Goldbach's conjecture

Bassera Hamid

June 4, 2024

Introduction
In this article I try to make my modest contribution to the proof of Goldbach's conjecture and I propose to simply go through its negation.

Let E be the prime numbers set.
The Goldbach conjecture states that:
$\forall k \in \mathbb{N}^{*} /\{1\} \quad \exists\left(p, p^{\prime}\right) \in E / \quad 2 k=p+p^{\prime}$

If not then :
$\exists k \in \mathbb{N}^{*} /\{1\} \quad \forall\left(p, p^{\prime}\right) \in E / \quad 2 k \neq p+p^{\prime}$

So, either $2 \mathrm{k}<\mathrm{p}+\mathrm{p}$ ' or $2 \mathrm{k}>\mathrm{p}+\mathrm{p}$,
if $2 \mathrm{k}<\mathrm{p}+\mathrm{p}$ ' then for $p^{\prime}=2,2 \mathrm{k}-2<\mathrm{p}$. But $k \geq 2$ and so $2 k-2 \geq 2$, then $\forall p \in E \quad 2<\mathrm{p}$, which is absurd because $2 \leq p$
if $2 \mathrm{k}>\mathrm{p}+\mathrm{p}$ ' then for $p^{\prime}=2, \mathrm{p}<2 \mathrm{k}-2$, so E is bounded and this is absurd.

So, the negation of Goldbach statement is false.

Conclusion : The Goldbach's conjecture is true.

