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  Abstract 

In this paper, we will obtain the left and the right-handed representation (chirality) of 

the wavefunction using Geometric (real Clifford) Algebra Cl3,0. Having the wavefunc-

tion 𝜓: 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 + 𝜓

123𝑒123 

 

In Chiral basis, the separation between left and right-handed elements is explicit: 

 

𝜓𝐿 = 𝜓
1𝑒1 + 𝜓

2𝑒2 +𝜓
3𝑒3 + 𝜓

123𝑒123 

𝜓𝑅 = 𝜓
0 +𝜓23𝑒23 +𝜓

31𝑒31 + 𝜓
12𝑒12 

 

In Pauli/Dirac basis, this explicit separation is not possible, and the result is as follows: 

 

𝜓𝐿 =
1

2
((𝜓3 + 𝜓0) + (+𝜓1 +𝜓31)𝑒1 + (𝜓

2 −𝜓23)𝑒2 + (𝜓
3 + 𝜓0)𝑒3

+ (−𝜓2 +𝜓23)𝑒23 + (𝜓
1 + 𝜓31)𝑒31 + (𝜓

123+𝜓12)𝑒12

+ (𝜓123 + 𝜓12)𝑒123) 

 

𝜓𝑅 =
1

2
((−𝜓3 + 𝜓0) + (+𝜓1 − 𝜓31)𝑒1 + (𝜓

2 + 𝜓23)𝑒2 + (𝜓
3 − 𝜓0)𝑒3

+ (𝜓2 + 𝜓23)𝑒23 + (−𝜓
1 + 𝜓31)𝑒31 + (−𝜓

123+𝜓12)𝑒12

+ (𝜓123 − 𝜓12)𝑒123) 

 

Also, a summary of how all the interactions can be calculated and represented using 

Geometric (real Clifford) Algebra is shown.   
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1. Introduction  

In this paper, we will deal with the chirality in Geometric (real Clifford) Algebra represen-

tation. We will obtain the left and the right-handed representation of the wavefunction us-

ing Geometric (real Clifford) Algebra Cl3,0. 

2. Geometric (real Clifford) Algebra Cl3,0. Basis vectors 

There is a discipline in mathematics that is called real Geometric Algebra also known as 

real Clifford Algebras [1][3].  

In the specific Geometric Algebra Cl3,0, it is considered a three-dimensional space, so we 

need three independent vectors to define a basis. The classical definition of a basis is as 

follows: 

                

            Fig. 1 Basis vectors in three-dimensional space. 

In this paper we will use the nomenclature ei (without any hat or vector sign) to name these 

three vectors instead the classical 𝑥̂ 𝑦̂ 𝑧̂. Above, I have considered an orthonormal basis as 

an example.  

But in the general case, this is not even necessary. The only necessary constraint to form a 

basis is that the three vectors are linearly independent (this is, they do not lie on the same 

plane). An example below: 

                     

In Geometric algebra, it is defined an operation called the geometric product. The geomet-

ric product is not represented by any symbol. It is the implicit operation when two vectors 

are represented one after the other. 

Its definition is: 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

Being: 



J.Sánchez 
 

 

 3  

 

𝑒𝑖 · 𝑒𝑗 = ‖𝑒𝑖‖‖𝑒𝑗‖ cos(𝛼𝑖𝑗) 

The classical definition of the scalar product. The product of the two norms (the length) of 

the vectors by the cosine of the angle formed by them (we have called it αij in this case). 

The result of the scalar product is a number, a scalar. An important property of the scalar 

product is that it is commutative: 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = ‖𝑒𝑖‖‖𝑒𝑗‖co s(𝛼𝑖𝑗) 

As the cosine of the angle is included in the product, you can check that when ei and ej are 

perpendicular (right angle), the scalar product is zero. And if the vectors are colinear (the 

angle is zero), the scalar product is just the product of the modules of the vectors. 

The other element of the geometric product above is: 

𝑒𝑖 ∧ 𝑒𝑗 

What it is called the outer, exterior or wedge product of the two vectors. 

The result of this operation is not a number. It is another entity that is not a number and not 

a vector. It is called a bivector. The bivector is an entity that represents an oriented surface 

area (in a same way that a vector “represents” an oriented line segment). 

          

It can be checked above that the module (area of the surface) when reversing the order of 

the exterior product is the same. But the orientation (its sign) changes. So, the exterior 

product is anticommutative: 

𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 

The module (area of the surface) of the exterior product is: 

‖𝑒𝑖 ∧ 𝑒𝑗‖ = ‖𝑒𝑗 ∧ 𝑒𝑖‖ = ‖𝑒𝑖‖‖𝑒𝑗‖ sin(𝛼𝑖𝑗) 

You can see that when the vectors are colinear (the angle is zero), the exterior product 

result is zero. And when the vectors are perpendicular, the module of the exterior product 

is the product of the modules of the vectors. 

Coming back to the definition of the geometric product: 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

We can see that when we perform the square of a vector, this is, the product of a vector by 

itself (the vector is colinear with itself, its angle is zero) the result is:  

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 + 𝑒𝑖 ∧ 𝑒𝑖 = ‖𝑒𝑖‖‖𝑒𝑖‖ · 1 + 0 = ‖𝑒𝑖‖‖𝑒𝑖‖ = ‖𝑒𝑖‖

2 
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So, the square of a vector is its norm squared. The important thing here, is that the result is 

just a number. It is not a vector, it is not a bivector, it is just a number. We have converted 

a vector to a number just multiplying it by itself. 

If now, we multiply (geometric product) two perpendicular vectors (the angle between 

them is a right angle): 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 0 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 

So, you can see that the result is a pure bivector. It does not include vectors or scalars, just 

a bivector. 

If we reverse the product, we have: 

𝑒𝑗𝑒𝑖 = 𝑒𝑗 · 𝑒𝑖 + 𝑒𝑗 ∧ 𝑒𝑖 = 0 + 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑖𝑒𝑗 

So, when two vectors are perpendicular, not only the exterior product, but also the geomet-

ric product is anticommutative. 

From the equations above we can obtain the following equations.  

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

𝑒𝑖 ∧ 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖) 

The demonstration comes directly from the definition of the geometric product. If we sum 

a geometric product by its reverse, we put the definition of geometric product, we take into 

account that the scalar product is commutative and the exterior product anticommutative: 

𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 + 𝑒𝑗 · 𝑒𝑖 + 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 + 𝑒𝑖 · 𝑒𝑗 − 𝑒𝑖 ∧ 𝑒𝑗
= 2(𝑒𝑖 · 𝑒𝑗) 

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

If instead of summing, we subtract: 

𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 − 𝑒𝑗 · 𝑒𝑖 − 𝑒𝑗 ∧ 𝑒𝑖 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 − 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗
= 2(𝑒𝑖 ∧ 𝑒𝑗) 

𝑒𝑖 ∧ 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖) 

We will see in next chapters that when we apply the exterior product instead of the geo-

metric product of two vectors, this means that we want only the result that appears in the 

plane they form (in the bivector they form). And we “remove” from the result the scalars 

(that will appear with the scalar product of the vectors) and also, we remove the possible 

result in vectors (in more complicated products that we will see in next chapters). 

Another point to comment is that the exterior product of bivectors (instead of vectors) is 

defined in the opposite way (summing instead of subtracting). I am not going to enter into 

details, you can check it in [3]. 

(𝑒𝑖𝑒𝑗) ∧ (𝑒𝑟𝑒𝑠) =
1

2
(𝑒𝑖𝑒𝑗𝑒𝑟𝑒𝑠 + 𝑒𝑟𝑒𝑠𝑒𝑗𝑒𝑖) 
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The same way, the scalar product of bivectors is also defined as the opposite of vectors. 

See [3]. 

(𝑒𝑖𝑒𝑗) · (𝑒𝑟𝑒𝑠) =
1

2
(𝑒𝑖𝑒𝑗𝑒𝑟𝑒𝑠 − 𝑒𝑟𝑒𝑠𝑒𝑗𝑒𝑖) 

Also, to remark that the geometric product is always associative and distributive as you can 

see in [3]. But in general, is not commutative or anticommutative as commented (it depends 

on the specific product) We will see more examples in the following chapters. 

To conclude this chapter about geometric algebra, we will define the trivector. When two 

vectors are exterior multiplied, they form a bivector as seen above. The same way, when 

three vectors are exterior multiplied, they create an oriented volume, called the trivector: 

   

You can see again, that when we reverse the vectors, we get the same volume (module of 

the trivector) but with different orientation (sign): 

𝑒𝑖 ∧ 𝑒𝑗 ∧ 𝑒𝑘 = −𝑒𝑘 ∧ 𝑒𝑗 ∧ 𝑒𝑖 

We will check more thing regarding reversion and change of signs in the next chapter. 

 

3. Geometric Algebra Cl3,0. Different types of bases 

3.1 Orthonormal basis 

In an orthonormal basis, the norm of the basis vectors is equal to one. And the basis vectors 

are perpendicular to each other.  

So, from the properties commented in chapter 2, we can get obtain the following equations 

(for orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = 1 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖      (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

Making the equations explicit for three dimensions: 

 

(𝑒1)
2 = 𝑒1𝑒1 = 1 

(𝑒2)
2 = 𝑒2𝑒2 = 1 

(𝑒3)
2 = 𝑒3𝑒3 = 1 

𝑒1𝑒2 = −𝑒2𝑒1 

𝑒2𝑒3 = −𝑒3𝑒2 
𝑒3𝑒1 = −𝑒1𝑒1 

We can define the inverse of a vector and name it ei , as the vector that fulfills (Einstein 

summation is not implied here): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒

𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)
−1 ≡ 𝑒𝑖𝑒

𝑖 
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To calculate ei we can post multiply by ei: 

(𝑒𝑖)
−1𝑒𝑖𝑒𝑖 ≡ 𝑒

𝑖𝑒𝑖𝑒𝑖 = 1 · 𝑒𝑖 
𝑒𝑖(𝑒𝑖)

2 = 𝑒𝑖 
𝑒𝑖 · 1 = 𝑒𝑖 

𝑒𝑖 = 𝑒𝑖 = (𝑒𝑖)
−1 

So, in orthonormal metric the inverse of a basis vector is itself. It is important to remark 

here that in Geometric Algebra there are no covectors (or 1-forms). There are only scalars, 

bivectors, trivectors… We will see that the concept of covector in Geometric Algebra is 

just a vector that is the inverse of another vector.  

 

In traditional algebra you cannot define the inverse of a vector, so it is used a different type 

of element. In Geometric Algebra, the covectors are also vectors. And in fact, the product 

of inverse vectors by vectors outputs scalars as it would be expected by the product of a 

covector by a vector. 

3.2. Geometric Algebra Cl3,0. Orthogonal but not orthonormal basis 

In an orthogonal basis, the vectors are perpendicular to each other. But in general, the norm 

of the vectors is not one. In Geometric Algebra Cl3,0, the norm of the basis vectors is always 

positive and different from zero.  

The 3 in the name Cl3,0 , makes reference to that there are 3 basis vectors with positive 

norm. The 0 in the name Cl3,0, makes reference to that there are no basis vectors with neg-

ative norm. And the absence of a third number makes reference to that there are no basis 

vectors with zero norm. 

From the properties commented in chapter 2, we can obtain the following equations (for 

orthogonal, not orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖  
𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

Making the equations explicit for three dimensions: 

  

(𝑒1)
2 = 𝑒1𝑒1 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = 𝑒2𝑒2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = 𝑒3𝑒3 = ‖𝑒3‖

2 = 𝑔33 

𝑒1𝑒2 = −𝑒2𝑒1 

𝑒2𝑒3 = −𝑒3𝑒2 
𝑒3𝑒1 = −𝑒1𝑒1 

Where the 𝑔𝑖𝑖 makes reference to the metric tensor components. See paper [2]. Take into 

account that when you multiply two colinear vectors (and a vector is colinear with itself), 

its geometric product is equal to the scalar product. And this is exactly the definition of 𝑔𝑖𝑖 
(the scalar product of ei with itself). 

The definition of the inverse of a vector, and naming it ei , is the vector that fulfills (not 

Einstein summation is implied here): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒

𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)
−1 ≡ 𝑒𝑖𝑒

𝑖 

To calculate ei we can post multiply by ei: 

(𝑒𝑖)
−1𝑒𝑖𝑒𝑖 ≡ 𝑒

𝑖𝑒𝑖𝑒𝑖 = 1 · 𝑒𝑖 
𝑒𝑖(𝑒𝑖)

2 = 𝑒𝑖 
𝑒𝑖‖𝑒𝑖‖

2 = 𝑒𝑖 
𝑒𝑖𝑔𝑖𝑖 = 𝑒𝑖 

𝑒𝑖 =
𝑒𝑖
𝑔𝑖𝑖
=

𝑒𝑖
‖𝑒𝑖‖

2
= (𝑒𝑖)

−1 

 



J.Sánchez 
 

 

 7  

 

So, in orthogonal metric the inverse of a basis vector is itself divided by its norm squared 

(by 𝑔𝑖𝑖). Everything commented regarding covectors in 3.1 applies also here. 

