋅ 

δ z
δ t

δ Bz

δ x
 ⋅ 

δ x
δ t

 +  
δ B z

δ y
 ⋅ 

δ y
δ t

 + 
δ B z

δ z
 ⋅ 

δ z
δ t

)                                         (2.4.10)

In a final step, the velocity vector v⃗  in equation 2.4.10 is decoupled from the overall vec-

tor. This is shown in equation 2.4.11.

rot E⃗  =  −(
δ B x

δ x
 
δ B x

δ y
 
δ B x

δ z
δ B y

δ x
 
δB y

δ y
 
δ B y

δ z
δ Bz

δ x
 
δ B z

δ y
 
δ B z

δ z
)  (

δ x
δ t
δ y
δ t
δ z
δ t

)                                                                         (2.4.11)

The velocity vector v⃗  and the gradient of the magnetic flux density (grad B⃗)  are crea-

ted in equation 2.4.11. The simplified notation is shown in equation 2.4.12.

rot E⃗  =  −(grad B⃗) v⃗                                                                                                  (2.4.12)
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Equation 2.4.12 describes the unsimplified form of Heaviside's induction law. If this formula-

tion is now compared with equation 2.2.4, it is noticeable that equation 2.4.12 is mathemati-

cally incomplete.

rot E⃗  =  −(grad B⃗) v⃗                                                                                                  (2.4.12)

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                        (2.2.4)

Apparently, three of the five terms in equation 2.2.4 must be interpreted with the value 0 in

order to fulfill the requirements from equation 2.4.12, Heaviside's induction law. Due to the

mathematical formulation from equations 2.2.7 and 2.2.8, it must be stated at this point that it

is not mathematically possible to interpret these three terms with the value 0. At least three

terms from equation 2.2.4 must therefore have a value that is not equal to 0 if rot E⃗  is to

deliver a value that is not equal to 0.

(Sp)(grad B⃗)  =  div B⃗                                                                                               (2.2.7)

(Sp)(grad v⃗ )  =  div v⃗                                                                                                 (2.2.8)

If equations 2.2.7 and 2.2.8 are considered, it must be noted that two terms in equation 2.2.4

are  connected  to  each  other.  On  the  one  hand  the  term  (grad B⃗) v⃗  with  the  term

v⃗  div B⃗  and on the other hand the term (grad v⃗ ) B⃗  with the term B⃗  div v⃗ . The se-

cond pair of terms around the velocity gradient (grad v⃗ )  describes a formulation for the

change in spatial content, for example material deformation. The first pair of terms around

the gradient of the magnetic flux density (grad B⃗) , on the other hand, describes, for ex-

ample, a distortion or density states in the magnetic flux density B⃗ .

If the volume is not subject to such influences, for example there is no material deformation

in possible tests, the influence of the velocity gradient  (grad v⃗ )  and the velocity diver-

gence div v⃗  can be assumed to be 0. This results in equation 2.4.13. However, it must be

expressly pointed out at this point that these two terms must not generally be assumed to have

the value 0.

rot E⃗  =  0  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  0                                                                (2.4.13)
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(Sp)(grad B⃗)  =  div B⃗                                                                                               (2.2.7)

 

The two remaining terms, i.e. (grad B⃗) v⃗  and v⃗  div B⃗ , are directly connected to each

other by the mathematical requirement from equation 2.2.7. This was sufficiently explained

in the paper ''The reinterpretation of the 'Maxwell equations'[1]''. The elements of the trace

(Sp)  of the gradient of the magnetic flux density (grad B⃗)  are the elements that form

the basis for the expression −
δ B⃗
δ t

 and, according to equation 2.2.7, also describe the di-

vergence of the magnetic flux density   div B⃗ . To illustrate this, the term  (grad B⃗) v⃗

from equation 2.4.13 is presented in column notation. This is shown in equation 2.4.14.

