Ideals of the Algebra II: Prime Ideal

SHAO-DAN LEE

Abstract In [4], we have constructed an ideal with respect to a subset of binary operations. In this paper, we construct a prime ideal with respect to a nonempty subset of binary operations in an algebra. Let P and Q be two prime ideals with respect to ϕ and Ψ , respectively. Then we have that $P \cup Q$ is a prime ideal if some conditions hold.

CONTENTS

1. Introduction	1
2. Preliminaries	2
2.1. Universal Algebra	2
2.2. An Ideal with respect to ϕ	2
3. Ideals of the Algebra II: Prime Ideal	3
References	4

1. INTRODUCTION

In [4], we have constructed an ideal with respect to a subset of binary operations. Now, we shall explore other important concepts. We assume that all binary operations are commutative and associative in this paper.

Let $\Delta := \{\beta_0, \beta_1, \dots, \beta_n\}$ be a nonempty finite set of binary operations, $\sigma \colon \Delta \to \mathbb{Z}$ a map given by $\beta_i \mapsto 2$. Then the ordered pair $\mathfrak{A} := \langle \Delta, \sigma \rangle$ is an algebraic language. Suppose that **A** is an algebra of the language \mathfrak{A} . See notation 2.1 for more details.

Let ϕ be a nonempty subset of Δ , and S a nonempty subset of \mathbf{A} . If an ideal M with respect to ϕ is the minimal ideal such that $S \subseteq M$, then the ideal M is said to be generated by the subset S, see definition 3.1 for more details. Let $(S)^{\phi}$ denote the ideal M. For all subset $S \subseteq M^{\complement}$, if the algebra \mathbf{A} is local[4] and M is the maximal ideal, then we have $(S)^{\phi} = \mathbf{A}$, see proposition 3.1 for the details.

In definition 3.2, we construct a prime ideal P with respect to a nonempty subset $\Phi \subseteq \Delta$. Let P and Q be prime ideals with respect to Φ and Ψ , respectively. We have that $\Phi \cup \Psi = \Delta, \Phi \cap \Psi \neq \emptyset$, and $P \cup Q \neq A$ implies that $P \cup Q$ is a prime ideal with respect to $\Phi \cap \Psi$, see proposition 3.3 for more details.

Date: March 13, 2024.

²⁰²⁰ Mathematics Subject Classification. 16D25.

Key words and phrases. universal algebra, associative and commutative binary operation, ideal.

SHAO-DAN LEE

2. PRELIMINARIES

2.1. Universal Algebra. Recall some definitions in universal algebra.

Definition 2.1 ([3, 5]). An ordered pair (L, σ) is said to be a (first-order) **language** provided that

- *L* is a nonempty set,
- $\sigma: L \to \mathbb{Z}$ is a mapping.

A language $\langle L, \sigma \rangle$ is denoted by \mathfrak{L} . If $f \in \mathfrak{L}$ and $\sigma(f) \ge 0$ then f is called an **operation symbol**, and $\sigma(f)$ is called the **arity** of f. If $r \in \mathfrak{L}$ and $\sigma(r) < 0$, then r is called a **relation symbol**, and $-\sigma(r)$ is called the **arity** of r. A language is said to be **algebraic** if it has no relation symbols.

Definition 2.2 ([3]). Let X be a nonempty class and n a nonnegative integer. Then an *n*-ary **partial operation** on X is a mapping from a subclass of X^n to X. If the domain of the mapping is X^n , then it is called an *n*-ary **operation**. And an *n*-ary **relation** is a subclass of X^n where n > 0. An operation(relation) is said to be **unary**, **binary** or **ternary** if the arity of the operation(relation) is 1, 2 or 3, respectively. And an operation is called **nullary** if the arity is 0.

Definition 2.3 ([3]). An ordered pair $\mathbf{A} := \langle A, \mathfrak{P} \rangle$ is said to be a **structure** of a language \mathfrak{P} if A is a nonempty class and there exists a mapping which assigns to every n-ary operation symbol $f \in \mathfrak{P}$ an n-ary operation f^A on \mathbf{A} and assigns to every n-ary relation symbol $r \in \mathfrak{P}$ an n-ary relation r^A on \mathbf{A} . If all operation on \mathbf{A} are partial operations, then \mathbf{A} is called a **partial structure**. A (partial)structure \mathbf{A} is said to be a (**partial**)**algebra** if the language \mathfrak{P} is algebraic.

Definition 2.4 (cf. [3, 5]). Let X be a nonempty set. Suppose that β is a binary operation on X. Then the 2-ary operation β is **associative** provided that

 $\beta(a,\beta(b,c)) = \beta(\beta(a,b),c)$ for every $a,b,c \in X$.

Definition 2.5 (cf. [3,5]). With the notations of definition 2.4, the 2-ary operation β is **commutative** provided that

 $\beta(a, b) = \beta(b, a)$ for every $a, b \in X$.

2.2. An Ideal with respect to ϕ . Recall the definition of an ideal in [4].

Convention 2.1. We assume that all binary operations are associative[definition 2.4] and commutative[definition 2.5] in this paper.

Notation 2.1. Let $\Delta := {\beta_1, \beta_2, ..., \beta_n}$ be a set of operation symbols for n > 0, and $\sigma: \Delta \to \mathbb{Z}$ a map which assigns to β_i 2 for all $\beta_i \in \Delta$. Then the ordered pair $\mathfrak{A} := {\Delta, \sigma}$ is an algebraic language[definition 2.1]. It is clear that all operations of the language \mathfrak{A} are binary operations. Suppose that A is an algebra[definition 2.3] of the language \mathfrak{A} .