 

One important consequence of this, is that if the basis vectors are orthogonal (as in this 

chapter), all the basis vectors and all the inverse of the basis vectors are also orthogonal 

among them (when i≠j). this is: 

𝑒𝑖 · 𝑒𝑗 =
𝑒𝑖
𝑔𝑖𝑖
· 𝑒𝑗 =

1

𝑔𝑖𝑖
(𝑒𝑖 · 𝑒𝑗) =

1

2𝑔𝑖𝑖
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 0 

𝑒𝑖 · 𝑒𝑗 =
𝑒𝑖
𝑔𝑖𝑖
·
𝑒𝑗

𝑔𝑗𝑗
=

1

2𝑔𝑖𝑖𝑔𝑗𝑗
(𝑒𝑖 · 𝑒𝑗) =

1

2𝑔𝑖𝑖𝑔𝑗𝑗
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 0 

In the last equation (but when i=j) we get: 

𝑒𝑖 · 𝑒𝑖 = (𝑒𝑖)2 =
𝑒𝑖
𝑔𝑖𝑖
·
𝑒𝑖
𝑔𝑖𝑖
=

1

𝑔𝑖𝑖𝑔𝑖𝑖
(𝑒𝑖 · 𝑒𝑖) =

1

𝑔𝑖𝑖𝑔𝑖𝑖
(𝑒𝑖𝑒𝑖) =

1

(𝑔𝑖𝑖)
2
· 1 =

1

(𝑔𝑖𝑖)
2

 

These last properties apply also to chapter 3.1 (orthonormal basis) but in that case 
the elements gii or gjj are always 1. 

3.3. Geometric Algebra Cl3,0. Non-Orthogonal (and therefore not or-
thonormal) basis 

In a non-orthogonal basis, the vectors are not perpendicular from each other. And in gen-

eral, the norm of the vectors is not one. As commented in 3.2, in Geometric Algebra Cl3,0, 

the norm of the basis vectors is always positive and different from zero. 

From the properties commented in chapter 2 and also in [2], we can get obtain the following 

equations (for orthogonal, not orthonormal basis): 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖 
𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 𝑔𝑖𝑗 = 𝑔𝑗𝑖 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑔𝑖𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

Making the equations explicit for three dimensions: 

  

(𝑒1)
2 = 𝑒1𝑒1 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = 𝑒2𝑒2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = 𝑒3𝑒3 = ‖𝑒3‖

2 = 𝑔33 

𝑒1𝑒2 = 2𝑔12 − 𝑒2𝑒1 = 2𝑔21 − 𝑒2𝑒1 

𝑒2𝑒3 = 2𝑔23 − 𝑒3𝑒2 = 2𝑔32 − 𝑒3𝑒2 

𝑒3𝑒1 = 2𝑔31 − 𝑒1𝑒3 = 2𝑔13 − 𝑒1𝑒3 

Where the 𝑔𝑖𝑗 makes reference again to the metric tensor components (the scalar products 

of the basis vectors). See paper [2] for more information. You can obtain the above equa-

tions from the definition of scalar product in geometric algebra as commented in chapter 

2. 

𝑒𝑖 · 𝑒𝑗 = 𝑔𝑖𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) 

Multiplying by 2: 

2𝑔𝑖𝑗 = 𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 

Rearranging terms (and knowing that the metric tensor is symmetric): 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

Now, we will define again the inverse of the basis vectors and name them ei. To obtain the 

inverse of the basis vectors is this case, you have to get the inverse of the metric tensor, so 
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you are able to define a vector ei that fulfills for every i and every j the following (Einstein 

summation does not apply): 

(𝑒𝑖)
−1𝑒𝑖 ≡ 𝑒

𝑖𝑒𝑖 = 1 = 𝑒𝑖(𝑒𝑖)
−1 ≡ 𝑒𝑖𝑒

𝑖 

                     𝑒𝑖 · 𝑒𝑗 = 𝑒𝑖 · 𝑒
𝑗 =

1

2
(𝑒𝑖𝑒

𝑗 + 𝑒𝑗𝑒𝑖) = 0   𝑓𝑜𝑟 𝑖 ≠ 𝑗 

In general, this is written as: 

𝑒𝑖 · 𝑒𝑗 = 𝛿𝑗
𝑖 

Where 𝛿𝑗
𝑖 is the Kronecker Delta, that is equal to 1 when i=j and 0 when i≠j. 

If we multiply two inverse vectors between them, in non-orthogonal metric, we do not 

obtain zero as a general case. See below: 

𝑒𝑖 · 𝑒𝑗 =
1

2
(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖) = 𝑔𝑖𝑗 = 𝑔𝑗𝑖  

So: 

𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 

And: 

𝑒𝑖𝑒𝑖 = (𝑒𝑖)2 = 𝑒𝑖 · 𝑒𝑖 = 𝑔𝑖𝑖  

In this paper, we will work mainly with orthogonal (or orthonormal basis), so do not worry 

about these above points. For more info regarding how to invert the metric you have a lot 

of literature [58][59][60][61][62][64]. 

What we will do in general, is to make all the calculations with orthogonal metrics and then 

try to generalize to the case of non-orthogonal metric applying the above relations. 

3.4. Geometric (real Clifford) Algebra Cl3,0. Expanding the basis 

 

One of the properties of the Geometric Algebra is that the number of elements that conform 

the algebra of a certain realm are more than the number of dimensions of that realm. In 

three dimensions we have three basis vectors as commented, but we have 8 different ele-

ments that conform that algebra, that are: 

• The scalars 

• The three vectors 

• The three bivectors 

• One trivector 

 

We will call these elements with these names: 

 

𝑒0 → 1 (𝑠𝑐𝑎𝑙𝑎𝑟𝑠) 
𝑒1 

𝑒2 

𝑒3 

𝑒4 = 𝑒23 ≡ 𝑒2𝑒3 
𝑒5 = 𝑒31 ≡ 𝑒3𝑒1 
𝑒6 = 𝑒12 ≡ 𝑒1𝑒2 

𝑒7 = 𝑒123 ≡ 𝑒1𝑒2𝑒3 
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In this paper we will consider e0 directly as the scalar 1. In other contexts (influenced by 

gravitation or non-Euclidean metrics), the value could be a scalar but with norm ‖𝑒0‖
2 

different than 1. We will not consider this here (check [75] for more information). 

The elements e4, e5, e6 are bivectors whose square is negative, as we will see now. And e7 

is the trivector whose square is also negative, as we will see. 

In general, we will work with orthogonal (not necessarily orthonormal) basis. About the 

non-orthogonal case, we will talk explicitly in certain points of the paper. If nothing is said, 

along the paper we will work with orthogonal metric that fulfills the following, already 

commented, relations: 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = 𝑒𝑖 · 𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖  
𝑒𝑖𝑗 = 𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∧ 𝑒𝑗 = −𝑒𝑗 ∧ 𝑒𝑖 = −𝑒𝑗𝑒𝑖 = −𝑒𝑗𝑖  

                                          𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 0       (𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗) 

 

This is, in 3 dimensions: 

  
𝑒0 → 1 

(𝑒1)
2 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = ‖𝑒3‖

2 = 𝑔33 

𝑒12 = −𝑒21 

𝑒23 = −𝑒32 

𝑒31 = −𝑒13 

𝑒123 = −𝑒321 

The last three equations are key in orthogonal metric and are the ones that will make work-

ing with bivectors or the trivector much easier. Because they permit us to swap the order 

of the vectors in any geometric product, just adding a minus sign for each swap. These 

means that the result will be the same if we make an even number of swaps. And will be 

the negative of the original if we make an odd number of swaps. 

As commented, all these swapping’s with changing of sign can only be applied in orthog-

onal bases. In non-orthogonal bases you should apply the equations in the beginning of 

chapter. 3.3. 

Knowing this rule, I would just show the squares of the bivectors and the trivector to check 

that they are in fact negative: 

(𝑒4)
2 = (𝑒2𝑒3)

2 = 𝑒2𝑒3𝑒2𝑒3 = −𝑒2𝑒3𝑒3𝑒2 = −𝑒2𝑔33𝑒2 = −𝑔33𝑒2𝑒2 = −𝑔33𝑔22 
(𝑒5)

2 = (𝑒3𝑒1)
2 = 𝑒3𝑒1𝑒3𝑒1 = −𝑒3𝑒1𝑒1𝑒3 = −𝑒3𝑔11𝑒3 = −𝑔11𝑒3𝑒3 = −𝑔11𝑔33 

(𝑒6)
2 = (𝑒1𝑒2)

2 = 𝑒1𝑒2𝑒1𝑒2 = −𝑒1𝑒2𝑒2𝑒1 = −𝑒1𝑔22𝑒1 = −𝑔22𝑒1𝑒1 = −𝑔22𝑔11 
(𝑒7)

2 = (𝑒1𝑒2𝑒3)
2 = 𝑒1𝑒2𝑒3𝑒1𝑒2𝑒3 = +𝑒1𝑒2𝑒3𝑒3𝑒1𝑒2 = 𝑔33𝑒1𝑒2𝑒1𝑒2 = −𝑔33𝑒1𝑒1𝑒2𝑒2 = −𝑔33𝑔11𝑔22 

Remind that the gij are just numbers, so you can move them as you want along the product. 

I keep the order obtained in the operations to facilitate the understanding, but you can swap 

them as you want not changing the sign or the result. 

Just to close the chapter, I will comment that an entity that is composed by the sum of 

scalars, vectors, bivectors etc… is called a multivector. As an example: 

𝐴 = 3 + 2𝑒1 − 3𝑒1 + 7𝑒3𝑒1 

This entity A is called a multivector. We will see that in Geometric Algebra any object can 

be defined by a multivector expression. 

The most important comment of this section is the following. In Geometric Algebra, once 

you have defined the number of dimensions (in this case 3) and the consequent degrees of 

freedom (or different basis vectors and their combinations, in this case 8, from e0 to e7), it 
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does not matter how many operations (sums, geometric products, even exponentials etc…) 

you do, the number of basis vectors and their combinations are always the same (8 in this 

case). You can multiply the times you want any multivector by another one, you will only 

finish with 8 coefficients that multiply 8 basis vectors from e0 to e7 (considering also basis 

vectors their product combinations). Nothing else. This is key in Geometric Algebra and 

its power. 

If you are familiarized with matrices, tensors or tensors products, you know that in those 

cases the number of elements could grow to infinite (the number of dimensions also). In 

Geometric Algebra, there is a limit. And this KEY as we will see. 

3.5. Geometric Algebra Cl3,0. Comments about e0 and e7 

Regarding e7 the important property as commented is this: 

(𝑒7)
2 = (𝑒1𝑒2𝑒3)

2 = 𝑒1𝑒2𝑒3𝑒1𝑒2𝑒3 = −𝑔33𝑔11𝑔22 

This means, its square is negative, and it is a “neutral” vector. Meaning “neutral” that it 

does not have any “preferred” direction or orientation. The bivectors e4, e5, e6 have also 

negative square but with “preferred” directions. 

(𝑒4)
2 = (𝑒2𝑒3)

2 = 𝑒2𝑒3𝑒2𝑒3 = −𝑔33𝑔22 

(𝑒5)
2 = (𝑒3𝑒1)

2 = 𝑒3𝑒1𝑒3𝑒1 = −𝑔11𝑔33 

(𝑒6)
2 = (𝑒1𝑒2)

2 = 𝑒1𝑒2𝑒1𝑒2 = −𝑔22𝑔11 

But e7 has a negative square and does not point anywhere specific. It applies to the volume 

in general (not a surface or a line). If you have read the papers [4][5][6] probably you have 

already seen the possibility that the time vector can be associated with e7 (the trivector). 

The reason is that the square of e7 is negative and that taking this consideration is com-

pletely coherent with Dirac Equation, Maxwell equations and Gell-Mann matrices 

[5][6][26][63]. 

In previous papers [4][5][6][26][63], we saw that depending on the context, the scalars e0 

(as considered in APS[43][74]) or the trivector e7 could represent time depending on the 

context. We will see later, but first we need to understand the spinor in Geometric Algebra 

to understand the different possible contexts. 

What we will keep from previous papers [4][5][6][26][63]is that as the square of e7 is neg-

ative and does not have any preferred direction. So, when the imaginary unit i is used in 

traditional algebra, we will substitute it in Geometric Algebra by the trivector e7. The rea-

son is that in Geometric Algebra there are already elements as e7 (appearing in a natural 

way) whose square is negative.  

And the imaginary unit i is used in traditional algebra as an “unknown or generic” element 

whose square is negative. In Geometric Algebra, what you have to do is, depending on the 

context, to use the corresponding already existing element in the Algebra (of all the ones 

whose square is negative) instead of using i. As commented, we will used e7 for the reasons 

commented above.  

