On the diophantine equation $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$

Seiji Tomita

Abstract

In this paper, we proved that there are infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has infinitely many rational solutions.

1. Introduction

The following appeared in the problems section of the March 2015 issue of the American Mathematical Monthly [1]. "Show that there are infinitely many rational triples (a, b, c) such that $a+b+c=a b c=6$ ". The source of this equation is problem $D .16$ in Guy's book[2]. In 1996, Schinzel[4] has proved the problem $D .16$. We worked on the equation $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$, inspired by this problem. It appears that nobody has studied our problems yet. Our goal is to prove that there are infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has infinitely many rational solutions. The first attempt is to prove that there are infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has rational solutions. The first result obtained is related to the Pell equation $x^{2}-5 y^{2}=4$. Next, we shall achieve our goal by extending the result of first attempt. Finally, the two kinds of computer search for $n<100$ are done using method-1 and method- 2 .

2. Preliminaries

Theorem 2.1. There are infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has rational solutions. Proof.

$$
\left\{\begin{array}{l}
a+b+c=n \tag{1}\\
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n
\end{array}\right.
$$

Let $a=\frac{n}{r}, b=-\frac{n^{2}}{p}, c=\frac{n^{2}}{q}$, and $q=p-n$. Then, from equation (1) we get

$$
r=\frac{p(-p+n)}{p n+n^{2}-p^{2}} .
$$

From equation (2) we get

$$
p=\frac{n \pm \sqrt{5 n^{2}+4}}{2} .
$$

To get the rational solution for $p, 5 n^{2}+4$ must be a perfect square number. An equation $5 n^{2}+4=u^{2}$ is known as Pell's equation, and it has infinitely many integer solutions. Hence, we can obtain an infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$. We know $\frac{1+\sqrt{5}}{2}$ is a fundamental unit of $t^{2}-5 n^{2}=4$, then all integer solutions are given as follows.

$$
\frac{t+\sqrt{5} n}{2}=\left(\frac{1+\sqrt{5}}{2}\right)^{k}
$$

where k is even.

Example 1

Table 1: $t^{2}-5 n^{2}=4$

k	t	n	a	b	c
4	7	3	$3 / 10$	$-9 / 5$	$9 / 2$
6	18	8	$8 / 65$	$-64 / 13$	$64 / 5$
8	47	21	$21 / 442$	$-441 / 34$	$441 / 13$
10	123	55	$55 / 3026$	$-3025 / 89$	$3025 / 34$
12	322	144	$144 / 20737$	$-20736 / 233$	$20736 / 89$
14	843	377	$377 / 142130$	$-142129 / 610$	$142129 / 233$
16	2207	987	$987 / 974170$	$-974169 / 1597$	$974169 / 610$
18	5778	2584	$2584 / 6677057$	$-6677056 / 4181$	$6677056 / 1597$

Theorem 2.2 (Nagell/Lutz Theorem)). Suppose E is an elliptic curve over Q whose Weierstrass form has integer coefficients, and let be the discriminant of E. If $P=(x, y)$ is a rational point of finite order, then x and y are integers. Furthermore, either $y=0$ or y^{2} divides D.

3. Main Results

Theorem 3.1. There are infinitely many integers n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has infinitely many rational solutions.

Proof. Let $a=\frac{n}{r}, b=-\frac{m n}{p}, c=\frac{m n}{q}$, and $q=p-n$. Then, from equation (1) we get

$$
r=\frac{p(p-n)}{-m n+p^{2}-p n}
$$

From equation (2) we get

$$
\left(n-m+m n^{2}\right) p^{2}+\left(-n^{2}+m n-m n^{3}\right) p-m^{2} n^{3}-m n^{2}=0 .
$$

To get the rational solution for p, discriminant must be rational square, we have

$$
V^{2}=\left(-4 n+4 n^{3}\right) m^{3}+\left(6 n^{2}-3+n^{4}\right) m^{2}+\left(2 n+2 n^{3}\right) m+n^{2} .
$$

Let $X=\left(-4 n+4 n^{3}\right) \operatorname{mand} Y=\left(-4 n+4 n^{3}\right) v$, we have the elliptic curve

$$
E: Y^{2}=X^{3}+\left(6 n^{2}-3+n^{4}\right) X^{2}+\left(4 n^{2}\left(n^{4}+2 n^{2}-3\right)+4 n^{6}-8 n^{4}+4 n^{2}\right) X+4 n^{2}\left(4 n^{6}-8 n^{4}+4 n^{2}\right)
$$

The discriminant D is given $16\left(n^{4}-10 n^{2}+9\right) n^{2}$. From Theorem 1.1, we know the point $(X, Y)=((-4 n+$ $\left.4 n^{3}\right) n, 4 n^{3} v\left(n^{2}-1\right)$) where $4+5 n^{2}=v^{2}$. By Nagell-Lutz theorem, Y coordinate is nonzero and its square does not divide D, then the point (X, Y) has infinite order. Thus, an elliptic curve E has infinitely many rational points.

