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Abstract

In this paper, we proved that there are infinitely many integers n such that a+ b+ c =
1

a
+

1

b
+

1

c
= n

has infinitely many rational solutions.

1. Introduction

The following appeared in the problems section of the March 2015 issue of the American Mathematical
Monthly[1]. “Show that there are infinitely many rational triples (a, b, c) such that a + b + c = abc = 6”.
The source of this equation is problem D.16 in Guy’s book[2]. In 1996, Schinzel[4] has proved the problem

D.16. We worked on the equation a + b + c =
1

a
+

1

b
+

1

c
= n, inspired by this problem. It appears that

nobody has studied our problems yet. Our goal is to prove that there are infinitely many integers n such that

a+ b+ c =
1

a
+

1

b
+

1

c
= n has infinitely many rational solutions. The first attempt is to prove that there are

infinitely many integers n such that a+ b+ c =
1

a
+
1

b
+
1

c
= n has rational solutions. The first result obtained

is related to the Pell equation x2 − 5y2 = 4. Next, we shall achieve our goal by extending the result of first
attempt. Finally, the two kinds of computer search for n < 100 are done using method-1 and method-2.

2. Preliminaries

Theorem 2.1. There are infinitely many integers n such that a+b+c =
1

a
+
1

b
+
1

c
= n has rational solutions.

Proof. a+ b+ c = n (1)
1

a
+

1

b
+

1

c
= n (2)

Let a = n
r
, b = −n2

p
, c = n2

q
, and q = p− n. Then, from equation (1) we get

r =
p(−p+ n)

pn+ n2 − p2
.

From equation (2) we get

p =
n±

√
5n2 + 4

2
.

To get the rational solution for p, 5n2 + 4 must be a perfect square number. An equation 5n2 + 4 = u2 is
known as Pell’s equation, and it has infinitely many integer solutions. Hence, we can obtain an infinitely
many integers n such that a + b + c = 1

a
+ 1

b
+ 1

c
= n. We know 1+

√
5

2
is a fundamental unit of t2 − 5n2 = 4,

then all integer solutions are given as follows.

t+
√
5n

2
=

(1 +√
5

2

)k

where k is even.
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Example 1

Table 1: t2 − 5n2 = 4
k t n a b c

4 7 3 3/10 -9/5 9/2
6 18 8 8/65 -64/13 64/5
8 47 21 21/442 -441/34 441/13
10 123 55 55/3026 -3025/89 3025/34
12 322 144 144/20737 -20736/233 20736/89
14 843 377 377/142130 -142129/610 142129/233
16 2207 987 987/974170 -974169/1597 974169/610
18 5778 2584 2584/6677057 -6677056/4181 6677056/1597

Theorem 2.2 (Nagell/Lutz Theorem)). Suppose E is an elliptic curve over Q whose Weierstrass form has
integer coefficients, and let be the discriminant of E. If P = (x, y) is a rational point of finite order, then x
and y are integers. Furthermore, either y = 0 or y2 divides D.

3. Main Results

Theorem 3.1. There are infinitely many integers n such that a+ b+ c =
1

a
+

1

b
+

1

c
= n has infinitely many

rational solutions.

Proof. Let a = n
r
, b = −mn

p
, c = mn

q
, and q = p− n. Then, from equation (1) we get

r =
p(p− n)

−mn+ p2 − pn
.

From equation (2) we get

(n−m+mn2)p2 + (−n2 +mn−mn3)p−m2n3 −mn2 = 0.

To get the rational solution for p, discriminant must be rational square, we have

V 2 = (−4n+ 4n3)m3 + (6n2 − 3 + n4)m2 + (2n+ 2n3)m+ n2.

Let X = (−4n+ 4n3)mandY = (−4n+ 4n3)v, we have the elliptic curve

E : Y 2 = X3 + (6n2 − 3 + n4)X2 + (4n2(n4 + 2n2 − 3) + 4n6 − 8n4 + 4n2)X + 4n2(4n6 − 8n4 + 4n2).

The discriminant D is given 16(n4 − 10n2 + 9)n2. From Theorem 1.1, we know the point (X,Y ) = ((−4n +
4n3)n, 4n3v(n2 − 1)) where 4 + 5n2 = v2. By Nagell-Lutz theorem, Y coordinate is nonzero and its square
does not divide D, then the point (X,Y ) has infinite order. Thus, an elliptic curve E has infinitely many
rational points.

Example 2
The case for n = 8: An elliptic curve is given

E : X3 + 4477X2 + 2096640X + 260112384.
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E has rank 1 and generator is P (X,Y ) = (16128, 2322432). We can obtain infinitely many rational points
using group law. Since the rational points become very huge, only the case for 2P and 3P are shown. We
have 2P and 3P using using group law.

2P (X,Y ) =
(1776313

576
,
3876444467

13824

)
,

(p, q, r) =
(698855
74898

,
99671

74898
,
17567680

253759

)
,

(a, b, c) =
( 253759

2195960
,−259369

197760
,
1882159

204672

)
,

3P (X,Y ) =
(942479720365824

1152069489025
,−91864915317799988908032

1236568025697538625

)
,

(p, q, r) =
(17327086176467
2064829196885

,
808452601387

2064829196885
,
34244478655559

409062378631

)
,

(a, b, c) =
( 3272499029048

34244478655559
,−3855363198784

9965839809835
,
32822956698304

3958724982485

)
.