4. Special operations in Geometric Algebra 

4.1. The reverse of a multivector and the reverse product 

If we have multivector, the reverse of it can be defined as a multivector with the same 

coefficients but where all the products of basis vectors are reversed. An example: 

𝐴 = 3 + 2𝑒1 − 3𝑒1 + 7𝑒3𝑒1 + 2𝑒2𝑒3 − 5𝑒1𝑒2𝑒3 

Its reverse will be: 
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𝐴† = 3 + 2𝑒1 − 3𝑒1 + 7𝑒1𝑒3 + 2𝑒2𝑒3 − 5𝑒3𝑒2𝑒1 

This, in orthogonal metric (not in general) can be converted using chapter 3.2 equations 

into: 

𝐴† = 3 + 2𝑒1 − 3𝑒1 − 7𝑒3𝑒1 − 2𝑒2𝑒3 + 5𝑒1𝑒2𝑒3 = 𝐴
∗ 

Being A* the conjugate multivector. This means, in orthogonal metric the reverse of a mul-

tivector is the same as a conjugate of the multivector. The conjugate means changing the 

sign of the elements whose square is negative (this means: bivectors and trivector) and 

keeping the same sign for scalars and vectors (whose square is positive) 

In a non-orthogonal metric, you should use equations in chapter 3.3 instead of those in 

chapter 3.2, so in a general case, reverse and conjugate will not be the same. 

Anyhow, as commented, in this paper we will focus on orthogonal basis, so here reverse 

and conjugate will be the same in most cases (but this is not true for a general case). 

Calculating the reverse for the different basis vectors, we have (orthogonal basis): 

𝑒0
† = 𝑒0 

𝑒1
† = 𝑒1 

𝑒2
† = 𝑒2 

𝑒3
† = 𝑒3 

𝑒4
† = (𝑒2𝑒3)

† = 𝑒3𝑒2 = −𝑒2𝑒3 

𝑒5
† = (𝑒3𝑒1)

† = 𝑒1𝑒3 = −𝑒3𝑒1 

𝑒6
† = (𝑒1𝑒2)

† = 𝑒2𝑒1 = −𝑒1𝑒2 

𝑒7
† = (𝑒1𝑒2𝑒3)

† = 𝑒3𝑒2𝑒1 = −𝑒1𝑒2𝑒3 

One important property is that a product of basis vectors multiplied by its reverse is always 

positive definite (also in non-orthogonal metrics): 

𝑒0𝑒0
† = 𝑒0𝑒0 = ‖𝑒0‖

2 = 𝑔00 

𝑒1𝑒1
† = 𝑒1𝑒1 = ‖𝑒1‖

2 = 𝑔11 

𝑒2𝑒2
† = 𝑒2𝑒2 = ‖𝑒2‖

2 = 𝑔22 

𝑒3𝑒3
† = 𝑒3𝑒3 = ‖𝑒3‖

2 = 𝑔33 

𝑒4𝑒4
† = 𝑒2𝑒3(𝑒2𝑒3)

† = 𝑒2𝑒3𝑒3𝑒2 = 𝑒2𝑔33𝑒2 = 𝑔33𝑒2𝑒2 = 𝑔33𝑔22 ≡ 𝑔44 

𝑒5𝑒5
† = 𝑒3𝑒1(𝑒3𝑒1)

† = 𝑒3𝑒1𝑒1𝑒3 = 𝑒3𝑔11𝑒3 = 𝑔11𝑒3𝑒3 = 𝑔11𝑔33 ≡ 𝑔55 

𝑒6𝑒6
† = 𝑒1𝑒2(𝑒1𝑒2)

† = 𝑒1𝑒2𝑒2𝑒1 = 𝑒1𝑔22𝑒1 = 𝑔22𝑒1𝑒1 = 𝑔22𝑔11 ≡ 𝑔66 

𝑒7𝑒7
†
= 𝑒1𝑒2𝑒3(𝑒1𝑒2𝑒3)

† = 𝑒1𝑒2𝑒3𝑒3𝑒2𝑒1 = 𝑔33𝑒1𝑒2𝑒2𝑒1 = 𝑔33𝑔22𝑒1𝑒1 = 𝑔33𝑔22𝑔11 ≡ 𝑔77 

Where I have defined the gii as the result of these products also for basis vectors with i>3. 

And also, as commented it is defined a g00 as the square for e0 to have one degree of free-

dom more (even that very probably defining it as 1, should be ok, meaning just a that pre-

normalization has been de-facto done). 

As you can guess, the reverse product is just defined as multivector by the reverse of other 

(or the same) multivector following the rules commented above. 

An important thing to comment, is that the reverse should not be mixed up with the inverse. 

The inverse of a product of basis vectors is defined as the inverse of each basis vector in 

reverse order. This is, for example: 

(𝑒7)
−1 = (𝑒1𝑒2𝑒3)

−1 = (𝑒3)
−1(𝑒2)

−1(𝑒1)
−1 = 𝑒3𝑒2𝑒1 = 𝑒7 
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Where in the last steps above, I have used the definition of the superscripts as defined in 

chapters 3.1, 3.2 and 3.3, as the inverse of the basis vectors. We can check that this hold: 

𝑒7𝑒
7 = 𝑒1𝑒2𝑒3𝑒

3𝑒2𝑒1 = 𝑒1𝑒2 · 1 · 𝑒
2𝑒1 = 𝑒1 · 1 · 𝑒

1 = 1 

So, in fact, it corresponds to the inverse of e7. The same applies, to the rest of vectors: 

(𝑒1)
−1 = 𝑒1 

(𝑒2)
−1 = 𝑒2 

(𝑒3)
−1 = 𝑒3 

(𝑒4)
−1 = (𝑒2𝑒3)

−1 = (𝑒3)
−1(𝑒2)

−1 = 𝑒3𝑒2 = 𝑒4 

(𝑒5)
−1 = (𝑒3𝑒1)

−1 = (𝑒1)
−1(𝑒3)

−1 = 𝑒1𝑒3 = 𝑒5 

(𝑒6)
−1 = (𝑒1𝑒2)

−1 = (𝑒2)
−1(𝑒1)

−1 = 𝑒2𝑒1 = 𝑒6 

(𝑒7)
−1 = (𝑒1𝑒2𝑒3)

−1 = (𝑒3)
−1(𝑒2)

−1(𝑒1)
−1 = 𝑒3𝑒2𝑒1 = 𝑒7 

So, you can see that the inverse, also reverses the order, but besides that, it inverses the 

basis vectors (converts the subscripts in superscripts and vice-versa). 

4.2. Clifford conjugation 

Another special operation is the Clifford conjugation that it has not be confused with the 

reverse or with the standard conjugation (see 4.1).  

The Clifford conjugation [73] is represented by a bar above the vectors. It changes the sign 

of the vectors and reverses the product. This is: 

𝑒0̅ = 𝑒0 = 1 

𝑒1̅ = −𝑒1 

𝑒2̅ = −𝑒2 

𝑒3̅ = −𝑒3 

𝑒4̅ = (𝑒2𝑒3)̅̅ ̅̅ ̅̅ ̅̅ = (−𝑒3)(−𝑒2) = 𝑒3𝑒2 = −𝑒2𝑒3 

𝑒5̅ = (𝑒3𝑒1)̅̅ ̅̅ ̅̅ ̅̅ = (−𝑒1)(−𝑒3) = 𝑒1𝑒3 = −𝑒3𝑒1 

𝑒6̅ = (𝑒1𝑒2)̅̅ ̅̅ ̅̅ ̅̅ = (−𝑒2)(−𝑒1) = 𝑒2𝑒1 = −𝑒1𝑒2 

𝑒6̅ = (𝑒1𝑒2𝑒3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (−𝑒3)(−𝑒2)(−𝑒1) = −𝑒3𝑒2𝑒1 = 𝑒1𝑒2𝑒3 

 

It changes the signs of the vectors and bivectors and keep the sign of the scalars and the 

trivector. 

4.3. Grade automorphism 

It is the combination of the 4.1 and 4.2 [73]: 

𝑒0̅
† = 𝑒0 = 1 

𝑒1̅
† = −𝑒1 

𝑒2̅
† = −𝑒2 

𝑒3̅
† = −𝑒3 

𝑒4̅
† = (𝑒2𝑒3)̅̅ ̅̅ ̅̅ ̅̅ † = 𝑒2𝑒3 

𝑒5̅
† = (𝑒3𝑒1)̅̅ ̅̅ ̅̅ ̅̅ † = 𝑒3𝑒1 

𝑒6̅
† = (𝑒1𝑒2)̅̅ ̅̅ ̅̅ ̅̅ † = 𝑒1𝑒2 

𝑒6̅
† = (𝑒1𝑒2𝑒3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅† = −𝑒1𝑒2𝑒3 
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It changes the sign of the vectors and the trivector (odd grade elements). It keeps the sign 

of the scalar and the bivector (even grade elements). 

5. Spinor in Geometric Algebra Cl3,0 

 

A spinor in matrix notation has this form: 

 

 

𝜓 = (

𝜓1𝑟 + 𝜓1𝑖𝑖
𝜓2𝑟 + 𝜓2𝑖𝑖
𝜓3𝑟 + 𝜓3𝑖𝑖
𝜓4𝑟 + 𝜓4𝑖𝑖

) 

 

As you can see, it has eight parameters: 

 

𝜓1𝑟   𝜓1𝑖   𝜓2𝑟   𝜓2𝑖   𝜓3𝑟   𝜓3𝑖   𝜓4𝑟  𝑎𝑛𝑑 𝜓4𝑖 
 

In Geometric Algebra, the spinor has this form: 

 

𝜓 = 𝜓𝜇𝑒𝜇 = 𝜓
0𝑒0 + 𝜓

1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
4𝑒4 + 𝜓

5𝑒5 + 𝜓
6𝑒6 +𝜓

7𝑒7 

 

Where the ei are the elements (scalars, vectors, bivectors and trivector) as defined in chapter 

3.5. 

 

The ψi are the coefficients of the spinor or wavefunction. You can see that they are also 

eight as in the matrix notation. You can find a relation between both in [5] [31]and [63]. 

There you can find that that relation is coherent with Dirac Equation and Strong Force 

Interaction (Gell-Mann matrices). 

 

For this paper we will just stick to that these 8 coefficients are sufficient to define a spinor 

or wavefunction. And calculating them is what we need to define the state of a particle or 

a related filed. 

6. Probability density and probability current 

 

As we saw in [63] we can calculate probability density and probability current multiplying 

the reverse of the wavefunction by itself, this way: 

 

𝜓†𝜓 = (𝜓0𝑒0
† + 𝜓1𝑒1

† + 𝜓2𝑒2
† + 𝜓3𝑒3

† +𝜓4𝑒4
† + 𝜓5𝑒5

† + 𝜓6𝑒6
† + 𝜓7𝑒7

†)(𝜓0𝑒0 + 𝜓
1𝑒1

+ 𝜓2𝑒2 + 𝜓
3𝑒3 + 𝜓

4𝑒4 + 𝜓
5𝑒5 + 𝜓

6𝑒6 + 𝜓
7𝑒7) 

Where all the vectors, bivectors and the trivector and their reverses, are as defined in chap-

ter 4 and previous ones. 

 

Only in the case of orthogonal metric (not in the general case), this can be simplified as 

(the reverse is the same as the conjugate): 

 

𝜓†𝜓 = 𝜓∗𝜓 = (𝜓0𝑒0 + 𝜓
1𝑒1 + 𝜓

2𝑒2 +𝜓
3𝑒3 − 𝜓

4𝑒4 −𝜓
5𝑒5 − 𝜓

6𝑒6 −𝜓
7𝑒7)(𝜓

0𝑒0
+ 𝜓1𝑒1 + 𝜓

2𝑒2 +𝜓
3𝑒3 + 𝜓

4𝑒4 +𝜓
5𝑒5 + 𝜓

6𝑒6 +𝜓
7𝑒7) 

 

As you can see in Annex A2, the result of this multiplication is for the orthogonal case is: 

 
𝜓†𝜓 = 𝜌 + 𝑗 

Being: 

 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓
2)2𝑔22 + (𝜓

3)2𝑔33 + (𝜓
4)2𝑔22𝑔33 + (𝜓

5)2𝑔33𝑔11 + (𝜓
6)2𝑔11𝑔22

+ (𝜓7)2𝑔11𝑔22𝑔33 
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𝑗 = 2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓
3𝜓5𝑔33 +𝜓

4𝜓7𝑔22𝑔33)𝑒1
+ 2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 −𝜓

4𝜓3𝑔33 + 𝜓
5𝜓7𝑔33𝑔11)𝑒2

+ 2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 +𝜓
2𝜓4𝑔22 + 𝜓

6𝜓7𝑔11𝑔22)𝑒3 

 

Being 𝜌 the probability and 𝑗 the fermionic current. 