Example 2

The case for $n=8$: An elliptic curve is given

$$
E: X^{3}+4477 X^{2}+2096640 X+260112384
$$

E has rank 1 and generator is $P(X, Y)=(16128,2322432)$. We can obtain infinitely many rational points using group law. Since the rational points become very huge, only the case for $2 P$ and $3 P$ are shown. We have $2 P$ and $3 P$ using using group law.

$$
\begin{aligned}
2 P(X, Y) & =\left(\frac{1776313}{576}, \frac{3876444467}{13824}\right), \\
(p, q, r) & =\left(\frac{698855}{74898}, \frac{99671}{74898}, \frac{17567680}{253759}\right), \\
(a, b, c) & =\left(\frac{253759}{2195960},-\frac{259369}{197760}, \frac{1882159}{204672}\right), \\
3 P(X, Y) & =\left(\frac{942479720365824}{1152069489025},-\frac{91864915317799988908032}{1236568025697538625}\right), \\
(p, q, r) & =\left(\frac{17327086176467}{2064829196885}, \frac{808452601387}{2064829196885}, \frac{34244478655559}{409062378631}\right), \\
(a, b, c) & =\left(\frac{3272499029048}{342444786555559},-\frac{3855363198784}{9965839809835}, \frac{32822956698304}{3958724982485}\right) .
\end{aligned}
$$

4. Find the numerical solutions

4.1. Method-1

Substitute $c=n-a-b$ into $a+b+c=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$.

$$
\begin{equation*}
(-n b+1) a^{2}+\left(b+b n^{2}-b^{2} n-n\right) a+b^{2}-n b=0 . \tag{3}
\end{equation*}
$$

To get the rational solution for a, the discriminant must be a rational square.
Thus, there must exist $v \in Q$ such that

$$
Q: v^{2}=n^{2} b^{4}+\left(-2 n^{3}+2 n\right) b^{3}+\left(-3+n^{4}\right) b^{2}+\left(-2 n^{3}+2 n\right) b+n^{2} .
$$

The quartic equation is birationally equivalent to an elliptic curve.

$$
\begin{gather*}
E: Y^{2}+\left(-2 n^{2}+2\right) Y X+\left(-4 n^{4}+4 n^{2}\right) Y=X^{3}+\left(-4+2 n^{2}\right) X^{2}-4 n^{4} X+16 n^{4}-8 n^{6} . \tag{4}\\
b=\frac{2 n X-8 n+4 n^{3}}{Y}, \\
v=\frac{n X^{3}-12 n X^{2}+6 n^{3} X^{2}+32 n X-32 X n^{3}-8 n^{3} Y+8 n Y+12 n^{5} X-16 n^{5}+8 n^{7}}{Y^{2}} .
\end{gather*}
$$

We searched the rationa ponits of equation (4) for $1<n<100$ with height (X) <1000000.
For $n=1,2,3,4,5,6,7,9,11,12,13,15,16,17,19,20,26,27,28,30,31,33,36,37,38,40,41,42,44,46,49$, $50,51,52,53,54,57,60,62,65,66,67,71,72,74,76,77,78,80,82,84,86,87,88,89,91,94,95,96,98,99$,
E has rank 0 and torsion point of order $6(X, Y)=\left(2 n^{2}, 0\right)$ gives no non trivial solution.
Hence, we need the points of infinite order for the non-trivial solution.

4.2. Method-2

Search for n which failed to appear in method 1 .
Let $a=\frac{n}{r}, b=-\frac{m n}{p}, c=\frac{m n}{q}$, and $r=p q$. Then, from equation (1) we get

$$
q=\frac{1+m p}{m+p}
$$

From equation (2) we get

$$
\begin{equation*}
\left(m^{2}-1\right) p^{2}+\left(-m n^{2}+m\right) p-m^{2} n^{2}+1=0 . \tag{5}
\end{equation*}
$$

For the quadratic in p equation (5) to have rational solutions, the discriminant must be a rational square. Thus there must exist $v \in Q$ such that

$$
\begin{equation*}
Q: v^{2}=4 m^{4} n^{2}+\left(-6 n^{2}-3+n^{4}\right) m^{2}+4 . \tag{6}
\end{equation*}
$$

We searched the rational ponits of equation (6) for $n=18,24,45,63,64,79$ with height $(m)<100000$.

