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Abstract

This paper presents an analytic solution to the Navier-Stokes equa-
tions for incompressible fluid flow with a periodic initial velocity vector
field. Leveraging Fourier series representations, the velocity fields are
expressed as expansions, accounting for their temporal evolution. The
solution’s existence and smoothness are verified by demonstrating its
consistency with the Navier-Stokes equations, including the incom-
pressibility condition and pressure compatibility. The proposed solu-
tion contributes to understanding fluid dynamics and offers insights
into the millennium prize problem related to the Navier-Stokes equa-
tions. This work lays the groundwork for further investigations into
fluid flow behavior under various conditions and geometries, combining
analytical and numerical approaches to advance our understanding of
fluid dynamics.

1 Introduction

The Navier-Stokes equations describe the motion of fluid substances and are
fundamental in fluid dynamics. The existence and smoothness of solutions to
these equations, particularly in three dimensions, remains an open problem.
In this paper, we investigate an analytic solution based on periodic initial
conditions and Fourier series representations to address the existence and
smoothness problem.
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Understanding fluid flow behavior is a fundamental problem in physics
with broad applications across engineering, environmental science, and bi-
ology. The Navier-Stokes equations provide a mathematical framework for
describing fluid motion, encompassing the effects of viscosity, inertia, and
pressure gradients. Despite their importance, obtaining analytic solutions to
these equations remains a significant challenge, particularly under complex
initial and boundary conditions.

In this study, we focus on the Navier-Stokes equations governing incom-
pressible fluid flow with a periodic initial velocity vector field. Periodic
conditions are prevalent in various natural and engineered systems, mak-
ing them of particular interest for theoretical and practical considerations.
Our approach leverages Fourier series representations to express the velocity
field and pressure, facilitating the development of an analytic solution that
evolves over time.

This paper aims to present and verify the existence and smoothness of
the proposed analytic solution. We begin by introducing the periodic initial
velocity field and outlining the theoretical framework for its Fourier series
representation. Subsequently, we derive the solution to the Navier-Stokes
equations under the specified conditions and verify its consistency with the
governing equations.

By demonstrating the existence and smoothness of the proposed solu-
tion, we contribute to the understanding of fluid dynamics and offer insights
into the behavior of incompressible flows with periodic velocity fields. Fur-
thermore, our findings have implications for addressing the millennium prize
problem associated with the Navier-Stokes equations, advancing the frontier
of fluid dynamics research.

2 Periodic Function Representation

For a, b, c real constants, consider a unit vector A as a period vector satis-
fying the normalization condition be:

A = ia+ jb+ kc

||A|| = 1 ⇒ a2 + b2 + c2 = 1

For x, y, z real variables, let the position vector r be:

r = ix+ jy + kz
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The dot product of A and r is given by:

A · r = ax+ by + cz

For incompressible viscous fluids in the absence of external forces, the Navier-
Stokes equations take the form:

∂

∂t
u+ (u · ∇)u = ν∆u−∇p (1)

∇ · u = 0 (2)

u|t=0 = u0 (3)

where u is the velocity vector field, p is the pressure, ν is the viscosity, and
∇ is the gradient operato

2.1 Initial Velocity Vector Field

Let the initial velocity vector u0(x, y, z) be periodic, represented as:

u0(x, y, z) = u0(x+ a, y + b, z + c)

This can be expressed using a Fourier series in terms of the dot product of
a unitary period vector A and position vector r:

U0(A · r) = a0 +
∞∑
n=1

(an cos (2nπ(A · r)) + bn sin (2nπ(A · r))) (4)

The derivation of Fourier coefficients involves integrating the product of the
initial velocity vector field and trigonometric functions over the domain. By
satisfying orthogonality conditions, we compute the coefficients analytically,
ensuring the accuracy and efficiency of the solution.

To find the coefficients a0, an, and bn, we use the orthogonality prop-
erties of sine and cosine functions. The coefficient a0 is the average value
of the function over the domain and is solved using equation (29), (30) and
(4):

a0 =
abc

8

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

u0(x, y, z) dz dy dx (5)

To find an, we multiply u0(x, y, z) by cos (2nπ(A · r)) and integrate over the
domain and use equation in (30), (31), (33), (34) and (4):

an =
abc

4

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

u0(x, y, z) cos (2nπ(A · r)) dz dy dx (6)
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To find bn, we multiply u0(x, y, z) by sin (2nπ(A · r)) and integrate over the
domain and use equation (29), (31), (32), (35) and (4):

bn =
abc

4

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

u0(x, y, z) sin (2nπ(A · r)) dz dy dx (7)