 

But we can say that even in the general case where the basis is not orthogonal or even if 

the product above is defined another way, the result will have for sure have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

In Annexes A1, A2, A3 and A4, you can find that in whatever metric you are or however 

this product is defined (in A4 it is shown an example using the inverse product instead of 

the reverse product), the result will always have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where μ and ν go from 0 to 7 in the most general case. This means, independently of the 

metric, independently if the product is correctly defined or are some elements pending (see 

Annexes A1, A2, A3 and A4 for details), what it is true is that the result, will have the form 

above.  

 

Even if we calculate wrongly the coefficients of jμ, we can continue with our study as these 

coefficients will represent a general case. In case they change the value, we will change the 

operations done, but the study following will be perfectly correct as the meaning of the 

coefficients jμ is general. This is the power of geometric algebra. We know the form of the 

results even if we have calculated them wrong. We know that the result will have 8 com-

ponents 𝑗𝜇 (very important, scalar coefficients or functions that output a scalar) multiply-

ing 8 basis vectors (considering their product combinations also, this means, considering 

them from eo to e7). 

 

Last comment to make are the measuring units of this 𝑗𝜇𝑒𝜈. For the j0 component the units 

are density of probability in 3D space, this means probability/cubic length. Probability does 

not have units, so it is L-3.  

 

The components j1 to j3 are called the probability current and its units are density of prob-

ability multiplied by velocity. As probability does not have units, the density has L-3 and 

the speed has LT-1, the total units are L-2T-1. To make these units coherent with j0, we have 

to multiply j0 by c (the speed of light) or the opposite, to divide the components of j1 to j3 

by it.  

 

As commented, for orthonormal or orthogonal bases, jμ only has components from 0 to 3. 

For the general case, it would have components from 0 to 7 and the measuring units should 

be harmonized with the units that have the components from 0 to 3. But we will not care 

about that now, we will just consider that we can find a coherent following expression with 

coherent units: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Just to finalize, I will comment that to be consequent with certain papers in the literature 

[57], sometimes I will use the following nomenclature, but you can check that the concept 

is the same, just changing the name of j to V, and the dummy index form μ to ρ: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 = 𝑉
𝜌𝑒𝜌 

 

7. Chirality (Electroweak interaction) in Geometric (real Clifford) Alge-
bra Cl3.0 
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In this chapter we will explain how to deal with the chirality in Geometric (real Clifford) 

Algebra Cl3,0.  In the Feynmann diagrams where electroweak interaction is involved, the 

following chiral projection operators appear [48][77][78]: 

 

1

2
(1 − 𝛾5) 

1

2
(1 + 𝛾5) 

Where 𝛾5 is defined as: 

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 

And being 𝛾𝑖 the gamma matrices as defined in [48]: 

In Dirac-Pauli representation[48][77][78] this is: 

𝛾5 = (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) 

In Chiral representation [77][78]: 

 

𝛾5 = (

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

) 

 

7. 1. Chirality (Electroweak interaction) in Geometric (real Clifford) Al-
gebra Cl3.0 in chiral basis 
 

The chiral representation is the one which has a clearer map-to-map relation with Geomet-

ric (real Clifford) Algebra representation as we will see now. Anyhow, in previous papers 

[63][75] we have always worked with Dirac-Pauli representation [48], so we will calculate 

with the two options. 

 

We start with chiral representation. Left operator: 

 

 

1

2
(𝐼 − 𝛾5) =

1

2

(

 
 
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) − (

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)

)

 
 
=
1

2
(

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

)

= (

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

) 

 

Right operator. 
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1

2
(𝐼 + 𝛾5) =

1

2

(

 
 
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) + (

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)

)

 
 
=
1

2
(

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

)

= (

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

) 

 

Using the following definitions: 

𝜓 =

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 

 

 

𝑒0 → 1 → 𝑠𝑐𝑎𝑙𝑎𝑟𝑠 
𝑒1 

𝑒2 

𝑒3 

𝑒4 ≡ 𝑒23 ≡ 𝑒2𝑒3 
𝑒5 ≡ 𝑒31 ≡ 𝑒3𝑒1 
𝑒6 ≡ 𝑒12 ≡ 𝑒1𝑒2 

𝑒7 ≡ 𝑒123 ≡ 𝑒1𝑒2𝑒3 
 

And defininng the wave function as in previous papers [63][75]: 

 

𝜓 = 𝜓𝜇𝑒𝜇 = 𝜓
0𝑒0 + 𝜓

1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 + 𝜓
4𝑒4 + 𝜓

5𝑒5 + 𝜓
6𝑒6 + 𝜓

7𝑒7
= 𝜓0𝑒0 +𝜓

1𝑒1 +𝜓
2𝑒2 + 𝜓

3𝑒3 +𝜓
23𝑒23 +𝜓

31𝑒31 +𝜓
12𝑒12

+𝜓123𝑒123 

 

The one-to-one map we obtained between matrix representation and Clifford Algebras rep-

resentation (in the calculation of the probability and fermionic current and Dirac equation 

(Annex A1-A4, [63][75]) was: 

 

𝜓1𝑟 = −𝜓2 

𝜓1𝑖 = −𝜓1 

𝜓2𝑟 = −𝜓123 

𝜓2𝑖 = 𝜓3 

𝜓3𝑟 = −𝜓23 

𝜓3𝑖 = 𝜓31 

𝜓4𝑟 = 𝜓12 

𝜓4𝑖 = −𝜓0 

 

𝜓0 = −𝜓4𝑖 
𝜓1 = −𝜓1𝑖 
𝜓2 = −𝜓1𝑟  

𝜓3 = 𝜓2𝑖  
𝜓23 = −𝜓3𝑟  

𝜓31 = 𝜓3𝑖  
𝜓12 = 𝜓4𝑟  

𝜓123 = −𝜓2𝑟  

 

Putting this mapping in the matrix representation: 
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(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 
=

(

 
 
−𝜓2 − 𝑖𝜓1

−𝜓123 + 𝑖𝜓3

−𝜓23 + 𝑖𝜓31

𝜓12 − 𝑖𝜓0 )

 
 

 

 

 

This is: 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 +𝜓

123𝑒123 

 

𝜓 = −𝜓4𝑖 − 𝜓1𝑖𝑒1 − 𝜓
1𝑟𝑒2 + 𝜓

2𝑖𝑒3 − 𝜓
3𝑟𝑒23 + 𝜓

3𝑖𝑒31 + 𝜓
4𝑟𝑒12 −𝜓

2𝑟𝑒123 

 

So, defining the left hand projected wavefunction in Clifford Algebras as: 

 

𝜓𝐿 = 𝜓
0
𝐿
𝑒0 + 𝜓

1
𝐿
𝑒1 + 𝜓

2
𝐿
𝑒2 +𝜓

3
𝐿
𝑒3 + 𝜓

23
𝐿
𝑒23 + 𝜓

31
𝐿
𝑒31 + 𝜓

12
𝐿
𝑒12 + 𝜓

123
𝐿
𝑒123 

 

𝜓0
𝐿
= −𝜓4𝑖

𝐿
 

𝜓1
𝐿
= −𝜓1𝑖

𝐿
 

𝜓2
𝐿
= −𝜓1𝑟

𝐿
 

𝜓3
𝐿
= 𝜓2𝑖

𝐿
 

𝜓23
𝐿
= −𝜓3𝑟

𝐿
 

𝜓31
𝐿
= 𝜓3𝑖

𝐿
 

𝜓12
𝐿
= 𝜓4𝑟

𝐿
 

𝜓123
𝐿
= −𝜓2𝑟

𝐿
 

 

𝜓𝐿 = −𝜓
4𝑖
𝐿
− 𝜓1𝑖

𝐿
𝑒1 − 𝜓

1𝑟
𝐿
𝑒2 +𝜓

2𝑖
𝐿
𝑒3 −𝜓

3𝑟
𝐿
𝑒23 +𝜓

3𝑖
𝐿
𝑒31 + 𝜓

4𝑟
𝐿
𝑒12 − 𝜓

2𝑟
𝐿
𝑒123 

 

 

So, the naming of the elements in the matrix representation would correspond to: 

 

𝜓𝐿 =

(

 
 

𝜓1𝑟
𝐿
+ 𝑖𝜓1𝑖

𝐿

𝜓2𝑟
𝐿
+ 𝑖𝜓2𝑖

𝐿

𝜓3𝑟
𝐿
+ 𝑖𝜓3𝑖

𝐿

𝜓4𝑟
𝐿
+ 𝑖𝜓4𝑖

𝐿)

 
 
→

(

 
 

−𝜓2
𝐿
− 𝑖𝜓1

𝐿

−𝜓123
𝐿
+ 𝑖𝜓3

𝐿

−𝜓23
𝐿
+ 𝑖𝜓31

𝐿

𝜓12
𝐿
− 𝑖𝜓0

𝐿 )

 
 

 

 

And now calculating 𝜓𝐿 , from 𝜓 using 𝛾5, we get: 

𝜓𝐿 =
1

2
(𝐼 − 𝛾5)𝜓 = (

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 
= (

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

0
0

)

→ (

−𝜓2 − 𝑖𝜓1

−𝜓123 + 𝑖𝜓3

0
0

) 

 

So, the transformation is: 

𝜓1𝑟
𝐿
= 𝜓1𝑟 → −𝜓2 

𝜓1𝑖
𝐿
= 𝜓1𝑖 → 𝜓1 

𝜓2𝑟
𝐿
= 𝜓2𝑟 → −𝜓123 

𝜓2𝑖
𝐿
= 𝜓2𝑖 → 𝜓3 

𝜓3𝑟
𝐿
= 0 

𝜓3𝑖
𝐿
= 0 
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𝜓4𝑟
𝐿
= 0 

𝜓4𝑖
𝐿
= 0 

 

𝜓𝐿 = −𝜓
4𝑖
𝐿
− 𝜓1𝑖

𝐿
𝑒1 − 𝜓

1𝑟
𝐿
𝑒2 +𝜓

2𝑖
𝐿
𝑒3 −𝜓

3𝑟
𝐿
𝑒23 +𝜓

3𝑖
𝐿
𝑒31 + 𝜓

4𝑟
𝐿
𝑒12 − 𝜓

2𝑟
𝐿
𝑒123 

 

𝜓𝐿 = −𝜓
1𝑖𝑒1 − 𝜓

1𝑟𝑒2 +𝜓
2𝑖𝑒3 −𝜓

2𝑟𝑒123 

 

𝜓𝐿 = 𝜓
1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

123𝑒123 

 

First point is to remark that the definition of 𝛾5 used for this result is the chirality one. 

This is incoherent with the previous papers and [48], but just to check that depending on 

the definitions chosen, the results can be highly simplified. For example, in this case, we 

see that only the odd grade elements of the algebra (vectors and trivector) are left with this 

definition. Again, the signs can be changed depending on the convention and definitions 

chosen.  

 

Later, we will use the Dirac-Pauli definition that is more coherent with the paper [48], but 

the result will include more elements.  

 

First let’s calculate the right-handed wavefunction:  

 

𝜓𝑅 =

(

 
 

𝜓1𝑟
𝑅
+ 𝑖𝜓1𝑖

𝑅

𝜓2𝑟
𝑅
+ 𝑖𝜓2𝑖

𝑅

𝜓3𝑟
𝑅
+ 𝑖𝜓3𝑖

𝑅

𝜓4𝑟
𝑅
+ 𝑖𝜓4𝑖

𝑅)

 
 
→

(

 
 

−𝜓2
𝑅
− 𝑖𝜓1

𝑅

−𝜓123
𝑅
+ 𝑖𝜓3

𝑅

−𝜓23
𝑅
+ 𝑖𝜓31

𝑅

𝜓12
𝑅
− 𝑖𝜓0

𝑅 )

 
 

 

 

 

𝜓𝑅 =
1

2
(𝐼 + 𝛾5)𝜓 = (

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 
= (

0
0

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖

) 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 +𝜓

123𝑒123 

 

𝜓 = −𝜓4𝑖 − 𝜓1𝑖𝑒1 − 𝜓
1𝑟𝑒2 + 𝜓

2𝑖𝑒3 − 𝜓
3𝑟𝑒23 + 𝜓

3𝑖𝑒31 + 𝜓
4𝑟𝑒12 −𝜓

2𝑟𝑒123 

 

𝜓0
𝑅
= −𝜓4𝑖

𝑅
 

𝜓1
𝑅
= −𝜓1𝑖

𝑅
 

𝜓2
𝑅
= −𝜓1𝑟

𝑅
 

𝜓3
𝑅
= 𝜓2𝑖

𝑅
 

𝜓23
𝑅
= −𝜓3𝑟

𝑅
 

𝜓31
𝑅
= 𝜓3𝑖

𝑅
 

𝜓12
𝑅
= 𝜓4𝑟

𝑅
 

𝜓123
𝑅
= −𝜓2𝑟

𝑅
 

 