4.3. Search results

Search range: $n<100,(a, b, c)<1000000$

Table 2: Small solutions

n	a	b	c
8	$64 / 5$	$-64 / 13$	$8 / 65$
10	$175 / 16$	$-35 / 34$	$25 / 272$
14	$320 / 21$	$-64 / 49$	$10 / 147$
18	$9879760 / 482517$	$-354320 / 140049$	$103114 / 1891773$
21	$441 / 13$	$-441 / 34$	$21 / 442$
23	$3978 / 161$	$-765 / 437$	$130 / 3059$
24	$11613784 / 477081$	$-1166848 / 3062277$	$326144 / 8669991$
25	$4807 / 175$	$-627 / 250$	$69 / 1750$
28	$9071 / 296$	$-193 / 72$	$47 / 1332$
29	$3553 / 116$	$-627 / 377$	$51 / 1508$
34	$11362 / 289$	$-7904 / 1479$	$736 / 25143$
35	$82615 / 1064$	$-110825 / 2597$	$11275 / 394744$
43	$559 / 12$	$-559 / 155$	$43 / 1860$
45	$219712122 / 4833865$	$-3265137 / 6889675$	$581994 / 27404975$
47	$4277 / 85$	$-611 / 183$	$329 / 15555$
55	$3025 / 34$	$-3025 / 89$	$55 / 3026$
56	$5312 / 91$	$-1992 / 833$	$192 / 10829$
58	$905840 / 14297$	$-121136 / 22533$	$190970 / 11108769$
59	$33099 / 553$	$-3009 / 3458$	$649 / 39026$
63	$27784341 / 278075$	$-7153731 / 193697$	$2491911 / 157032925$
64	$92568783 / 1364992$	$-1769673 / 461824$	$598879 / 38475712$
69	$27347 / 396$	$-667 / 9516$	$943 / 78507$
72	$53761 / 624$	$-15983 / 1128$	$407 / 29328$
79	$10440087 / 57013$	$-2040017 / 19591$	$116841 / 9230923$
85	$18800 / 221$	$-235 / 3009$	$400 / 39117$
90	$180081 / 2000$	$-5049 / 101840$	$2889 / 318250$
92	$93081 / 800$	$-53889 / 2212$	$4807 / 442400$

The other large solutions are

$$
\begin{aligned}
(n, a, b, c)= & (61,1839878299779 / 30138554138,-180752198601 / 3001548136699,14520329819 / 1126625024822), \\
(n, a, b, c)= & (70,1151489111663126150689251015034965072 / 16448733703744484903901651805459165, \\
& 35476747994664271785238070686373872 / 5733154784860145737311544952102626225, \\
& -2523654174409881112161644274867222 / 231210761288986076770167973988075975), \\
(n, a, b, c)= & (73,-90518708890610 / 86867723277193,124437696960115 / 9201689556492827, \\
& 1559559265989062 / 21067009890419), \\
(n, a, b, c)= & (75,123859705839353 / 1587069791475,-63406997310943 / 20746400481000 \\
& 1179240742511 / 88813786257000) \\
(n, a, b, c)= & (83,11717358486721200474 / 37080311991617453,-52769197846267122175 / 226466060739568507, \\
& 1918436880614113650 / 159232423305880615031) \\
(n, a, b, c)= & (93,7052305354829229 / 71933121545305,-47532343770639 / 9411446212348 \\
& 6219625284873 / 579593202983140) .
\end{aligned}
$$

5. Concluding Remarks

Although we looked for the numerical solutions in the serarch range, there was no positive solution. The only trivial positive solution is $1+1+1=1 / 1+1 / 1+1 / 1=3$. We state a conjecture as follows.

Conjecture:

There is no integer n such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n$ has distinct positive rational solutions.

References

[1] American Mathematical Monthly,Volume 122,2015,Problems and Solutions, https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.122.03.284
[2] R. K. Guy. Unsolved Problems in Number Theory, 2nd edition, Springer-Verlag, 1994.
[3] Sage software, Version 4.3.5, http://sagemath.org.
[4] A. Schinzel, Triples of positive integers with the same sum and the same product, Serdica Math. J., 22(1996) 587-588. MR1483607

