On the diophantine equation $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$

Seiji Tomita

Abstract

In this paper, we proved that there are infinitely many integers n such that $a+b+c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has infinitely many rational solutions.

1. Introduction

The following appeared in the problems section of the March 2015 issue of the American Mathematical Monthly[1]. "Show that there are infinitely many rational triples (a, b, c) such that a + b + c = abc = 6". The source of this equation is problem D.16 in Guy's book[2]. In 1996, Schinzel[4] has proved the problem D.16. We worked on the equation $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$, inspired by this problem. It appears that nobody has studied our problems yet. Our goal is to prove that there are infinitely many integers n such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has infinitely many rational solutions. The first attempt is to prove that there are infinitely many integers n such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has rational solutions. The first result obtained is related to the Pell equation $x^2 - 5y^2 = 4$. Next, we shall achieve our goal by extending the result of first attempt. Finally, the two kinds of computer search for n < 100 are done using method-1 and method-2.

2. Preliminaries

Theorem 2.1. There are infinitely many integers n such that $a+b+c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has rational solutions.

Proof.

$$\begin{pmatrix}
a+b+c=n
\end{cases}$$
(1)

$$\left\{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n\right. \tag{2}$$

Let $a = \frac{n}{r}$, $b = -\frac{n^2}{p}$, $c = \frac{n^2}{q}$, and q = p - n. Then, from equation (1) we get

$$r = \frac{p(-p+n)}{pn+n^2-p^2}$$

From equation (2) we get

$$p = \frac{n \pm \sqrt{5n^2 + 4}}{2}$$

To get the rational solution for p, $5n^2 + 4$ must be a perfect square number. An equation $5n^2 + 4 = u^2$ is known as Pell's equation, and it has infinitely many integer solutions. Hence, we can obtain an infinitely many integers n such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$. We know $\frac{1+\sqrt{5}}{2}$ is a fundamental unit of $t^2 - 5n^2 = 4$, then all integer solutions are given as follows.

$$\frac{t+\sqrt{5}n}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^k$$

where k is even.

Example 1

Table 1: $t^2 - 5n^2 = 4$						
k	\mathbf{t}	n	a	b	с	
4	7	3	3/10	-9/5	9/2	
6	18	8	8/65	-64/13	64/5	
8	47	21	21/442	-441/34	441/13	
10	123	55	55/3026	-3025/89	3025/34	
12	322	144	144/20737	-20736/233	20736/89	
14	843	377	377/142130	-142129/610	142129/233	
16	2207	987	987/974170	-974169/1597	974169/610	
18	5778	2584	2584/6677057	-6677056/4181	6677056/1597	

Theorem 2.2 (Nagell/Lutz Theorem)). Suppose E is an elliptic curve over Q whose Weierstrass form has integer coefficients, and let be the discriminant of E. If P = (x, y) is a rational point of finite order, then x and y are integers. Furthermore, either y = 0 or y^2 divides D.

3. Main Results

Theorem 3.1. There are infinitely many integers n such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has infinitely many rational solutions.

Proof. Let $a = \frac{n}{r}$, $b = -\frac{mn}{p}$, $c = \frac{mn}{q}$, and q = p - n. Then, from equation (1) we get

$$r = \frac{p(p-n)}{-mn + p^2 - pn}$$

From equation (2) we get

$$(n - m + mn2)p2 + (-n2 + mn - mn3)p - m2n3 - mn2 = 0.$$

To get the rational solution for p, discriminant must be rational square, we have

$$V^{2} = (-4n + 4n^{3})m^{3} + (6n^{2} - 3 + n^{4})m^{2} + (2n + 2n^{3})m + n^{2}.$$

Let $X = (-4n + 4n^3)mandY = (-4n + 4n^3)v$, we have the elliptic curve

$$E: Y^{2} = X^{3} + (6n^{2} - 3 + n^{4})X^{2} + (4n^{2}(n^{4} + 2n^{2} - 3) + 4n^{6} - 8n^{4} + 4n^{2})X + 4n^{2}(4n^{6} - 8n^{4} + 4n^{2}).$$

The discriminant D is given $16(n^4 - 10n^2 + 9)n^2$. From Theorem 1.1, we know the point $(X, Y) = ((-4n + 4n^3)n, 4n^3v(n^2 - 1))$ where $4 + 5n^2 = v^2$. By Nagell-Lutz theorem, Y coordinate is nonzero and its square does not divide D, then the point (X, Y) has infinite order. Thus, an elliptic curve E has infinitely many rational points.