rot E⃗  =  0  −  (
δ Bx
δ x

 
δ B x

δ y
 
δ B x

δ z
δ By

δ x
 
δ B y
δ y

 
δ B y

δ z
δB z

δ x
 
δ B z

δ y
 
δ Bz
δ z

) (
δ x
δ t
δ y
δ t
δ z
δ t

) +  v⃗  div B⃗  − 0                                       (2.4.14)

The components marked in Equation 2.4.14, i.e. 
δBx
δ x

, 
δ B y
δ y

 and 
δ Bz
δ z

, when added

together, form the trace (Sp)  of the gradient of the magnetic flux density (grad B⃗)  and

thus also its field density div B⃗ . Looking back at Equation 2.4.11, these are also the com-

ponents that in Heaviside's induction law, define the value −
δ B⃗
δ t

. This specifically means

that if the trace of the gradient of the magnetic flux density (Sp)(grad B⃗)  has a value that

is not equal to 0, then mathematically the divergence of the magnetic flux density div B⃗

must also have a value that is not equal to 0.

 rot E⃗  =  −(
δBx
δ x

 
δ Bx

δ y
 
δ Bx

δ z
δ B y

δ x
 
δB y
δ y

 
δ B y

δ z
δ B z

δ x
 
δ B z

δ y
 
δB z
δ z

) (
δ x
δ t
δ y
δ t
δ z
δ t

)                                                                        (2.4.11)

12

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351



If the term v⃗  div B⃗  is now represented in equation 2.4.14 in its column notation or com-

ponent notation, this results in equation 2.4.15.

rot E⃗  =  0  −  (
δ Bx
δ x

 
δ B x

δ y
 
δ B x

δ z
δ By

δ x
 
δ B y
δ y

 
δ B y

δ z
δB z

δ x
 
δ B z

δ y
 
δ Bz
δ z

) (
δ x
δ t
δ y
δ t
δ z
δ t

) +  (
δ x
δ t
δ y
δ t
δ z
δ t

)  (
δBx
δ x

 + 
δB y

δ y
 + 

δB z
δ z

)  −  0    (2.4.15)

Since the divergence of the magnetic flux density div B⃗  is a single numerical value consis-

ting of an addition of the components 
δ Bx
δ x

, 
δB y
δ y

 and 
δBz
δ z

, it must be multiplied

by each element of the velocity vector v⃗ . This circumstance is shown in equation 2.4.16.

rot E⃗  =  0  −  (
δ Bx
δ x

 
δ B x

δ y
 
δ B x

δ z
δ By

δ x
 
δ B y
δ y

 
δ B y

δ z
δB z

δ x
 
δ B z

δ y
 
δ Bz
δ z

)(
δ x
δ t
δ y
δ t
δ z
δ t

)  + (
(
δ x
δ t

)(
δBx
δ x

 + 
δB y

δ y
 + 

δB z
δ z

)

(
δ y
δ t

)(
δ Bx
δ x

 + 
δ B y
δ y

 + 
δB z
δ z

)

(
δ z
δ t

)(
δBx
δ x

 + 
δB y
δ y

 + 
δB z
δ z

)
)   − 0    (2.4.16)

If equation 2.4.16 is now considered under the assumption that the magnetic flux density

B⃗  is not subject to deformation, distortion or torsion, equation 2.4.16 can be simplified to

equation 2.4.17. It must also be made clear at this point that this assumption cannot be made

in principle, since there are definitely circumstances under which a deformation, distortion or

torsion can arise in the magnetic flux density B⃗ .

rot E⃗  =  0  −  (
δBx
δ x

 0  0

0  
δB y
δ y

 0

0  0  
δBz
δ z

)(
δ x
δ t
δ y
δ t
δ z
δ t

)  + (
(
δ x
δ t

)(
δB x

δ x
 + 

δB y

δ y
 + 

δB z
δ z

)

(
δ y
δ t

)(
δBx
δ x

 + 
δB y
δ y

 + 
δB z
δ z

)

