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1 Abstract
By introducing three reference frames in addition to the the two reference frames typically used to
discuss Einstein’s special relativity (i.e., a “laboratory” frame and a boosted frame), we can show
the utter futility of trying to explain (or to resolve) the absurdities of the twin paradox.

2 Introduction
There are at least two versions of special relativity – one due to Einstein, and one being the work
primarily of Lorentz. The version of special relativity due to Einstein has become universally
accepted. But it is the contention of this paper that the version of special relativity due to Lorentz
– often referred to as Lorentz aether (ether) theory (LAT / LET) – is the correct version. (The
acronym ESR will be used to denote Einstein’s version of special relativity.)

The reason for this conclusion (i.e., that the Lorentz version of special relativity is to be preferred
over the Einsteinian version) is that Lorentz specifies a preferred reference frame (i.e., the reference
frame in which the ether – and presumably the earth – is at rest) while Einstein allows a multiplicity
of equally valid reference frames and explicitly rejects the idea of a preferred reference frame. (By
rejecting the necessity of the preferred aether- based frame to support the propagation of electro-
magnetic radiation, Einstein derived the Lorentz transformation in an especially easy manner1.)

1The rejection of the aether resulted in the paradox in Einstein’s version of relativity that the velocity
of light in all but the laboratory – or “stationary” frame is not isotropic. This can be seen by considering a
ray of light propagating along the direction of the y axis (in the stationary or Lab frame) when the Lorentz
transformation is derived based on a ray of light traveling along the x axis in frames that are boosted along
the x axis. In all but the laboratory frame, i.e., in all of the boosted frames, the ray of light will travel with
speed c along the y′ axis but will have an additional component of velocity along the x′ axis. Thus the vector
sum of these components will give a velocity greater than c for all directions other than along the x′ axis.
(The observation of the anisotropy of light speed in different directions is related to the historical discussion
of whether a spherical light pulse remains spherical – or assumes an elliptical shape – in boosted frames; it
is also related to the Ehrenfest paradox.) Note that this anisotropy can be avoided in Lorentz ether theory by
postulating an ether with different compositions in the x and y directions.
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Einstein’s version of special relativity produced a plethora of paradoxes. The “twin paradox” has
plagued Einstein’s theory of special relativity almost since the publication of Einstein’s first paper
on the subject in 1905. The Ehrenfest paradox is another problem without apparent resolution.
Another paradox was pointed out in [1].

As pointed out in reference [4], there have been countless attempts to resolve the twin paradox. As
with almost all of the great philosophical questions (e.g., the proposition that man has free will),
there are two groups – those who agree with the proposition and those who disagree. In the case of
the twin paradox, there are those who feel that the paradox can be – and has been – resolved, and
those who feel that the paradox is incapable of resolution. It is the purpose of this paper to show
that the twin paradox is incapable of being resolved or explained.

Before proceeding, it should be mentioned that there are several versions of the twin paradox,
just as there are several versions of Mach’s principle and several versions of Einstein’s equivalence
principle. One version of the paradox involves only the behavior of clocks in laboratory and boosted
frames as they travel away from each other in uniform translational motion (obviously after one
frame has been accelerated in the process of being Lorentz boosted). The second version of the
paradox involves a comparison of the age of the twins when they are reunited after one twin has
left earth and returned home. In the first version, the paradox involves the symmetry of the velocity
of the two frames. From the viewpoint of the twin who departs, the lab frame is traveling away
from the twin and its clocks should be running slower, not vice versa. It is an obvious impossibility
for the clocks in the boosted frame to be running slower than the clocks in the lab frame and vice
versa as was pointed out in [2].

The presence of acceleration of the boosted frame is often invoked to prove why the twin in the
boosted frame is younger than the twin in the lab frame upon returning. Yet, the twin in the lab
frame is also accelerated with respect to the twin in the boosted frame. To say that the acceleration
of the boosted frame is the only acceleration that matters because it is the only acceleration that is
felt by an observer is to invoke the absolute nature of space with respect to acceleration2.

