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Abstract. Explanations why the real part of Zeta function zeroes
is always being seen on the 1/2 line.

MSC Class: 11M26, 11M06.

1. First explanation

There is a vivid interest in the Riemann Hypothesis, while there
are no reasons to cast doubt on the validity of the Riemann Hypoth-
esis [1]. This hypothesis was proposed by Bernhard Riemann (1859).
Many colleagues consider it the most important unsolved problem in
pure mathematics [2]. The Riemann Hypothesis is of great interest in
number theory because it implies results about the distribution of prime
numbers. Our first contribution to the field is available from arXiv [3].
Because it is not refuted, we regard it as the first explanation.

2. Second explanation

There is a Riemann Zeta function: ζ(s). The first trillions of zeros
of this function ζ(s) = 0 have a real part equal to half: ℜ s = 1/2.
Already from the original work of Prof. Riemann, one knows that if
there is a counterexample that does not lie on the critical line ℜ s = 1/2,
then there must be a counterexample symmetric to it: ℜ s1 = 1/2− v,
ℜ s2 = 1/2+v, 0 < v < 1/2. In this case, ζ(s1) = ζ(s2) = 0. Let s1 and
s2 be unknown positions now. Let’s find a system of equations that
produces zeros of the Zeta function. Obviously, this is ζ(s1) = ζ(s2),
A(s1) ζ(s1) = A(s2)ζ(s2), where A(s) is an arbitrary function. At a
certain A(s), A(s1)ζ(s1) = A(s2)ζ(s2) is executed. Then any solution
of ζ(s1) = ζ(s2) is a zero of the Zeta function. Now, repeating the line
of reasoning, but with the function B(s)ζ(s), where B(s) is arbitrary,
I come to the conclusion that any solution of B(s1)ζ(s1) = B(s2)ζ(s2),
and not ζ(s1) = ζ(s2), is the zero of the Zeta function. Contradiction.
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Appendix A. The problem will be following, if counterexamples are
possible, the B(s1)ζ(s1) = B(s2)ζ(s2) ̸= 0 will hold, which is not
possible because B(s1)ζ(s1) = B(s2)ζ(s2) has to give the zero of the
Zeta function.

Appendix B. Is known Landau’s xi function ξ = Aζ, where specific
A makes ξ(s1) = ξ(s2) to hold automatically because ξ(s) = ξ(1 − s)
is the functional equation; and the complex-conjugate of it has ξ(s∗) =
ξ∗(s) = ξ∗(1− s) = ξ(1− s∗).

3. Third explanation

The number of zeroes in the critical strip 0 < ℜ(s) < 1 within the
range 0 < ℑ(s) ≤ T for the imaginary part is given by [4]
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T

2π
ln

(
T
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)
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2π
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7

8
+ S(T ) +O(1/T ) ,

where

(2) S(T ) = π−1Arg ζ(1/2 + i T ) .

Hence, all jumps (a jump is a discontinuity of a function) in the amount
of zeroes N(T ) happen due to S(T ). But S(T ) belongs to the critical
line, where only one zero is possible. Hence, there is only one zero per
T . It is on the 1/2 critical line. Why? There are two counter-examples
(if present) on the same T , not one.

4. Fourth explanation

To cite Ref. [5], Oppermann’s Conjecture [. . . ] states that for every
integer n > 1, there is at least one prime number between n (n−1) and
n2, and at least another prime number between n2 and n (n+ 1).

Then, according to Oppermann’s Conjecture, the following pair of
ranges contains at least two prime numbers: [n2, n (n + 1)], [m (m −
1), m2], where m = n+ 1. We have n (n+ 1) = m (m− 1). Therefore,
the entire area of x becomes covered by such non-intersecting pairs;
for example, the next pair is [m2, m (m + 1)], [h (h − 1), h2], where
h = m+1. The number of ranges is z = 2 (

√
x−√

x0), where
√
x−√

x0

is the number of pairs inside [x0, x]. Oppermann’s conjecture would
hold if N/z = 1, where N = π(x) − π(x0), where π(x) is the prime-
counting function.