4. Find the numerical solutions

4.1. Method-1

Substitute c = n− a− b into a+ b+ c = (
1

a
+

1

b
+

1

c
).

(−nb+ 1)a2 + (b+ bn2 − b2n− n)a+ b2 − nb = 0. (3)

To get the rational solution for a, the discriminant must be a rational square.
Thus, there must exist v ∈ Q such that

Q : v2 = n2b4 + (−2n3 + 2n)b3 + (−3 + n4)b2 + (−2n3 + 2n)b+ n2.

The quartic equation is birationally equivalent to an elliptic curve.

E : Y 2 + (−2n2 + 2)Y X + (−4n4 + 4n2)Y = X3 + (−4 + 2n2)X2 − 4n4X + 16n4 − 8n6. (4)

b =
2nX − 8n+ 4n3

Y
,

v =
nX3 − 12nX2 + 6n3X2 + 32nX − 32Xn3 − 8n3Y + 8nY + 12n5X − 16n5 + 8n7

Y 2
.

We searched the rationa ponits of equation (4) for 1 < n < 100 with height (X) < 1000000.
For n = 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 42, 44, 46, 49,
50, 51, 52, 53, 54, 57, 60, 62, 65, 66, 67, 71, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 89, 91, 94, 95, 96, 98, 99,
E has rank 0 and torsion point of order 6 (X,Y ) = (2n2, 0) gives no non trivial solution.
Hence, we need the points of infinite order for the non-trivial solution.
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4.2. Method-2

Search for n which failed to appear in method 1.
Let a = n

r
, b = −mn

p
, c = mn

q
, and r = pq. Then, from equation (1) we get

q =
1 +mp

m+ p
.

From equation (2) we get

(m2 − 1)p2 + (−mn2 +m)p−m2n2 + 1 = 0. (5)

For the quadratic in p equation (5) to have rational solutions, the discriminant must be a rational square.
Thus there must exist v ∈ Q such that

Q : v2 = 4m4n2 + (−6n2 − 3 + n4)m2 + 4. (6)

We searched the rational ponits of equation (6) for n = 18, 24, 45, 63, 64, 79 with height (m) < 100000.

4.3. Search results

Search range: n < 100, (a, b, c) < 1000000

Table 2: Small solutions
n a b c

8 64/5 -64/13 8/65
10 175/16 -35/34 25/272
14 320/21 -64/49 10/147
18 9879760/482517 -354320/140049 103114/1891773
21 441/13 -441/34 21/442
23 3978/161 -765/437 130/3059
24 11613784/477081 -1166848/3062277 326144/8669991
25 4807/175 -627/250 69/1750
28 9071/296 -193/72 47/1332
29 3553/116 -627/377 51/1508
34 11362/289 -7904/1479 736/25143
35 82615/1064 -110825/2597 11275/394744
43 559/12 -559/155 43/1860
45 219712122/4833865 -3265137/6889675 581994/27404975
47 4277/85 -611/183 329/15555
55 3025/34 -3025/89 55/3026
56 5312/91 -1992/833 192/10829
58 905840/14297 -121136/22533 190970/11108769
59 33099/553 -3009/3458 649/39026
63 27784341/278075 -7153731/193697 2491911/157032925
64 92568783/1364992 -1769673/461824 598879/38475712
69 27347/396 -667/9516 943/78507
72 53761/624 -15983/1128 407/29328
79 10440087/57013 -2040017/19591 116841/9230923
85 18800/221 -235/3009 400/39117
90 180081/2000 -5049/101840 2889/318250
92 93081/800 -53889/2212 4807/442400
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The other large solutions are

(n, a, b, c) =(61, 1839878299779/30138554138,−180752198601/3001548136699, 14520329819/1126625024822),

(n, a, b, c) =(70, 1151489111663126150689251015034965072/16448733703744484903901651805459165,

35476747994664271785238070686373872/5733154784860145737311544952102626225,

− 2523654174409881112161644274867222/231210761288986076770167973988075975),

(n, a, b, c) =(73,−90518708890610/86867723277193, 124437696960115/9201689556492827,

1559559265989062/21067009890419),

(n, a, b, c) =(75, 123859705839353/1587069791475,−63406997310943/20746400481000,

1179240742511/88813786257000),

(n, a, b, c) =(83, 11717358486721200474/37080311991617453,−52769197846267122175/226466060739568507,

1918436880614113650/159232423305880615031),

(n, a, b, c) =(93, 7052305354829229/71933121545305,−47532343770639/9411446212348,

6219625284873/579593202983140).

5. Concluding Remarks

Although we looked for the numerical solutions in the serarch range, there was no positive solution. The only
trivial positive solution is 1 + 1 + 1 = 1/1 + 1/1 + 1/1 = 3. We state a conjecture as follows.
Conjecture:

There is no integer n such that a+ b+ c =
1

a
+

1

b
+

1

c
= n has distinct positive rational solutions.
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