This analysis will attempt to show that the first form of the paradox is incapable of resolution.
The first form of the paradox will be paraphrased in the following way. Consider twin A in a
“stationary” or lab frame and twin B in a boosted frame. From the viewpoint of twin A, the clocks
in the frame of twin B are running slowly. But from the viewpoint of twin B, twin B is the stationary
twin (after the cessation of the necessary acceleration), the frame of twin A is the moving frame,
and the clocks in the frame of twin A are running slowly. This is a logical impossibility. It is absurd
to think that each of two clocks can be running slower than the other clock.

The ideas of reference [1] will be used to show the futility of explaining the first form of the twin
paradox3. That reference demonstrated that the Lorentz transformation as used by Einstein is mean-
ingless and useless because the introduction of many different frames (rather than consideration of
the usual two reference frames, i.e., the lab and boosted frames) shows that many different rates

2Einstein’s first paper on special relativity completely ignored the potential confusing effects of acceler-
ation in the whole issue of relativity. This topic is one of several subtle issues that are completely ignored
in Einsteins’ first paper on relativity. An attempt to catalog several of these ignored subtle issues will be
published in a forthcoming paper.

3And if the first form of the paradox can be shown to be incapable of resolution, the second form of the
paradox is similarly hopelessly beyond resolution.
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can be associated with (or predicted for) any certain clock at rest in a given reference frame.

3 The basic argument
To show the futility of trying to resolve the (first form of) the twin paradox, we imagine the ex-
istence of five inertial reference frames4. One frame is labeled with the letter L and serves as the
“laboratory” (or “stationary”) frame. Two frames are labeled AR and AL and the other two frames
are labeled BR and BL. We will designate both AR and AL the “A frames”; similarly frames BR and
BL will be denoted the “B frames”. All five frames share a common x axis. Next we consider iden-
tical quadruplets. The quadruplets will remain unnamed and will be identified (when necessary)
only by associating them with their respective reference frame and will only be discussed if the
need to consider aging during a round trip is needed.

We ensure that the origins of all five frames are coincident initially, at which time we ensure that
all clocks and measuring rods are identical and have been synchronized in an unambigous manner
(if possible). We do not consider the complications of synchronization conventions and assume
that an unambiguous method for synchronization of clocks and measuring rods is possible and has
been used in this case. We also avoid the consideration of whether the effects of acceleration can be
′′nullified′′ by synchronizing the clocks of each frame after the acceleration has ceased and uniform
translational motion has been achieved. If such synchronization is impossible (as it naively seems
to be), then because acceleration may introduce a retardation factor into the time shown by each
of the clocks of a given frame, it is pointless to try to compare times as shown on two clocks of
differing frames at a certain event in spacetime. Instead, only theoretical rates of the clocks can
be compared. That is, if acceleration can potentially alter the careful synchronization of clocks
(and measuring rods) achieved while the frames are coincident and at rest, it is meaningless to
compare the absolute values of the time shown on any two clocks from differing frames at a certain
spacetime event. (We could only compare clocks from differing frames after a round trip; this is
similar to the paradox that special relativity is based on the invariance of the two- way speed of
light rather than invariance of the one way speed of light.)

In what follows, we will scale all velocities v with lightspeed c and use the symbol β ≡ v/c to
represent the scaled velocities.

The reference frames will be accelerated to final velocities β = 0.75 with respect to the frames
adjacent to them. The frames with subscript L will be accelerated in the negative x direction and
the frames with subscript R will be accelerated in the positive x direction.

Following [5], we will use the symbol ⊞ to represent the relativistic addition of velocities vAB and

4An inertial reference frame is any frame in which an object unaffected by any force will maintain uniform
translational motion or rest. We define such a frame in this manner rather than saying that an inertial frame
is one in which Newton’s three laws of motion are true since Newton’s three laws involve circular reasoning.