(
δ z
δ t

)(
δB x
δ x

 + 
δB y
δ y

 + 
δBz
δ z

)
)  − 0               (2.4.17)
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If equation 2.4.17 now calculates the elements of the velocity vectors, i.e. 
δ x
δ t

, 
δ y
δ t

 and

δ z
δ t

, with the elements of the magnetic flux density, i.e. 
δ Bx
δ x

, 
δ B y
δ y

 and 
δBz
δ z

,

mathematically correctly, equation 2.4.18 is created.

rot E⃗  =  0−(
δBx
δ x

δ x
δ t

 + 0
δ y
δ t

 + 0
δ z
δ t

0
δ x
δ t

 + 
δ B y
δ y

δ y
δ t

 + 0
δ z
δ t

0
δ x
δ t

 + 0
δ y
δ t

 + 
δB z
δ z

δ z
δ t

)+(
δBx
δ x

δ x
δ t

 + 
δB y

δ y
δ x
δ t

 + 
δBz
δ z

δ x
δ t

δBx
δ x

δ y
δ t

 + 
δB y
δ y

δ y
δ t

 + 
δB z
δ z

δ y
δ t

δ Bx
δ x

δ z
δ t

 + 
δ B y
δ y

δ z
δ t

 + 
δB z
δ z

δ z
δt

)−0 (2.4.18)

If equation 2.4.18 now assumes that there are no spatial distortions, deformations or torsions,

only the expressions that contain  
δ x
δ x

,  
δ y
δ y

 and  
δ z
δ z

 remain. This circumstance is

shown in equation 2.4.19. Here, too, it must be made clear that this assumption cannot be

made in principle, as there are circumstances under which spatial deformation, distortion or

torsion can be assumed.

rot E⃗  =  0  −  (
δBx
δ x

δ x
δ t

 +  0  + 0

0  +  
δB y
δ y

δ y
δ t

 +  0

0  +  0  +  
δBz
δ z

δ z
δ t

) + (
δ Bx
δ x

δ x
δt

 +  0  + 0

0  +  
δB y
δ y

δ y
δ t

 +  0

0  +  0  +  
δB z
δ z

δ z
δ t

)  −  0                        (2.4.19)

If equation 2.4.19 is further simplified, equation 2.4.20 is created.

rot E⃗  =  0  −  (
δBx
δ x

δ x
δ t

δB y

δ y
δ y
δ t

δ Bz
δ z

δ z
δ t

) + (
δBx
δ x

δ x
δ t

δB y

δ y
δ y
δ t

δB z
δ z

δ z
δ t

)   − 0                                                          (2.4.20)
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If the elements  
δ x
δ x

,  
δ y
δ y

 and  
δ z
δ z

 are shortened in equation 2.4.20, this results in

equation 2.4.21.

rot E⃗  =  0  −  (
δBx
δ t

δB y

δ t
δB z
δ t

)  + (
δBx
δ t

δB y
δ t

δB z
δ t

)   − 0                                                                       (2.4.21)

Further simplifying equation 2.4.21 results in equation 2.4.22.

rot E⃗  = −2  ⋅ (
δBx
δ t

δB y
δ t

δB z
δ t

)                                                                                                 (2.4.22)

In the last step, the column notation of the vector is transferred to the arrow notation. This re -

sults in equation 2.4.23.

rot E⃗  = −2  ⋅ 
δ B⃗
δ t

                                                                                                     (2.4.23)

rot E⃗  = −
δ B⃗
δ t

                                                                                                             (2.4.4)

A comparison of the result from equation 2.4.23 with the result from equation 2.4.4, which

represents Heaviside's induction law, shows that under the stated conditions of a distorti-

on-free magnetic flux density and a distortion-free volume, that same induction law increases

by a factor of 2.  It needs to be expanded if the assumptions made in deriving equation 2.4.23

hold. That is why the formulation for the time-dependent magnetic moment m⃗(t )  must now

be expanded by this factor; it must be reformulated.
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2.5 THE REFORMULATION OF THE MAGNETIC MOMENT