Example 2

The case for n = 8: An elliptic curve is given

$$E: X^3 + 4477X^2 + 2096640X + 260112384$$

E has rank 1 and generator is P(X, Y) = (16128, 2322432). We can obtain infinitely many rational points using group law. Since the rational points become very huge, only the case for 2P and 3P are shown. We have 2P and 3P using using group law.

$$\begin{aligned} 2P(X,Y) &= \left(\frac{1776313}{576}, \frac{3876444467}{13824}\right), \\ (p,q,r) &= \left(\frac{698855}{74898}, \frac{99671}{74898}, \frac{17567680}{253759}\right), \\ (a,b,c) &= \left(\frac{253759}{2195960}, -\frac{259369}{197760}, \frac{1882159}{204672}\right), \\ 3P(X,Y) &= \left(\frac{942479720365824}{1152069489025}, -\frac{91864915317799988908032}{1236568025697538625}\right), \\ (p,q,r) &= \left(\frac{17327086176467}{2064829196885}, \frac{808452601387}{2064829196885}, \frac{34244478655559}{409062378631}\right), \\ (a,b,c) &= \left(\frac{3272499029048}{34244478655559}, -\frac{3855363198784}{9965839809835}, \frac{32822956698304}{3958724982485}\right) \end{aligned}$$

4. Find the numerical solutions

4.1. Method-1

Substitute
$$c = n - a - b$$
 into $a + b + c = (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}).$
 $(-nb+1)a^2 + (b + bn^2 - b^2n - n)a + b^2 - nb = 0.$ (3)

To get the rational solution for a, the discriminant must be a rational square. Thus, there must exist $v \in Q$ such that

$$Q: v^{2} = n^{2}b^{4} + (-2n^{3} + 2n)b^{3} + (-3 + n^{4})b^{2} + (-2n^{3} + 2n)b + n^{2}.$$

The quartic equation is birationally equivalent to an elliptic curve.

$$E: Y^{2} + (-2n^{2} + 2)YX + (-4n^{4} + 4n^{2})Y = X^{3} + (-4 + 2n^{2})X^{2} - 4n^{4}X + 16n^{4} - 8n^{6}.$$
 (4)

$$b = \frac{2nX - 8n + 4n^3}{Y},$$
$$v = \frac{nX^3 - 12nX^2 + 6n^3X^2 + 32nX - 32Xn^3 - 8n^3Y + 8nY + 12n^5X - 16n^5 + 8n^7}{Y^2}$$

We searched the rationa points of equation (4) for 1 < n < 100 with height (X) < 1000000. For n = 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 42, 44, 46, 49, 50, 51, 52, 53, 54, 57, 60, 62, 65, 66, 67, 71, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 89, 91, 94, 95, 96, 98, 99, <math>E has rank 0 and torsion point of order 6 $(X, Y) = (2n^2, 0)$ gives no non trivial solution. Hence, we need the points of infinite order for the non-trivial solution.

4.2. Method-2

Search for n which failed to appear in method 1.

Let $a = \frac{n}{r}$, $b = -\frac{mn}{p}$, $c = \frac{mn}{q}$, and r = pq. Then, from equation (1) we get

$$q = \frac{1 + mp}{m + p}.$$

From equation (2) we get

$$(m2 - 1)p2 + (-mn2 + m)p - m2n2 + 1 = 0.$$
 (5)

For the quadratic in p equation (5) to have rational solutions, the discriminant must be a rational square. Thus there must exist $v \in Q$ such that

$$Q: v^{2} = 4m^{4}n^{2} + (-6n^{2} - 3 + n^{4})m^{2} + 4.$$
(6)

We searched the rational points of equation (6) for n = 18, 24, 45, 63, 64, 79 with height (m) < 100000.