We will suppose that it is possible to operationally define (i.e., to specify according to a certain proce-
dure) a prototype (i.e., a “boilerplate” or “primordial”) inertial reference frame from which all others can be
obtained via Galilean boosts. Whether this can be achieved is open to debate.
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vBD. The velocity vAD resulting from two successive boosts vAB and vBD is given by

vAD =
VAB + VBD

1 + (VAB · VBD) / c 2 (1a)

βAD =
βAB + βBD

1 + βAB · βBD
(1b)

We will also use the fact that rapidity ϕ defined by

tanh (ϕ) = v/c (2)

is additive. That is, for a series of collinear boosts,

ϕ 1,N = ϕ 1, 2 + ϕ 2, 3 + . . . + ϕN−1,N (3a)
β 1,N = tanh (ϕ 1,N) (3b)

As mentioned previously, all boosts between “adjacent” frames will have the value β = 0.75. To
obtain the value of the boosts between frames which are not adjacent we will use the values obtained
via (3); these values are displayed in table 1.

Scaled velocities to be added Resulting β Corresponding γ Corresponding clock rate factor

0.75 ⊞ 0 0.7500 1.512 0.66

0.75 ⊞ 0.75 0.9600 3.571 0.28

0.75 ⊞ 0.75 ⊞ 0.75 0.9942 9.298 0.11

0.75 ⊞ 0.75 ⊞ 0.75 ⊞ 0.75 0.9992 25.005 0.04

Table 1
Boost factors with corresponding gamma and clock rate factors

The boost velocities can be achieved either by accelerating each frame (except the lab frame L)
with the same acceleration for different lengths of time or by applying different accelerations for
the same length of time (as shown by a clock in the lab frame L). We will assume that (which
ever method is chosen) the final velocities of the various frames are achieved within a certain time
period given by Tboost. That is, after time Tboost as shown by the lab frame’s clock, all of the frames
will be in uniform translational velocity with respect to each other. If we accept the possibility
mentioned above that acceleration may affect the clock rates, then the clock rates can no longer be
determined by a one - time observation at a certain event in space time (unless we could find a way
to synchronize all of the clocks of the various frames with the clocks of another frame while the
two frames are in translational motion with respect to each other and actually first carried out this
procedure). However, we will only be interested in comparing the clock rates ( and not the absolute
times shown on the various clocks) as derived theoretically by the Einstein time dilation equation.

Also, another subtle “paradox within a paradox” is introduced: While the A and B frames are
accelerating away from the lab frame L, the L frame is also accelerating away from the other
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frames. Its clock will be running differently as seen by the other frames; however, the observer in
frame L senses no acceleration. Can the observer really be said to be accelerating if the observer
is unaware of the acceleration, i.e., if the observer does not “feel” the acceleration ? We also have
the possibility that the observers in the A frames can be accelerating away from the corresponding
B frames (i.e., AL is accelerating away from BL and AR is accelerating away from BR) while an
observer in the frames would be feeling an acceleration toward the corresponding frames (i.e., the
twin in AL feels an acceleration toward frame BL).

We will ignore these complications and just consider the clock rates (as opposed to the actual times
shown on the clocks) from the standpoint of a “super- observer” not subject to the constraints of
the speed of light and time. That is, we just consider the clock rates, not the absolute value of the
time shown on each. We will assume that we compare the clock rates at a time (as shown on the lab
frame L clock) which is far later than the time Tboost necessary to achieve the final boost velocities5.

According to Einstein’s special relativity (ESR), the only factor that determines the relative rate of
a clock in a boosted frame as compared to the clock rate in a “stationary” or laboratory frame is the
Lorentz boost factor β as it appears in the gamma factor defined by6

γ ≡
1√

1 − β 2
(4)

To validate this statement, note that the only factor involved in determining the ratio of ∆tL and ∆tB

in the famous equation for “time dilation” is the gamma factor:

∆tB = γ · ∆tL (5)

In (5), the subscripts L and B refer to the lab frame and the boosted frame, respectively and t refers
to time and ∆ t refers to a time interval.