Because π(x) varies from minimum to maximum in x/(2 + ln x) <
π(x) < x/(−4 + ln x), where x ≥ 55, see Ref. [6], the amount of
primes in the last range (one at x) changes, starting from Nm/z =
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(x/(2 + ln x) − x0/(−4 + ln x0))/z. Oppermann’s Conjecture holds
because Nm/z = ∞ at x → ∞.

Oppermann’s Conjecture implies the Riemann Hypothesis

We learned from Koch’s result [7] that making a strong bound for
the distribution of prime numbers would be proof of the Riemann Hy-
pothesis. So, let us look for such bound.

To cite Dudek’s abstract [8], we prove some results concerning the
distribution of primes assuming the Riemann hypothesis. First, we
prove the explicit result that there exists a prime in the interval (x −
4
π

√
x log x, x] for all x ≥ 2.

Oppermann’s Conjecture, if proven, implies an even stronger result
than Dudek’s. To cite Ref. [5], Oppermann’s Conjecture [. . . ] states
that for every integer n > 1, there is at least one prime number between
x1 = n (n−1) and x2 = n2, and at least another prime number between
x2 = n2 and x3 = n (n+1). Why? There is at least one prime between
x2 −

√
x2 and x2. At least one prime exists between x2 and x2 +

√
x2.

So, holds x − 4
π

√
x log x ≪ x −

√
x < x, which means that Opper-

mann’s Conjecture implies even stronger result than of Dudek.

5. Final explanation

A counter-example is a specific situation in which the hypothesis is
not valid. In the case of the Riemann Hypothesis, this is when the
zero of the zeta function does not lie on the critical line. No such
counter-example was found, but a search is underway. There should be
no counter-examples at all. Dr. Robin [9] proved in the 20th century
that there cannot be any finite number of counter-examples. The final
numbers are ordinary concrete numbers: 1,2,3,4,5, and so on. My
conclusion: the total amount of counter-examples cannot be one piece,
there cannot be two pieces, there cannot be three pieces, and so on. I
see these absent pieces are increasing without end. Therefore, the final
entry is: “There cannot be an infinite number (of pieces) of counter-
examples.” This means that there are no counter-examples against the
Riemann Hypothesis at all.

The logic is solid. Hence, it is proof of Luck. Why? There is a
possibility that somebody will find a counter-example. But we are
lucky enough that nobody will find a counter-example. Why? Because
Luck does exist and must be protecting Riemann Hypothesis because
of my reasoning for it. And the placeholder for the entity called Luck
is the Dark Energy because nobody knows that it is.
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The logic does not disprove the existence of prime numbers. Because
it is known that the amount of primes is infinite. I reasoned that it
cannot be infinite. The mathematical uncertainty happens: infinity is
not equal to infinity. This uncertainty is a usual thing in mathematics.

Because of the generality of this line of thinking, I am applying this
logic to other open questions of mathematics, e.g., Collatz conjecture
and Generalized Riemann Hypothesis.
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lund, Über die Nullstellen der Riemannschen Zetafunktion. Acta Math. 41, 345–
375 (1916). https://doi.org/10.1007/BF02422950

[5] David Wells, “Prime Numbers: The Most Mysterious Figures in Math.” John
Wiley and Sons, 2011, p. 164.

[6] Barkley Rosser, “Explicit Bounds for Some Functions of Prime Numbers,” Am.
J. Math. 63(1): 211–232 (1941).
https://doi.org/10.2307/2371291

[7] Helge Koch, “Sur la distribution des nombres premiers,” Acta Math. 24: 159–
182 (1901).
https://doi.org/10.1007/BF02403071

[8] Adrian W. Dudek, “On the Riemann hypothesis and the difference between
primes,” International J. of Number Theory 11(3): 771–778 (2015).
https://doi.org/10.1142/S1793042115500426

[9] Guy Robin, “Grandes valeurs de la fonction somme des diviseurs et hypothése
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