The fact explained in Chapter 2.4 means that the formulation for the time-dependent magne-

tic moment m⃗(t )  from equation 2.4.3 is also influenced.

m⃗(t )  =  (
(−

δ B⃗
δt

 ⋅ A⃗)

R
)  ⋅ A⃗                                                                                            (2.4.3)

In  equation  2.4.3,  the  formulation  from  equation  2.4.4  can  now  be  replaced  by  the

formulation from equation 2.4.23. This turns equation 2.4.3 into equation 2.5.1.

m⃗(t )=(

(−2  ⋅ 
dB
dt

 ⋅ A⃗)

R
)  ⋅ A⃗                                                                                         (2.5.1)

This also results in an adjustment for equation 2.3.1. This is shown in equation 2.5.2.

m⃗(t )  =  i(t )  ⋅⃗A       (2.3.1)

m⃗(t )  =  2  ⋅i(t )⋅A⃗                                                                                                             (2.5.2)

The comparison between equation 2.3.1 and equation 2.5.2 shows why there is a difference of

a factor of 2 between the measured value and the calculation for the time-dependent magnetic

moment in the experiments described in chapter 2.1.

3. Discussion

1. Apart from the situation presented in this paper, are there other possibilities of calculation

errors in the Einstein de Haas experiment with regard to factor 2 in equation 2.4.23?

2. What impact does the situation presented in this paper have on the Landé G factor?

3. What effects does the facts presented in this paper have on the gyromagnetic factor g?
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4. What effects does the facts presented in this paper have on the physical area of quantum

mechanics? Theories regarding spin and intrinsic angular momentum of the electron may be

affected.

5.  What  effects  does  the  facts  presented  in  this  paper  have  on  the  physical  subfield  of

electrodynamics? The ''Maxwell equations'' and the Lorenz force are affected here.

6.  What effects does the facts presented in this paper have on the physical subfield of solid

state physics? Ferromagnetism and superconductivity can be affected.

7. Are there other areas of physics that are influenced by the facts presented in this paper and

if so, which ones and how?

4. CONCLUSION

Under the mathematical requirement from equation 2.2.7, based on the magnetic flux density

B⃗ , to be exact (Sp)(grad B⃗)  = div ⃗( B) , the physical requirement based on the assump-

tion that the divergence of the magnetic flux density B⃗  is fundamentally assigned the va-

lue 0 ( div( B⃗)  = 0 ) is only valid under the assumption , that the value of the trace of the

magnetic flux density gradient is also 0 ( (Sp)(grad B⃗)  = 0 ). However, since the trace of

the gradient of the magnetic flux density (Sp)(grad B⃗)  and the divergence of the magnetic

flux density  div( B⃗)  contain the elements that, in combination with the velocity vector

v⃗ , describe the expression −
δ B⃗
δ t

, to be exact 
δB x

δ x
, 

δB y

δ y
 and 

δB z

δ z
, these two

expressions are mathematically inseparable from each other. This leads to either the physical

concept of the magnetic field having to be reinterpreted or the assumption that the divergence

of the magnetic flux density basically has the value 0 ( div( B⃗)  = 0 ) is wrong. This was

sufficiently explained in the paper ''The reinterpretation of the 'Maxwell equations'[1]''. For

the Einstein de Haas experiment, the consequence is that equation 2.3.1 for the time-depen-

dent magnetic moment m⃗(t )  must be expanded by a factor of 2. This results in a new equa-

tion for the time-dependent magnetic moment m⃗(t ) , to be exact equation 2.5.2. Other areas
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of physics are also affected, including quantum mechanics. The task now is to identify these

sub-areas and then correct them based on the facts presented here.

Due to the discrepancy between the measured value and the calculated value, the Einstein de

Haas experiment can also be assumed to be experimental evidence that the facts from the ela-

boration "The reinterpretation of the 'Maxwell equations'[1]" are correct.
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