We can easily transform (5) into the following two equations:

∆TB = γ · ∆TL (6a)

fB ≡ T −1
B = γ−1 fL (6b)

In (6), T represents a period of oscillation and f represents the corresponding frequency of oscilla-
tion. Since γ ≥ 1 and γ−1 ≤ 1, the frequency (and thus the “rate”) of a Lorentz- boosted clock will
always be less than that of the corresponding clock in the related lab (“stationary”) frame.

As seen from reference frame L (the lab frame), the clocks in the A frames (i.e., frames AR and
AL), will have the same rates but will have a slower rate than the clock in frame L. As seen from

5Another method to remove the possible effect of acceleration on the absolute times shown by the clocks
is to find some way to calibrating the clocks at the origin of the frames after the accelerations are over and
the steady state boost velocities have been achieved. This would involve sending a common signal to each
frame as the origins were simultaneously superimposed at a single common point along the x axis.

6As pointed out in [1], the explanation of the absolute rate of the passage of time in a given frame is
a mystery. If clock rates depend on universal constants, these constants would have to have values that
vary based on the absolute values of the velocity of the reference frame. (The factors which determine the
“absolute” value of the length of measuring rods in a given frame is also a mystery.)
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reference frame L (the lab frame), the clocks in the B frames (i.e., frames BR and BL), will have
identical rates but will have a slower rate than the clock in frame L and also slower rates than the
clocks in the A frames. This situation is shown in figure 1.

As seen from reference frame BL, none of the five clocks will have a rate matching the rate of one of
the other clocks. All of the other clocks will have unequal rates. In fact, the order of the magnitude
of the rates as shown in figure 2 is:

Rate [BL] > Rate [AL] > Rate [L] > Rate [AR] > Rate [BR] .

In contrast, figure 1 shows that

Rate [BL] = Rate [BR] < Rate [AL] = Rate [AR] < Rate [L] .

This is an obvious irreconcilable contradiction.

Therefore, we see that there is a great conflict between the rates of time as interpreted by the
observers in frames L and BL. This conflict is an unsolvable problem for those committed to
Einstein’s use of the Lorentz transformation. This is why the first form of the twin paradox is
incapable of being resolved. If the first form of the twin paradox is absolutely incapable of being
resolved, the second form is equally incapable of being resolved.

βAR ; L = 0.75

Rate = 0.66

βAL ; L = 0.75

Rate = 0.66

βBR ; AR = 0.75

βBR ; L = 0.96

Rate = 0.28

βBL ; AL = 0.75

βBL ; L = 0.96

Rate = 0.28

x axis0

L

AR BRALBL

Figure 1: The scenario as seen from reference frame L, the lab (“stationary”) frame. The rates
shown are fractional clock rates as compared to the rates of clocks in lab frame L. Note the sym-
metry about the lab frame y axis.

4 Discussion
We have shown, using a simple application of the ideas of [1] that the twin paradox in both of its
classic forms is an unsolvable problem. In other words, there is no possible solution to the twin
paradox in either of its forms. By slightly complicating the considerations of the twin paradox
by introducing quintuplets, i.e., by actually resorting to five identical reference frames subject to
different accelerations (or no acceleration at all in the case of frame L), we have shown that the
clock in each frame must be displaying time at different mutually exclusive rates. This is clearly
impossible unless one invokes the use of an absurd world that is not based on logic or universal
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BL
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βAL ; BL = 0.7500

Rate = 0.66

βL ; AL = 0.7500

βL ; BL = 0.9600

Rate = 0.28

βAR ; L = 0.7500

βAR ; BL = 0.9942

Rate = 0.11

βBR ; AR = 0.7500

βBR ; BL = 0.9992

Rate = 0.04

Figure 2: The scenario as seen from reference frame BL. The rates shown are fractional clock rates
as compared to the rates of clocks in reference frame BL. Note the absence of the symmetry shown
in the previous figure.

truth. This is the paradox of the quintuplets: That clocks can (and in ESR, do) have various rates,
depending on which reference frame is used to derive their time dilation factor.
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