4.3. Search results

Search range: n < 100, (a, b, c) < 1000000

	Table 2: Small solutions						
n	a	b	С				
8	64/5	-64/13	8/65				
10	175/16	-35/34	25/272				
14	320/21	-64/49	10/147				
18	9879760/482517	-354320/140049	103114/1891773				
21	441/13	-441/34	21/442				
23	3978/161	-765/437	130/3059				
24	11613784/477081	-1166848/3062277	326144/8669991				
25	4807/175	-627/250	69/1750				
28	9071/296	-193/72	47/1332				
29	3553/116	-627/377	51/1508				
34	11362/289	-7904/1479	736/25143				
35	82615/1064	-110825/2597	11275/394744				
43	559/12	-559/155	43/1860				
45	219712122/4833865	-3265137/6889675	581994/27404975				
47	4277/85	-611/183	329/15555				
55	3025/34	-3025/89	55/3026				
56	5312/91	-1992/833	192/10829				
58	905840/14297	-121136/22533	190970/11108769				
59	33099/553	-3009/3458	649/39026				
63	27784341/278075	-7153731/193697	2491911/157032925				
64	92568783/1364992	-1769673/461824	598879/38475712				
69	27347/396	-667/9516	943/78507				
72	53761/624	-15983/1128	407/29328				
79	10440087/57013	-2040017/19591	116841/9230923				
85	18800/221	-235/3009	400/39117				
90	180081/2000	-5049/101840	2889/318250				
92	93081/800	-53889/2212	4807/442400				

The other large solutions are

(n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1839878299779/30138554138, -180752198601/3001548136699, 14520329819/1126625024822), (n, a, b, c) = (61, 1807829819, -180782989, -18078298, -1807829, -18078298, -1807829

- $\begin{array}{l} (n,a,b,c) = & (70,1151489111663126150689251015034965072/16448733703744484903901651805459165,\\ & 35476747994664271785238070686373872/5733154784860145737311544952102626225,\\ & -2523654174409881112161644274867222/231210761288986076770167973988075975), \end{array}$
- $\begin{array}{l} (n,a,b,c) = & (73,-90518708890610/86867723277193,124437696960115/9201689556492827,\\ & 1559559265989062/21067009890419), \end{array}$
- $\begin{array}{l} (n,a,b,c) = & (75,123859705839353/1587069791475,-63406997310943/20746400481000,\\ & 1179240742511/88813786257000), \end{array}$
- $\begin{array}{l} (n,a,b,c) = & (83,11717358486721200474/37080311991617453,-52769197846267122175/226466060739568507,\\ & 1918436880614113650/159232423305880615031), \end{array}$
- $\begin{array}{l} (n,a,b,c) = & (93,7052305354829229/71933121545305,-47532343770639/9411446212348,\\ & 6219625284873/579593202983140). \end{array}$

5. Concluding Remarks

Although we looked for the numerical solutions in the serarch range, there was no positive solution. The only trivial positive solution is 1 + 1 + 1 = 1/1 + 1/1 + 1/1 = 3. We state a conjecture as follows. **Conjecture:**

There is no integer n such that $a + b + c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = n$ has distinct positive rational solutions.

References

- [1] American Mathematical Monthly, Volume 122, 2015, Problems and Solutions, https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.122.03.284
- [2] R. K. Guy. Unsolved Problems in Number Theory, 2nd edition, Springer-Verlag, 1994.
- [3] Sage software, Version 4.3.5, http://sagemath.org.
- [4] A. Schinzel, Triples of positive integers with the same sum and the same product, Serdica Math. J., 22(1996) 587-588. MR1483607