𝜓𝑅 = 𝜓
0
𝑅
𝑒0 +𝜓

1
𝑅
𝑒1 + 𝜓

2
𝑅
𝑒2 + 𝜓

3
𝑅
𝑒3 + 𝜓

23
𝑅
𝑒23 + 𝜓

31
𝑅
𝑒31 + 𝜓

12
𝑅
𝑒12 + 𝜓

123
𝑅
𝑒123 

𝜓𝑅 = −𝜓
4𝑖
𝑅
−𝜓1𝑖

𝑅
𝑒1 −𝜓

1𝑟
𝑅
𝑒2 +𝜓

2𝑖
𝑅
𝑒3 − 𝜓

3𝑟
𝑅
𝑒23 +𝜓

3𝑖
𝑅
𝑒31 + 𝜓

4𝑟
𝑅
𝑒12

− 𝜓2𝑟
𝑅
𝑒123 

 

𝜓1𝑟
𝑅
= 0 

𝜓1𝑖
𝑅
= 0 

𝜓2𝑟
𝑅
= 0 

𝜓2𝑖
𝑅
= 0 
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𝜓3𝑟
𝑅
= 𝜓3𝑟 → −𝜓23 

𝜓3𝑖
𝑅
= 𝜓3𝑖 → 𝜓31 

𝜓4𝑟
𝑅
= 𝜓4𝑟 → 𝜓12 

𝜓4𝑖
𝑅
= 𝜓4𝑖 → −𝜓0 

 

 

𝜓𝑅 = −𝜓
4𝑖
𝑅
−𝜓1𝑖

𝑅
𝑒1 −𝜓

1𝑟
𝑅
𝑒2 +𝜓

2𝑖
𝑅
𝑒3 − 𝜓

3𝑟
𝑅
𝑒23 +𝜓

3𝑖
𝑅
𝑒31 + 𝜓

4𝑟
𝑅
𝑒12

− 𝜓2𝑟
𝑅
𝑒123 

 

 

𝜓𝑅 = −𝜓
4𝑖 − 𝜓3𝑟𝑒23 + 𝜓

3𝑖𝑒31 + 𝜓
4𝑟𝑒12 

 

 

𝜓𝑅 = 𝜓
0 + 𝜓23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 

 

We can see that only the even grade elements are left (scalars and bivectors). 

We see that with the chiral representation the separation between left-handed and right- 

handed elements In Geometric Algebra is pretty straight forward. The odd grade elements 

are the left-handed part and the even grade ones the right-handed part.  

 

This means that in the chiral basis we can use a simple operation in geometric algebra to 

separate the left and the right-handed elements. 

In fact, applying the grade automorphism (see chapter 4.3 and [73]) to 𝜓: 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 +𝜓

123𝑒123 

 

𝜓̅† = 𝜓0 − 𝜓1𝑒1 − 𝜓
2𝑒2 − 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 − 𝜓

123𝑒123 
 

𝜓𝐿 =
1

2
(1 − 𝛾5)𝜓 =

1

2
(1 − ( ̅ †))𝜓 =

1

2
(𝜓 − 𝜓̅†)

= (𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12

+ 𝜓123𝑒123

− (𝜓0 − 𝜓1𝑒1 − 𝜓
2𝑒2 − 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12

− 𝜓123𝑒123)) =
1

2
(2(𝜓1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

123𝑒123))

= 𝜓1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 + 𝜓
123𝑒123 

 

𝜓𝑅 =
1

2
(1 + 𝛾5)𝜓 =

1

2
(1 + ( ̅ †))𝜓 =

1

2
(𝜓 + 𝜓̅†)

= (𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12

+ 𝜓123𝑒123

+ (𝜓0 − 𝜓1𝑒1 − 𝜓
2𝑒2 − 𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12

− 𝜓123𝑒123)) =
1

2
(2(𝜓0 +𝜓23𝑒23 + 𝜓

31𝑒31 +𝜓
12𝑒12))

= 𝜓0 + 𝜓23𝑒23 + 𝜓
31𝑒31 + 𝜓

12𝑒12 

So, we can conclude that in the chiral basis [48][77][[78] the 𝛾5 is equivalent in Clifford 
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Algebras to the grade automorphism operation. Regretfully, this will not be true in the case 

of the Pauli/Dirac basis, as we will see now.  

 

7. 2. Chirality (Electroweak interaction) in Geometric (real Clifford) Al-
gebra Cl3.0 in Pauli/Dirac basis 
 

Now, let’s complicate the things using the Pauli Dirac definition of gammas as used during 

the paper [48]. Let’s calculate the following factors: 

1

2
(𝐼 − 𝛾5) =

1

2

(

 
 
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) − (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

)

 
 
=
1

2
(

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

) 

 

1

2
(𝐼 + 𝛾5) =

1

2

(

 
 
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) + (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

)

 
 
=
1

2
(

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

) 

 

Now, let’s start calculating the left-handed elements of the wavefunction representation in 

Geometric Algebra Cl3,0. For that, let’s start with the matrix representation and then make 

the mapping to the Geometric Algebra representation: 

 

𝜓𝐿 =

(

 
 

𝜓1𝑟
𝐿
+ 𝑖𝜓1𝑖

𝐿

𝜓2𝑟
𝐿
+ 𝑖𝜓2𝑖

𝐿

𝜓3𝑟
𝐿
+ 𝑖𝜓3𝑖

𝐿

𝜓4𝑟
𝐿
+ 𝑖𝜓4𝑖

𝐿)

 
 
=
1

2
(𝐼 − 𝛾5)𝜓 =

1

2
(

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

)

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 

 

 

(

 
 

𝜓1𝑟
𝐿
+ 𝑖𝜓1𝑖

𝐿

𝜓2𝑟
𝐿
+ 𝑖𝜓2𝑖

𝐿

𝜓3𝑟
𝐿
+ 𝑖𝜓3𝑖

𝐿

𝜓4𝑟
𝐿
+ 𝑖𝜓4𝑖

𝐿)

 
 
=
1

2

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖 −𝜓3𝑟 − 𝑖𝜓3𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖 − 𝜓4𝑟 − 𝑖𝜓4𝑖

−𝜓1𝑟 − 𝑖𝜓1𝑖 +𝜓3𝑟 + 𝑖𝜓3𝑖

−𝜓2𝑟 − 𝑖𝜓2𝑖 + 𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 

=
1

2

(

 
 

𝜓1𝑟 −𝜓3𝑟 + 𝑖(𝜓1𝑖 −𝜓3𝑖)

𝜓2𝑟 −𝜓4𝑟 + 𝑖(𝜓2𝑖 − 𝜓4𝑖)

−𝜓1𝑟 +𝜓3𝑟 + 𝑖(−𝜓1𝑖 + 𝜓3𝑖)

−𝜓2𝑟+𝜓4𝑟 + 𝑖(−𝜓2𝑖 + 𝜓4𝑖) )

 
 

 

𝜓1𝑟
𝐿
=
1

2
(𝜓1𝑟 − 𝜓3𝑟) 

𝜓1𝑖
𝐿
=
1

2
(𝜓1𝑖 − 𝜓3𝑖) 

𝜓2𝑟
𝐿
=
1

2
(𝜓2𝑟 −𝜓4𝑟) 

𝜓2𝑖
𝐿
=
1

2
(𝜓2𝑖 − 𝜓4𝑖) 
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𝜓3𝑟
𝐿
=
1

2
(−𝜓1𝑟 + 𝜓3𝑟) 

𝜓3𝑖
𝐿
=
1

2
(−𝜓1𝑖 +𝜓3𝑖) 

𝜓4𝑟
𝐿
=
1

2
(−𝜓2𝑟+𝜓4𝑟) 

𝜓4𝑖
𝐿
=
1

2
(−𝜓2𝑖 +𝜓4𝑖) 

 

 

𝜓𝐿 = −𝜓
4𝑖
𝐿
− 𝜓1𝑖

𝐿
𝑒1 − 𝜓

1𝑟
𝐿
𝑒2 +𝜓

2𝑖
𝐿
𝑒3 −𝜓

3𝑟
𝐿
𝑒23 +𝜓

3𝑖
𝐿
𝑒31 + 𝜓

4𝑟
𝐿
𝑒12 − 𝜓

2𝑟
𝐿
𝑒123 

 

𝜓𝐿 =
1

2
(−(−𝜓2𝑖 + 𝜓4𝑖) − (𝜓1𝑖 − 𝜓3𝑖)𝑒1 − (𝜓

1𝑟 − 𝜓3𝑟)𝑒2 + (𝜓
2𝑖 − 𝜓4𝑖)𝑒3

− (−𝜓1𝑟 +𝜓3𝑟)𝑒23 + (−𝜓
1𝑖 + 𝜓3𝑖)𝑒31 + (−𝜓

2𝑟+𝜓4𝑟)𝑒12
− (𝜓2𝑟 − 𝜓4𝑟)𝑒123) 

𝜓1𝑟 = −𝜓2 

𝜓1𝑖 = −𝜓1 

𝜓2𝑟 = −𝜓123 

𝜓2𝑖 = 𝜓3 

𝜓3𝑟 = −𝜓23 

𝜓3𝑖 = 𝜓31 

𝜓4𝑟 = 𝜓12 

𝜓4𝑖 = −𝜓0 

 

𝜓𝐿 =
1

2
(−(−𝜓3 − 𝜓0) − (−𝜓1 −𝜓31)𝑒1 − (−𝜓

2 + 𝜓23)𝑒2 + (𝜓
3 + 𝜓0)𝑒3

− (𝜓2 − 𝜓23)𝑒23 + (𝜓
1 +𝜓31)𝑒31 + (𝜓

123+𝜓12)𝑒12
− (−𝜓123 − 𝜓12)𝑒123) 

𝜓𝐿 =
1

2
((𝜓3 + 𝜓0) + (+𝜓1 + 𝜓31)𝑒1 + (𝜓

2 − 𝜓23)𝑒2 + (𝜓
3 + 𝜓0)𝑒3

+ (−𝜓2 + 𝜓23)𝑒23 + (𝜓
1 + 𝜓31)𝑒31 + (𝜓

123+𝜓12)𝑒12
+ (𝜓123 + 𝜓12)𝑒123) 

We can see that the result is not as straight forward as in 7.1. Here the left-handed elements 

are a combination of the elements in the original wavefunction. There is not a simple op-

eration to calculate 𝜓𝐿  apart from a mapping as above. The 𝛾5 in this case is not easily 

converted to a factor or an operation in Geometric algebra. 

 

Now, let’s go with the right-handed: 

 

𝜓𝑅 =

(

 
 

𝜓1𝑟
𝑅
+ 𝑖𝜓1𝑖

𝑅

𝜓2𝑟
𝑅
+ 𝑖𝜓2𝑖

𝑅

𝜓3𝑟
𝑅
+ 𝑖𝜓3𝑖

𝑅

𝜓4𝑟
𝑅
+ 𝑖𝜓4𝑖

𝑅)

 
 
=
1

2
(𝐼 + 𝛾5)𝜓 =

1

2
(

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

)

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)
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(

 
 

𝜓1𝑟
𝑅
+ 𝑖𝜓1𝑖

𝑅

𝜓2𝑟
𝑅
+ 𝑖𝜓2𝑖

𝑅

𝜓3𝑟
𝑅
+ 𝑖𝜓3𝑖

𝑅

𝜓4𝑟
𝑅
+ 𝑖𝜓4𝑖

𝑅)

 
 
=
1

2

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖 + 𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖 + 𝜓4𝑟 + 𝑖𝜓4𝑖

+𝜓1𝑟 + 𝑖𝜓1𝑖 + 𝜓3𝑟 + 𝑖𝜓3𝑖

+𝜓2𝑟 + 𝑖𝜓2𝑖 + 𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 

=
1

2

(

 
 

𝜓1𝑟 + 𝜓3𝑟 + 𝑖(𝜓1𝑖 + 𝜓3𝑖)

𝜓2𝑟 + 𝜓4𝑟 + 𝑖(𝜓2𝑖 + 𝜓4𝑖)

𝜓1𝑟 + 𝜓3𝑟 + 𝑖(𝜓1𝑖 + 𝜓3𝑖)

𝜓2𝑟+𝜓4𝑟 + 𝑖(𝜓2𝑖 +𝜓4𝑖) )

 
 

 

𝜓1𝑟
𝑅
=
1

2
(𝜓1𝑟 + 𝜓3𝑟) 

𝜓1𝑖
𝑅
=
1

2
(𝜓1𝑖 + 𝜓3𝑖) 

𝜓2𝑟
𝑅
=
1

2
(𝜓2𝑟 + 𝜓4𝑟) 

𝜓2𝑖
𝑅
=
1

2
(𝜓2𝑖 + 𝜓4𝑖) 

𝜓3𝑟
𝑅
=
1

2
(𝜓1𝑟 + 𝜓3𝑟) 

𝜓3𝑖
𝑅
=
1

2
(𝜓1𝑖 + 𝜓3𝑖) 

𝜓4𝑟
𝑅
=
1

2
(𝜓2𝑟+𝜓4𝑟) 