2.2 Proposed Solution for Velocity Field

We propose an analytic solution for the Navier-Stokes equations given the
periodic initial velocity vector field. The velocity field u(x, y, z, t) can be
expressed as:

U(A · r, t) = a0h(t) +

∞∑
n=1

Hn(t)Sn(A · r, t) (8)

where:
Hn(t) = e−ν(2nπ)2t (9)

k(t) = A · a0
∫ t

0
h(τ)dτ (10)

Sn(A · r, t) = an cos (2nπ(A · r+ k(t))) + bn sin (2nπ(A · r+ k(t))) (11)

2.3 Pressure Field

The scalar pressure solution from the initial condition and proposed velocity
vector field solution is:

−p(x, y, z, t) = a0 · r
d

dt
h(t) (12)

3 Proof of Existence and Smoothness

3.1 Existence of Solutions

The existence of solutions can be demonstrated by substituting the proposed
forms of U and p into the Navier-Stokes equations and showing that these
forms satisfy the equations under given initial conditions.
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3.1.1 Continuity Equation

Divergence of equation (40) for g = A · r+ k(t) is simplified to

∇ ·U =
d

dg
(U ·A) (13)

Using divergence free condition of equation (2) and equation (13) we can
get

U ·A = (A · a0)h(t) (14)

We can conclude that the equation (14) has to be constant in space and
variable in time. Given the periodic nature and Fourier representation,
∇ ·U vanishes, satisfying the continuity equation.

3.1.2 Momentum Equation

Substituting U(A · r, t) and the pressure field into this equation, we use the
properties of Fourier series and exponential decay inHn(t) to show that both
sides of the equation match, proving existence. Derivatives of equations (40)
with respect to time t for g = A · r+ k(t)

∂U

∂t
= a0

dh(t)

dt
+

∞∑
n=1

dHn

dt
Sn +

dk(t)

dt

∞∑
n=1

dSn

dg
Hn (15)

Derivate equation (9) and (11) with respect to time t and substitute to
equation (15) results

∂U

∂t
= a0

dh(t)

dt
− ν

∞∑
n=1

(2nπ)2HnSn − (U ·A)

∞∑
n=1

dSn

dg
Hn (16)

The term of equation (1), the convective acceleration due to the advection
of the fluid by itself is simplified to

(U · ∇)U = (U ·A)

∞∑
n=1

dSn

dg
Hn (17)

Simplifying by substituting equation (40) to the viscous forces due to the
diffusion of momentum term from equation (1) results

ν∇2U = ν
∞∑
n=1

d2Sn

dg2
Hn (18)
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Second derivate equation (11) and substitute to to equation (18) results

ν∇2U = −ν

∞∑
n=1

(2nπ)2SnHn (19)

Gradient of equation (12) results

−∇p = a0
d

dt
h(t) (20)

Substitute equations (16), (17), (19) and (12) in to equation (1)

�
�
�
�

a0
dh(t)

dt
−
���������
ν

∞∑
n=1

(2nπ)2HnSn −
����������
(U ·A)

∞∑
n=1

dSn

dg
Hn +

����������
(U ·A)

∞∑
n=1

dSn

dg
Hn

=
����������
−ν

∞∑
n=1

(2nπ)2SnHn +
�

����
a0

d

dt
h(t)

0 = 0

3.2 Smoothness of Solutions

The smoothness of the solutions can be demonstrated by showing that the
proposed U and p are infinitely differentiable.

3.2.1 Fourier Coefficients and Exponential Decay

The Fourier coefficients an and bn are smooth functions. The exponen-
tial decay e−ν(2nπ)2t ensures that higher frequency components decay faster,
contributing to the overall smoothness of U.

3.2.2 Time Dependence

The functions h(t) and Hn(t) are smooth with respect to time t, further
ensuring that the solution U(A · r, t) remains smooth for all t > 0.