Definition 2.6 ([4]). Let the notations be as in notation 2.1, and $\varphi \subseteq \Delta$ a nonempty subset of 2-ary operations on A. A nonempty subalgebra J is said to be an **ideal with respect to** φ provided that $\beta_i \in \varphi$ implies $\beta_i(\alpha, x) \in J$ for all $\alpha \in J, x \in A$. In this case, we say that the nonempty subset $\varphi \subseteq \Delta$ makes the subalgebra J to be an ideal.

2

In [4], we have constructed an ideal with respect to a subset of binary operations. Now, we shall explore other important concepts. The intersection of ideals is an ideal. Hence we have the following definition.

Definition 3.1 (cf. [1,2,4]). Let notations be as in notation 2.1, *S* a nonempty subset of **A**, and ϕ a nonempty subset of Δ . Suppose that *J* is an ideal with respect to ϕ in **A**. We say that *J* is **generated** by *S* if the ideal *J* is the minimal ideal with respect to ϕ such that $S \subseteq J$. The ideal *J* is **denoted** by $(S)^{\phi}$.

Proposition 3.1. Let the notations be as in notation 2.1, ϕ a nonempty subset of Δ . Suppose that **A** is local[4] with respect to ϕ , and M is the maximal ideal in **A**. We have that $(S)^{\phi} = \mathbf{A}$ for all nonempty subset $S \subseteq M^{\complement}$, where $M^{\complement} := \mathbf{A} \setminus M$.

Proof. Immediate from definition 3.1 and [4, Definition 3.3].

Definition 3.2 (cf. [1,2,4]). Let the notations be as in notation 2.1, $\varphi \subseteq \Delta$ a nonempty subset. An ideal *P* with respect to φ in *A* is said to be a **prime ideal with respect to** φ provided that $P \neq A$ and $\beta(I,J) \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$, for all $\beta \in \varphi$ and all ideals *I*, *J* with respect to φ in *A*.

Remark 3.1. With the same notations as in definition 3.2, if an ideal *P* is prime with respect to φ , then *P* is prime with respect to Ψ for all nonempty subset $\Psi \subseteq \varphi$.

Proposition 3.2 (cf. [1]). Let the notations be as in notation 2.1, ϕ a nonempty subset of Δ . An ideal $P \neq \mathbf{A}$ with respect to ϕ is prime if and only if $\beta(i,j) \in P$ implies that $i \in P$ or $j \in P$, for all $\beta \in \phi$ and all $i, j \in \mathbf{A}$.

Proof. Let $I := (\{i\})^{\phi}$ and $J := (\{j\})^{\phi}$ be ideals with respect to ϕ generated by $\{i\}$ and $\{j\}$, respectively. We assume that P is a prime ideal with respect to ϕ . Since β is commutative and associative, we have that $\beta(i,j) \in P$ implies $\beta(I,J) \subseteq P$, for all $\beta \in \phi$. Thus we have $I \subseteq P$ or $J \subseteq P$. This suffices to show $i \in P$ or $j \in P$.

Conversely, We assume that $\beta(I,J) \subseteq P$ for all $\beta \in \Phi$. Hence we have that $\beta(x,y) \in P$ for every $x \in I, y \in J$, and $\beta \in \Phi$. Hence we have $x \in P$ or $y \in P$. For a $\beta \in \Phi$, if $J \notin P$ and $I \notin P$, then there are $a, b \in I$, and $a', b' \in J$ such that $\beta(a, a'), \beta(b, b') \in P$ implies that $a, b' \in P$ and $a', b \notin P$. Hence we have that $a', b \notin P$, but $\beta(a', b) \in P$. This is a contradiction. Therefore, we have $I \subseteq P$ or $J \subseteq P$. It follows that P is prime. This completes the proof.

Proposition 3.3. Let the notations be as in notation 2.1. Suppose that P and Q are prime ideals with respect to ϕ and Ψ in **A**, respectively. If $\phi \cup \Psi = \Delta$, $\phi \cap \Psi \neq \emptyset$, and $P \cup Q \neq \mathbf{A}$, then the subset $P \cup Q$ is a prime ideal with respect to $\phi \cap \Psi$.

Proof. We have proved that $P \cup Q$ is an ideal with respect to $\Phi \cap \Psi$ in [4, Proposition 3.4]. Hence it suffices to show that $P \cup Q$ is prime. For every $x, y \in A$, and every $\beta \in \Phi \cap \Psi$, we have that $\beta(x, y) \in P \cup Q$ implies that $\beta(x, y) \in P$ or $\beta(x, y) \in Q$. And the ideals P, Q are prime. Hence we have that $x \in P \cup Q$ or $y \in P \cup Q$ by proposition 3.2. Therefore, the ideal $P \cup Q$ is prime.

SHAO-DAN LEE

References

- [1] Thomas W. Hungerford, Algebra, Springer, 1974.
- [2] Nathan Jacobson, *Basic algebra ii*, 2nd ed., Dover Publications, 2009.
- [3] Jaroslav Ježek, Universal algebra, 1st ed., 2008.
- [4] Shao-Dan Lee, *Ideals of the algebra*, 2024. vixra preprint, http://vixra.org/abs/2403.0051.
- [5] S.Burris and H.P.Sankappanavar, A course in universal algebra, 2012.

Email address: leeshuheng@icloud.com