𝜓4𝑖
𝑅
=
1

2
(𝜓2𝑖 + 𝜓4𝑖) 

 

𝜓𝑅 = −𝜓
4𝑖
𝑅
−𝜓1𝑖

𝑅
𝑒1 −𝜓

1𝑟
𝑅
𝑒2 +𝜓

2𝑖
𝑅
𝑒3 − 𝜓

3𝑟
𝑅
𝑒23 +𝜓

3𝑖
𝑅
𝑒31 + 𝜓

4𝑟
𝑅
𝑒12

− 𝜓2𝑟
𝑅
𝑒123 

 

𝜓𝑅 =
1

2
(−(𝜓2𝑖 +𝜓4𝑖) − (𝜓1𝑖 + 𝜓3𝑖)𝑒1 − (𝜓

1𝑟 + 𝜓3𝑟)𝑒2 + (𝜓
2𝑖 +𝜓4𝑖)𝑒3

− (𝜓1𝑟 + 𝜓3𝑟)𝑒23 + (𝜓
1𝑖 +𝜓3𝑖)𝑒31 + (𝜓

2𝑟+𝜓4𝑟)𝑒12
− (𝜓2𝑟 + 𝜓4𝑟)𝑒123) 

𝜓1𝑟 = −𝜓2 

𝜓1𝑖 = −𝜓1 

𝜓2𝑟 = −𝜓123 

𝜓2𝑖 = 𝜓3 

𝜓3𝑟 = −𝜓23 

𝜓3𝑖 = 𝜓31 

𝜓4𝑟 = 𝜓12 

𝜓4𝑖 = −𝜓0 

 

𝜓𝑅 =
1

2
(−(𝜓3 −𝜓0) − (−𝜓1 + 𝜓31)𝑒1 − (−𝜓

2 − 𝜓23)𝑒2 + (𝜓
3 − 𝜓0)𝑒3

− (−𝜓2 − 𝜓23)𝑒23 + (−𝜓
1 + 𝜓31)𝑒31 + (−𝜓

123+𝜓12)𝑒12
− (−𝜓123 + 𝜓12)𝑒123) 

𝜓𝑅 =
1

2
((−𝜓3 +𝜓0) + (+𝜓1 − 𝜓31)𝑒1 + (𝜓

2 + 𝜓23)𝑒2 + (𝜓
3 − 𝜓0)𝑒3

+ (𝜓2 + 𝜓23)𝑒23 + (−𝜓
1 + 𝜓31)𝑒31 + (−𝜓

123+𝜓12)𝑒12
+ (𝜓123 −𝜓12)𝑒123) 
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We have a similar solution to the right-handed elements. Just a mapping between matrix 

and geometric algebra. No easy way to represent 𝛾5  in Geometric Algebra for the 

Pauli/Dirac basis. In chiral basis 𝛾5 represented just the grade automorphism operation 

(see 7.1). 

 

8. APS, STA and Chirality 
 

In my previous papers [5][6][63][75] I have always considered the time as the trivector in 

Cl3,0. In the last papers I was considering that the time could be the trivector or the scalar 

depending on context.  

In APS [43][73][74] (Algebra of Physical Space) Cl3,0 the time is considered to be the sca-

lars. In STA Cl1,3 [1][3] time is considered to be a separate vector independent of the space 

vectors. 

In fact, there is a mapping between STA and APS. 

In STA we have the following vectors (that are related to the gamma matrices). The square 

of 𝛾0 is +1 while the square of 𝛾𝑖 is -1 when i=1,2 or 3. 

𝛾0 → 𝑡 

𝛾1 → 𝑥 

𝛾2 → 𝑦 

𝛾3 → 𝑧 

If we post multiply above vectors by 𝛾0 we get the correspondence with APS: 

𝛾0𝛾0 → (𝛾0)2 → 1 (𝑠𝑐𝑎𝑙𝑎𝑟𝑠) → 𝑡 

𝛾1𝛾0 → 𝑒1 → 𝑥 

𝛾2𝛾0 → 𝑒2 → 𝑦 

𝛾3𝛾0 → 𝑒3 → 𝑧 

So, let’s say in APS the following elements define an entity or event (they include time via 

the scalars and space direction via the three vectors): 

1 → 𝑡 

𝑒1 → 𝑥 

𝑒2 → 𝑦 

𝑒3 → 𝑧 

In my previous papers I used a similar approach, but instead of using the scalars as time I 

used the trivector: 

𝑒123 → 𝑡 

𝑒1 → 𝑥 

𝑒2 → 𝑦 

𝑒3 → 𝑧 

After what I have checked, what I see is that somehow both are correct because we can 

consider that any wavefunction has two parts that we can separate either the APS way like 

this: 
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One part: 1  𝑒1  𝑒3  𝑒3 

Second part: 𝑒123(1  𝑒1  𝑒2  𝑒3) = 𝑒123  𝑒23  𝑒31  𝑒12 

 

Or you can separate this way: 

 

One part: 𝑒1  𝑒3  𝑒3   𝑒123   (odd grade elements) 

Second part: 1  𝑒23  𝑒31  𝑒12  (even grade elements) 

 

The important thing is that you use the eight elements and you do not use only one of the 

parts (you do not use only four of them), 

 

In this paper (chapter 7), we have seen that in chiral basis[48][77][78], the elements that 

behave left-handed are the odd grade elements: 

One part: 𝑒1  𝑒3  𝑒3   𝑒123    

 

And the ones that behave like right-handed elements are the even grade elements: 

Second part: 1 𝑒23  𝑒31  𝑒12   

 

But what I have checked is that for example in the Dirac equation, the APS separation 

(scalars and vectors in one side and bivectors and trivector in the other side) has more 

sense. 

So, depending in the context both could be used. In fact, if we consider that one part cor-

responds to a particle and the other part to an entangled antiparticle, this “mixing” in the 

separation of elements depending on the interaction, could explain that somehow, they are 

not never really separated. And the effects in one are affecting the other, as they have their 

elements mixed depending on context. In fact, one of the most common interpretations is 

that both particles are the same particle but one going into the future and the antiparticle 

going reverse in time, in a Tenet-like way. Or could be that both particles go in the same 

direction of time as the result of the density probability always being positive because of 

the way that is calculated (original wavefunction by its reverse) independently whatever 

values of the wavefunction. 

 

As last comment, just to say that STA Cl1,3 has been the option that have pushed the Geo-

metric Algebra universally, with David Hestenes as main head [1][3]. And for that, all who 

we love Geometric Algebra will have an eternal doubt with him and all that have contrib-

uted to it. 

 

Anyhow, STA leads to 16 free parameters that are not necessary in all the interactions or 

disciplines I have checked (electromagnetism, Strong Force, Weak force, Gravity, Dirac 
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equation, quantum probability and fermionic current). In fact, only the even subalgebra 

coming from Cl1,3 is used. This means, only 8 parameters of the 16 are used. 

 

So, the 8 free parameters coming directly from Cl3,0 are sufficient in all the areas I have 

checked. Cl3,0 includes the time as an emergent phenomenon emerging for the 3 spatial 

dimensions (whether it is the scalar or the trivector) and it is not necessary to add it as an 

ad-hoc new dimension as made in STA.  

 

Following the Occam razor, Cl3,0 fits better for the purpose. 

 

Another final point was regarding the possibility of using Cl0,3 instead of Cl3,0. This is dis-

regarded, as in Cl0,3 rotations are available, but Lorentz boosts are not possible. As there 

are no elements whose square is +1, hyperbolic functions cannot be formed, so we will lack 

tools to make all the possible Lorentz Transformations. See [63] and [78 Eigenchris spinor 

series]. 

 

9. Summary of interactions in Geometric (real Clifford) Algebra Cl3,0 

 

Maxwell Equation [26].  

∇𝐹 = 𝐽 ̅     

Being: 

∇=
𝜕

𝜕𝑥
𝑥̂ +

𝜕

𝜕𝑦
𝑦̂ +

𝜕

𝜕𝑧
𝑧̂ +

𝜕

𝜕𝑡
 

𝐹 = 𝐸𝑥𝑥̂ + 𝐸𝑦𝑦̂ + 𝐸𝑧𝑧̂ + 𝐵𝑥𝑦̂𝑧̂ + 𝐵𝑦𝑧̂𝑥̂ + 𝐵𝑧𝑥̂𝑦̂ 

𝐽 = 𝐽𝑥𝑥̂ + 𝐽𝑦𝑦̂ + 𝐽𝑧𝑧̂ + 𝐽0 

 

Lorentz Force equation [Annex A7 and [6]] 

𝑑𝑝̅

𝑑𝜏
= 𝐼𝑞𝐹𝑈 

With: 

 

𝑑𝑝

𝑑𝜏
=
𝑑𝑝0
𝑑𝜏

+
𝑑𝑝𝑦𝑧

𝑑𝜏
𝑥̂ +

𝑑𝑝𝑧𝑥
𝑑𝜏

𝑦̂ +
𝑑𝑝𝑥𝑦

𝑑𝜏
𝑧̂ +

𝑑𝑝𝑥
𝑑𝜏
𝑦̂𝑧̂ +

𝑑𝑝𝑦

𝑑𝜏
𝑧̂𝑥̂ +

𝑑𝑝𝑧
𝑑𝜏
𝑥̂𝑦̂ +

𝑑𝑝𝑥𝑦𝑧

𝑑𝜏
𝑥̂𝑦̂𝑧̂    

 
𝐹 = 𝐸𝑥𝑥̂ + 𝐸𝑦𝑦̂ + 𝐸𝑧𝑧̂ + 𝐵𝑥𝑦̂𝑧̂ + 𝐵𝑦𝑧̂𝑥̂ + 𝐵𝑧𝑥̂𝑦̂        

 
𝑈 = 𝑈0 + 𝑈𝑥𝑥̂ + 𝑈𝑦𝑦̂+𝑈𝑧𝑧̂ 

 
𝐼 = 𝑥̂𝑦̂𝑧̂ 

 

Dirac Equation [Annex 5, [3][5][43][73][74]] 

𝜕̅𝜓𝐼𝑒3 = 𝑚𝜓̅
†      
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Being: 

 

𝜕 =
𝜕

𝜕𝑒0
+ 𝑒1

𝜕

𝜕𝑒1
+ 𝑒2

𝜕

𝜕𝑒2
+ 𝑒3

𝜕

𝜕𝑒3
 

 

𝜓 = 𝜓0 + 𝑒1𝜓
1 + 𝑒2𝜓

2 + 𝑒3𝜓
3 + 𝑒12𝜓

12 + 𝑒23𝜓
23 + 𝑒31𝜓

31 + 𝑒123𝜓
123 

𝐼 = 𝑒123 

 

 

Probability and fermionic Current [Annex A1, A2, A3, A4 [63][75]: 

 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗       
Being: 

 

𝜓 = 𝜓0 + 𝑒1𝜓
1 + 𝑒2𝜓

2 + 𝑒3𝜓
3 + 𝑒12𝜓

12 + 𝑒23𝜓
23 + 𝑒31𝜓

31 + 𝑒123𝜓
123 

 

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓
0𝜓2 + 𝜓1𝜓6 −𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
 

Strong Force (Gell-Mann matrices) [63]: 

 

Being: 

 

𝜓 = 𝜓0 + 𝜓𝑥𝑥̂ + 𝜓𝑦𝑦̂ + 𝜓𝑧𝑧̂ + 𝜓𝑦𝑧𝑦̂𝑧̂ + 𝜓𝑧𝑥𝑧̂𝑥̂ + 𝜓𝑥𝑦𝑥̂𝑦̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂  
 

The new ψ’ obtained when applying each of the Gell-Mann matrices λi is:    

 

𝜓′ = (𝜆1 → 𝜓) = 𝜓0 + 𝜓𝑦𝑥̂ + 𝜓𝑥𝑦̂ + 𝜓𝑧𝑥𝑦̂𝑧̂ + 𝜓𝑦𝑧𝑧̂𝑥̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂  

𝜓′ = (𝜆2 → 𝜓) = 𝜓0 + 𝜓𝑧𝑥𝑥̂ − 𝜓𝑦𝑧𝑦̂−𝜓𝑦𝑦̂𝑧̂ + 𝜓𝑥𝑧̂𝑥̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆3 → 𝜓) = 𝜓0 +𝜓𝑥𝑥̂ − 𝜓𝑦𝑦̂ + 𝜓𝑦𝑧𝑦̂𝑧̂ − 𝜓𝑧𝑥𝑧̂𝑥̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆4 → 𝜓) = 𝜓0 + 𝜓𝑧𝑥̂ + 𝜓𝑥𝑧̂ + 𝜓𝑥𝑦𝑦̂𝑧̂ + 𝜓𝑦𝑧𝑥̂𝑦̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆5 → 𝜓) = 𝜓0 + 𝜓𝑥𝑦𝑥̂ − 𝜓𝑦𝑧𝑧̂ − 𝜓𝑧𝑦̂𝑧̂ + 𝜓𝑥𝑥̂𝑦̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆6 → 𝜓) = 𝜓0 +𝜓𝑧𝑦̂ + 𝜓𝑦𝑧̂ + 𝜓𝑥𝑦 𝑧̂𝑥̂ + 𝜓𝑧𝑥𝑥̂𝑦̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆7 → 𝜓) = 𝜓0 +𝜓𝑥𝑦𝑦̂ − 𝜓𝑧𝑥𝑧̂ − 𝜓𝑧𝑧̂𝑥̂ + 𝜓𝑦𝑥̂𝑦̂ + 𝜓𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ 