3.3 Uniqueness of the solution

For a solution to be unique, it should satisfy an energy inequality. This
means showing that the energy (kinetic energy) of the fluid does not increase
over time.
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E =
1

2

∫ 1
c

− 1
c

∫ 1
b

− 1
b

∫ 1
a

− 1
a

|u(r, t)|2 dx dy dz (21)

|u(r, t)|2 = (U(A · r, t)) · (U(A · r, t)) (22)

Orthogonality of terms in Sn creates the following simplifications for

E =
4

abc

(
|a0|2h2(t) +

∞∑
n=1

H2
n(t)(|an|2 + |bn|2)

)
(23)

dE

dt
=

8

abc

(
|a0|2h(t)h′(t) +

∞∑
n=1

Hn(t)H
′
n(t)(|an|2 + |bn|2)

)

dE

dt
≤ 0 (24)

For the Energy Inequality condition to be true,(
|a0|2h(t)h′(t)− ν

∞∑
n=1

(2nπ)2(|an|2 + |bn|2)e−ν(2nπ)2t

)
≤ 0 (25)

Integrate both sides with respect to τ from τ = 0 to τ = t∫ t

0

(
|a0|2h(τ)h′(τ)− ν

∞∑
n=1

(2nπ)2(|an|2 + |bn|2)e−ν(2nπ)2τ

)
dτ ≤ 0 (26)

|a0|2
(
h2(t)− h2(0)

)
+

∞∑
n=1

(|an|2 + |bn|2)(e−ν(2nπ)2t − 1) ≤ 0 (27)

h2(t) ≤ 1 +
∞∑
n=1

|an|2 + |bn|2

|a0|2
(
1− e−ν(2nπ)2t

)
(28)

4 Conclusion

By leveraging Fourier series representations of periodic initial conditions,
we have proposed an analytic solution to the Navier-Stokes equations that
demonstrates both the existence and smoothness of solutions. This approach
provides a pathway to understanding the complex behavior of fluid dynamics
under periodic conditions.
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A Appendix: Orthogonality Conditions

Orthogonality properties of sine and cosine functions are essential for de-
termining Fourier coefficients. These conditions ensure that the integrals
involving different harmonics yield zero, simplifying the computation of co-
efficients and ensuring the orthogonality of the basis functions. For all n
and m belonging to the set of natural numbers N:∫ 1

a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

sin (2nπ(A · r)) dz dy dx = 0 (29)

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

cos (2nπ(A · r)) dz dy dx = 0 (30)

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

sin (2nπ(A · r)) cos (2mπ(A · r)) dz dy dx = 0 (31)

For all natural numbers n and m where n ̸= m:∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

sin (2nπ(A · r)) sin (2mπ(A · r)) dz dy dx = 0 (32)

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

cos (2nπ(A · r)) cos (2mπ(A · r)) dz dy dx = 0 (33)

For all n belonging to the set of natural numbers N:∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

cos2 (2nπ(A · r)) dz dy dx =
4

abc
(34)

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

sin2 (2nπ(A · r)) dz dy dx =
4

abc
(35)
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B Appendix: Fourier Series Expansion

We begin by establishing the Fourier series expansion of periodic functions,
which serves as a key tool for representing periodic phenomena. The ex-
pansion allows us to decompose periodic functions into a sum of sinusoidal
terms, facilitating the analysis of periodic behavior. Assume f(x, y, z) is a
periodic function with period A:

f(x, y, z) = f(x+ a, y + b, z + c)

The Fourier series expansion of f(x, y, z) in terms of F (A · r) is:

F (A · r) = a0 +

∞∑
n=1

(an cos (2nπ(A · r)) + bn sin (2nπ(A · r))) (36)

To find the coefficients a0, an, and bn, we use the orthogonality properties
of sine and cosine functions. The coefficient a0 is the average value of the
function over the domain and is solved using equation (29), (30) and (36):

a0 =
abc

8

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

f(x, y, z) dz dy dx (37)

To find an, we multiply f(x, y, z) by cos (2nπ(A · r)) and integrate over the
domain and use equation (30), (31), (33), (34) and (36):

an =
abc

4

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

f(x, y, z) cos (2nπ(A · r)) dz dy dx (38)

To find bn, we multiply f(x, y, z) by sin (2nπ(A · r)) and integrate over the
domain and use equation (29), (31), (32), (35) and (36)::

bn =
abc

4

∫ 1
a

− 1
a

∫ 1
b

− 1
b

∫ 1
c

− 1
c

f(x, y, z) sin (2nπ(A · r)) dz dy dx (39)
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C Appendix:

U ·U = |a0|2h2 + 2h
∞∑
n=1

(a0 · Sn)Hn +
∞∑

m=1

∞∑
n=1

(Sm · Sn)HmHn (40)

Sm · Sn = (am · an) cos (2mπ(A · r+ k(t))) cos (2nπ(A · r+ k(t)))

+2 (am · bn) cos (2mπ(A · r+ k(t))) sin (2nπ(A · r+ k(t)))

+ (bm · bn) sin (2mπ(A · r+ k(t))) sin (2nπ(A · r+ k(t)))
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