𝜓′ = (𝜆8 → 𝜓) = 𝜓0 +
1

√3
𝜓𝑥𝑥 +

1

√3
𝜓𝑦𝑦̂ −

2

√3
𝜓𝑧𝑧̂ +

1

√3
𝜓𝑦𝑧𝑦̂𝑧̂ +

1

√3
𝜓𝑧𝑥𝑧̂𝑥 −

2

√3
𝜓𝑥𝑦𝑥𝑦̂ + 𝜓𝑥𝑦𝑧𝑥𝑦̂𝑧̂   (29) 

 

Chirality (Weak interaction) [Chapter 7]: 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 +𝜓

123𝑒123 

 

In Chiral basis: 

 

𝜓𝐿 = 𝜓
1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

123𝑒123 

𝜓𝑅 = 𝜓
0 + 𝜓23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 

 

 

 

In Pauli/Dirac basis: 

 

𝜓𝐿 =
1

2
((𝜓3 +𝜓0) + (+𝜓1 + 𝜓31)𝑒1 + (𝜓

2 − 𝜓23)𝑒2 + (𝜓
3 + 𝜓0)𝑒3 + (−𝜓

2 + 𝜓23)𝑒23 + (𝜓
1 + 𝜓31)𝑒31

+ (𝜓123+𝜓12)𝑒12 + (𝜓
123 +𝜓12)𝑒123) 
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𝜓𝑅 =
1

2
((−𝜓3 + 𝜓0) + (+𝜓1 − 𝜓31)𝑒1 + (𝜓

2 +𝜓23)𝑒2 + (𝜓
3 − 𝜓0)𝑒3 + (𝜓

2 +𝜓23)𝑒23

+ (−𝜓1 + 𝜓31)𝑒31 + (−𝜓
123+𝜓12)𝑒12 + (𝜓

123 −𝜓12)𝑒123) 

 

 

Einstein equations and non-Euclidean metric [75][76][Chapters 3.2 and 3.3]: 

 

 

In the paper [75] different candidates for the Einstein equations are defined being the more 

coherent ones the following: 

 

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (1 −

ℏ2

𝑚2𝑐2
𝑅) = 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈  

 
1

2

ℏ2

𝑚
𝑔𝜇𝜈 (𝑒

𝛽∇𝛽(∇𝛼(𝜓
†𝜓)𝑒𝛼)) +

1

2
𝑔𝜇𝜈 (

ℏ2

𝑚
𝑅 −𝑚𝑐2)𝜓†𝜓 −

𝑐4

8𝜋𝐺
(𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈) = 0 

 

The important thing here is that the sub and super indices do not go from 0 to 3. They go 

from 0 to 7. This means, they include equations in the vectors and time (as usually) but 

they also include four equations more in the 3 bivectors and the trivector. 

 

This is one of the biggest walls to join quantum mechanics and gravitation. In the Einstein 

equations we normally work with spacetime (4 dimensions) while the quantum world has 

8 dimensions (see Dirac spinor for example). In the above equations the eight dimensions 

(scalars, 3 vectors, 3 bivectors and the trivector) have to be used. See [75] for more details. 

 

Another finding of using Einstein equations in Geometric Algebra Cl3,0 ids that the Energy-

momentum relation is modified adding a new element [75] [76]: 

 

𝐸2 = 𝑚2𝑐4 + 𝑝2𝑐2 − 𝑅ℏ2𝑐2 

 

The other point is ones you have obtained the gravitational effects in one area of space 

using above equations, you have to use the following product relation among vectors and 

bivectors. 
 

(𝑒1)
2 = 𝑒1𝑒1 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = 𝑒2𝑒2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = 𝑒3𝑒3 = ‖𝑒3‖

2 = 𝑔33 

𝑒1𝑒2 = 2𝑔12 − 𝑒2𝑒1 

𝑒2𝑒3 = 2𝑔23 − 𝑒3𝑒2 

𝑒3𝑒1 = 2𝑔31 − 𝑒1𝑒3 
 

10. Conclusions 

 

In this paper, we have obtained the left and the right-handed representation (chirality) of 

the wavefunction using Geometric (real Clifford) algebra Cl3,0. Having the wavefunction 

𝜓: 

 

 

𝜓 = 𝜓0 + 𝜓1𝑒1 + 𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 +𝜓

123𝑒123 

 

In Chiral basis, the separation between left and right-handed elements is explicit: 

 

𝜓𝐿 = 𝜓
1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

123𝑒123 

𝜓𝑅 = 𝜓
0 + 𝜓23𝑒23 + 𝜓

31𝑒31 + 𝜓
12𝑒12 
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In Pauli/Dirac basis, this explicit separation is not possible, and the result is as follows: 

 

𝜓𝐿 =
1

2
((𝜓3 +𝜓0) + (+𝜓1 + 𝜓31)𝑒1 + (𝜓

2 − 𝜓23)𝑒2 + (𝜓
3 + 𝜓0)𝑒3 + (−𝜓

2 + 𝜓23)𝑒23 + (𝜓
1 + 𝜓31)𝑒31

+ (𝜓123+𝜓12)𝑒12 + (𝜓
123 +𝜓12)𝑒123) 

 

 

𝜓𝑅 =
1

2
((−𝜓3 + 𝜓0) + (+𝜓1 − 𝜓31)𝑒1 + (𝜓

2 +𝜓23)𝑒2 + (𝜓
3 − 𝜓0)𝑒3 + (𝜓

2 +𝜓23)𝑒23

+ (−𝜓1 + 𝜓31)𝑒31 + (−𝜓
123+𝜓12)𝑒12 + (𝜓

123 −𝜓12)𝑒123) 

 

Also, a summary of how all the interactions can be calculated and represented using Geo-

metric (real Clifford) Algebra is shown.   

 

Bilbao, 31st May 2024 (viXra-v1). 
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A1. Annex A1. Bra-Ket product in Euclidean metric 

 

The bra-ket product of a reversed spinor (in orthogonal metrics is the same as reverse) can 

be calculated as: 
 

𝜓†𝜓 = 𝜓𝜇𝑒𝜇
†𝜓𝜈𝑒𝜈 = (𝜓

0𝑒0
† + 𝜓1𝑒1

† + 𝜓2𝑒2
† +𝜓3𝑒3

† + 𝑒4
† +𝜓5𝑒5

† + 𝜓6𝑒6
† + 𝜓7𝑒7

†)(𝜓0𝑒0 +𝜓
1𝑒1 + 𝜓

2𝑒2
+𝜓3𝑒3 + 𝜓

4𝑒4 + 𝜓
5𝑒5 +𝜓

6𝑒6 + 𝜓
7𝑒7) = 𝜓

∗𝜓 = 

= (𝜓0𝑒0 + 𝜓
1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3 −𝜓

4𝑒4 − 𝜓
5𝑒5 −𝜓

6𝑒6 −𝜓
7𝑒7)(𝜓

0𝑒0 +𝜓
1𝑒1 +𝜓

2𝑒2 + 𝜓
3𝑒3 +𝜓

4𝑒4
+ 𝜓5𝑒5 + 𝜓

6𝑒6 +𝜓
7𝑒7) = 

= (𝜓0 + 𝜓1𝑒1 +𝜓
2𝑒2 + 𝜓

3𝑒3 − 𝜓
4𝑒2𝑒3 − 𝜓

5𝑒3𝑒1 −𝜓
6𝑒1𝑒2 − 𝜓

7𝑒1𝑒2𝑒3)(𝜓
0 + 𝜓1𝑒1 + 𝜓

2𝑒2 + 𝜓
3𝑒3

+ 𝜓4𝑒2𝑒3 + 𝜓
5𝑒3𝑒1 + 𝜓

6𝑒1𝑒2 +𝜓
7𝑒1𝑒2𝑒3) = 

      (𝜓0)2 +𝜓0𝜓1𝑒1 + 𝜓
0𝜓2𝑒2 + 𝜓

0𝜓3𝑒3 + 𝜓
0𝜓4𝑒2𝑒3 + 𝜓

0𝜓5𝑒3𝑒1 +𝜓
0𝜓6𝑒1𝑒2 + 𝜓

0𝜓7𝑒1𝑒2𝑒3 + 

𝜓1𝜓0𝑒1 + (𝜓
1)2 +𝜓1𝜓2𝑒1𝑒2 −𝜓

1𝜓3𝑒3𝑒1 + 𝜓
1𝜓4𝑒1𝑒2𝑒3 − 𝜓

1𝜓5𝑒3 + 𝜓
1𝜓6𝑒2 +𝜓

1𝜓7𝑒2𝑒3 + 

𝜓2𝜓0𝑒2 − 𝜓
2𝜓1𝑒1𝑒2 + (𝜓

2)2 + 𝜓2𝜓3𝑒2𝑒3 + 𝜓
2𝜓4𝑒3 +𝜓

2𝜓5𝑒1𝑒2𝑒3 − 𝜓
2𝜓6𝑒1 + 𝜓

2𝜓7𝑒3𝑒1 + 

𝜓3𝜓0𝑒3 +𝜓
3𝜓1𝑒3𝑒1 −𝜓

3𝜓2𝑒2𝑒3 + (𝜓
3)2 − 𝜓3𝜓4𝑒2 +𝜓

3𝜓5𝑒1 +𝜓
3𝜓6𝑒1𝑒2𝑒3 +𝜓

3𝜓7𝑒1𝑒2 
−𝜓4𝜓0𝑒2𝑒3 −𝜓

4𝜓1𝑒1𝑒2𝑒3 + 𝜓
4𝜓2𝑒3 −𝜓

4𝜓3𝑒2 + (𝜓
4)2 +𝜓4𝜓5𝑒1𝑒2 − 𝜓

4𝜓6𝑒3𝑒1 +𝜓
4𝜓7𝑒1 − 

−𝜓5𝜓0𝑒3𝑒1 − 𝜓
5𝜓1𝑒3 − 𝜓

5𝜓2𝑒1𝑒2𝑒3 + 𝜓
5𝜓3𝑒1 − 𝜓

5𝜓4𝑒1𝑒2 + (𝜓
5)2 + 𝜓5𝜓6𝑒2𝑒3 + 𝜓

5𝜓7𝑒2 − 

−𝜓6𝜓0𝑒1𝑒2 + 𝜓
6𝜓1𝑒2 − 𝜓

6𝜓2𝑒1 − 𝜓
6𝜓3𝑒1𝑒2𝑒3 + 𝜓

6𝜓4𝑒3𝑒1 − 𝜓
6𝜓5𝑒2𝑒3 + (𝜓

6)2 + 𝜓6𝜓7𝑒3 − 

−𝜓7𝜓0𝑒1𝑒2𝑒3 − 𝜓
7𝜓1𝑒2𝑒3 − 𝜓

7𝜓2𝑒3𝑒1 −𝜓
7𝜓3𝑒1𝑒2 + 𝜓

7𝜓4𝑒1 + 𝜓
7𝜓5𝑒2 +𝜓

7𝜓6𝑒3 + (𝜓
7)2 

 

Please, take into account that for simplification I have considered directly 𝑒0 = 1. If in the 

end, it has another value, it has just to be considered in the operations.  

 

Continuing with the operation. If we separate from the result above only the scalars, we 

have: 

 

(𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

We will call this sum 𝜌 (probability density): 

  

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

If we separate the components that multiply by 𝑒1 we get: 

 

𝜓0𝜓1 + 𝜓1𝜓0 − 𝜓2𝜓6 +𝜓3𝜓5 + 𝜓4𝜓7 +𝜓5𝜓3 − 𝜓6𝜓2 +𝜓7𝜓4

= 2(𝜓1𝜓0 −𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7) 
In 𝑒2  we get: 

𝜓0𝜓2 + 𝜓1𝜓6 + 𝜓2𝜓0 − 𝜓3𝜓4 − 𝜓4𝜓3 + 𝜓5𝜓7 + 𝜓6𝜓1 +𝜓7𝜓5

= 2(𝜓0𝜓2 + 𝜓1𝜓6 − 𝜓3𝜓4 + 𝜓5𝜓7) 
In 𝑒3  we get: 

https://en.wikipedia.org/wiki/Kretschmann_scalar
https://knowledgemix.wordpress.com/2014/09/23/a-note-concerning-the-dirac-equation/
http://nuclear.fis.ucm.es/EM2012/Dirac%20equation%20-%20Wikipedia,%20the%20free%20encyclopedia.pdf
http://nuclear.fis.ucm.es/EM2012/Dirac%20equation%20-%20Wikipedia,%20the%20free%20encyclopedia.pdf
https://en.wikipedia.org/wiki/Paravector
https://arxiv.org/abs/physics/0406158
https://www.researchgate.net/publication/376352610_Embedding_the_Einstein_tensor_in_the_Klein-Gordon_Equation_using_Geometric_Algebra_Cl_30
https://www.researchgate.net/publication/376352610_Embedding_the_Einstein_tensor_in_the_Klein-Gordon_Equation_using_Geometric_Algebra_Cl_30
https://www.researchgate.net/publication/376894587_Energy-momentum_relation_in_curved_space-time
https://www.researchgate.net/publication/376894587_Energy-momentum_relation_in_curved_space-time
https://youtu.be/jhDKfhMDoWU?si=1rprgw6gZr8SyQI6
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𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓3𝜓0 + 𝜓4𝜓2 − 𝜓5𝜓1 + 𝜓6𝜓7 +𝜓7𝜓6

= 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7) 
In 𝑒2𝑒3 : 

𝜓0𝜓4 + 𝜓1𝜓7 +𝜓2𝜓3 − 𝜓3𝜓2 −𝜓4𝜓0 + 𝜓5𝜓6 − 𝜓6𝜓5 − 𝜓7𝜓1 = 0 

 

In 𝑒3𝑒1: 

 

𝜓0𝜓5 − 𝜓1𝜓3 + 𝜓2𝜓𝑥𝑦𝑧 +𝜓
3𝜓1 −𝜓4𝜓6 − 𝜓5𝜓0 + 𝜓6𝜓4 − 𝜓7𝜓2 = 0 

In 𝑒1𝑒2: 

𝜓0𝜓6 + 𝜓1𝜓2 −𝜓2𝜓1 + 𝜓3𝜓7 + 𝜓4𝜓5 − 𝜓5𝜓4 − 𝜓6𝜓0 − 𝜓7𝜓3 = 0 

In 𝑒1𝑒2𝑒3: 

𝜓0𝜓7 + 𝜓1𝜓4 +𝜓2𝜓5 + 𝜓3𝜓6 −𝜓4𝜓1 − 𝜓5𝜓2 − 𝜓6𝜓3 − 𝜓7𝜓0 = 0 

 

If we call vector 𝑗 (fermionic current) the sum in 𝑒1, 𝑒2 and 𝑒3 , we get: 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓
0𝜓2 + 𝜓1𝜓6 −𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
 

So, in total we have: 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗       (29.1) 
 

With: 

 

𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

And: 

 

𝑗 = 2(𝜓1𝜓0 − 𝜓2𝜓6 + 𝜓3𝜓5 + 𝜓4𝜓7)𝑒1 + 2(𝜓
0𝜓2 + 𝜓1𝜓6 −𝜓3𝜓4 + 𝜓5𝜓7)𝑒2

+ 2(𝜓0𝜓3 − 𝜓1𝜓5 + 𝜓2𝜓4 + 𝜓6𝜓7)𝑒3    
Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 
 
 

 

A2. Annex A2. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal) 

 

We apply the following relations, when performing the multiplication: 

 

(𝑒0)
2 = ‖𝑒0‖

2 = 𝑔00 

 

(𝑒1)
2 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = ‖𝑒3‖

2 = 𝑔33 

 

𝑒0𝑒𝑖 = 𝑒𝑖𝑒0 

 

𝑒2𝑒3 = −𝑒3𝑒2 
𝑒3𝑒1 = −𝑒1𝑒3 

𝑒1𝑒2 = −𝑒2𝑒1 

 

For simplification we will consider directly 𝑒0 = 1. If in the end, it has another value, it 

just will have to be considered in the operations.  
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𝜓†𝜓 = 𝜓𝜇𝑒𝜇
†𝜓𝜈𝑒𝜈 = (𝜓

0𝑒0
† +𝜓1𝑒1

† +𝜓2𝑒2
† + 𝜓3𝑒3

† +𝜓4𝑒4
† + 𝜓5𝑒5

† + 𝜓6𝑒6
† +𝜓7𝑒7

†)(𝜓0𝑒0 + 𝜓
1𝑒1 +𝜓

2𝑒2
+ 𝜓3𝑒3 + 𝜓

4𝑒4 +𝜓
5𝑒5 + 𝜓

6𝑒6 + 𝜓
7𝑒7) = 

(𝜓0 + 𝜓1𝑒1 +𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
4𝑒3𝑒2 +𝜓

5𝑒1𝑒3 + 𝜓
6𝑒2𝑒1 +𝜓

7𝑒3𝑒2𝑒1)(𝜓
0 +𝜓1𝑒1 +𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

4𝑒2𝑒3 +𝜓
5𝑒3𝑒1 +𝜓

6𝑒1𝑒2 + 𝜓
7𝑒1𝑒2𝑒3) = 

      𝜓0
2
+ 𝜓0𝜓1𝑒1 +𝜓

0𝜓2𝑒2 +𝜓
0𝜓3𝑒3 + 𝜓

0𝜓4𝑒2𝑒3 +𝜓
0𝜓5𝑒3𝑒1 +𝜓

0𝜓6𝑒1𝑒2 +𝜓
0𝜓7𝑒1𝑒2𝑒3 + 

𝜓1𝜓0𝑒1 +𝜓
12‖𝑒1‖

2 + 𝜓1𝜓2𝑒1𝑒2 −𝜓
1𝜓3𝑒3𝑒1 +𝜓

1𝜓4𝑒1𝑒2𝑒3 −𝜓
1𝜓5‖𝑒1‖

2𝑒3 +𝜓
1𝜓6‖𝑒1‖

2𝑒2 +𝜓
1𝜓7‖𝑒1‖

2𝑒2𝑒3 + 

𝜓2𝜓0𝑒2 −𝜓
2𝜓1𝑒1𝑒2 +𝜓

22‖𝑒2‖
2 + 𝜓2𝜓3𝑒2𝑒3 +𝜓

2𝜓4‖𝑒2‖
2𝑒3 + 𝜓

2𝜓5𝑒1𝑒2𝑒3 −𝜓
2𝜓6𝜓𝑥𝑦𝑒1𝑒2𝑒3 + 𝜓

3𝜓7‖𝑒3‖
2𝑒1𝑒2 

−𝜓4𝜓0𝑒2𝑒3 −𝜓
4𝜓1𝑒1𝑒2𝑒3 + 𝜓

4𝜓2‖𝑒2‖
2𝑒3 −𝜓

4𝜓3‖𝑒3‖
2𝑒2 +𝜓

42‖𝑒2‖
2‖𝑒3‖

2 + 𝜓4𝜓5‖𝑒3‖
2𝑒1𝑒2 −𝜓

4𝜓6‖𝑒2‖
2𝑒3𝑒1 +𝜓

4𝜓7‖𝑒2‖
2‖𝑒3‖

2𝑒1 − 

−𝜓5𝜓0𝑒3𝑒1 −𝜓
5𝜓1‖𝑒1‖

2𝑒3 −𝜓
5𝜓2𝑒1𝑒2𝑒3 +𝜓

5𝜓3‖𝑒3‖
2𝑒1 −𝜓

5𝜓4‖𝑒3‖
2𝑒1𝑒2 +𝜓

52‖𝑒3‖
2‖𝑒1‖

2 +𝜓5𝜓6‖𝑒1‖
2𝑒2𝑒3 +𝜓

5𝜓7‖𝑒3‖
2‖𝑒1‖

2𝑒2 − 

−𝜓6𝜓0𝑒1𝑒2 +𝜓
6𝜓1‖𝑒1‖

2𝑒2 −𝜓
6𝜓2‖𝑒2‖

2𝑒1 − 𝜓
6𝜓3𝑒1𝑒2𝑒3 +𝜓

6𝜓4‖𝑒2‖
2𝑒3𝑒1 −𝜓

6𝜓5‖𝑒1‖
2𝑒2𝑒3 + 𝜓

62‖𝑒1‖
2‖𝑒2‖

2 +𝜓6𝜓7‖𝑒1‖
2‖𝑒2‖

2𝑒3 − 

−𝜓7𝜓0𝑒1𝑒2𝑒3 − 𝜓
7𝜓1‖𝑒1‖

2𝑒2𝑒3 − 𝜓
7𝜓2‖𝑒2‖

2𝑒3𝑒1 − 𝜓
7𝜓3‖𝑒3‖

2𝑒1𝑒2 +𝜓
7𝜓4‖𝑒2‖

2‖𝑒3‖
2𝑒1 + 𝜓

7𝜓5‖𝑒1‖
2‖𝑒3‖

2𝑒2 + 𝜓
7𝜓6‖𝑒1‖

2‖𝑒2‖
2𝑒3

+𝜓7
2
‖𝑒1‖

2‖𝑒2‖
2‖𝑒3‖

2 

 

If we separate from the result above only the scalars, we have: 
 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓
2)2𝑔22 + (𝜓

3)2𝑔33 + (𝜓
4)2𝑔22𝑔33 + (𝜓

5)2𝑔33𝑔11 + (𝜓
6)2𝑔11𝑔22 + (𝜓

7)2𝑔11𝑔22𝑔33 
 

We will call above sum 𝜌 (probability density). 

 

Now, if we separate by 𝑒1 : 
 

𝜓0𝜓1 + 𝜓1𝜓0 −𝜓2𝜓6‖𝑒2‖
2 +𝜓3𝜓5‖𝑒3‖

2 + 𝜓4𝜓7‖𝑒2‖
2‖𝑒3‖

2 +𝜓5𝜓3‖𝑒3‖
2 −𝜓6𝜓2‖𝑒2‖

2

+ 𝜓7𝜓4‖𝑒2‖
2‖𝑒3‖

2
 

 

2(𝜓0𝜓1 − 𝜓2𝜓6‖𝑒2‖
2 +𝜓3𝜓5‖𝑒3‖

2 +𝜓4𝜓7‖𝑒2‖
2‖𝑒3‖

2) 
 

𝜓0𝜓1 +𝜓1𝜓0 − 𝜓2𝜓6𝑔22 +𝜓
3𝜓5𝑔33 + 𝜓

4𝜓7𝑔22𝑔33 +𝜓
5𝜓3𝑔33 − 𝜓

6𝜓2𝑔22 +𝜓
7𝜓4𝑔22𝑔33 

 

2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓
3𝜓5𝑔33 +𝜓

4𝜓7𝑔22𝑔33) 
 

By 𝑒2 : 
+𝜓0𝜓2 + 𝜓1𝜓6‖𝑒1‖

2 +𝜓2𝜓0 −𝜓3𝜓4‖𝑒3‖
2 − 𝜓4𝜓3‖𝑒3‖

2 + 𝜓5𝜓7‖𝑒3‖
2‖𝑒1‖

2 + 𝜓6𝜓1‖𝑒1‖
2

+ 𝜓7𝜓5‖𝑒1‖
2‖𝑒3‖

2 

 

2(+𝜓0𝜓2 + 𝜓1𝜓6‖𝑒1‖
2 −𝜓3𝜓4‖𝑒3‖

2 +𝜓5𝜓7‖𝑒3‖
2‖𝑒1‖

2) 
 

+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 + 𝜓
2𝜓0 −𝜓3𝜓4𝑔33 −𝜓

4𝜓3𝑔33 + 𝜓
5𝜓7𝑔33𝑔11 + 𝜓

6𝜓1𝑔11 + 𝜓
7𝜓5𝑔11𝑔33 

2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 −𝜓
4𝜓3𝑔33 +𝜓

5𝜓7𝑔33𝑔11) 

By 𝑒3 : 
  

+𝜓0𝜓3 − 𝜓1𝜓5‖𝑒1‖
2 +𝜓2𝜓4‖𝑒2‖

2 + 𝜓3𝜓0 + 𝜓4𝜓2‖𝑒2‖
2 − 𝜓5𝜓1‖𝑒1‖

2 +𝜓6𝜓7‖𝑒1‖
2‖𝑒2‖

2

+ 𝜓7𝜓6‖𝑒1‖
2‖𝑒2‖

2 

 

2(+𝜓0𝜓3 − 𝜓1𝜓5‖𝑒1‖
2 +𝜓2𝜓4‖𝑒2‖

2 +𝜓6𝜓7‖𝑒1‖
2‖𝑒2‖

2) 
 

+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 + 𝜓
2𝜓4𝑔22 +𝜓

3𝜓0 +𝜓4𝜓2𝑔22 − 𝜓
5𝜓1𝑔11 +𝜓

6𝜓7𝑔11𝑔22 + 𝜓
7𝜓6𝑔11𝑔22 

 

2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 +𝜓
2𝜓4𝑔22 +𝜓

6𝜓7𝑔11𝑔22) 

In 𝑒2𝑒3 plane: 
 

+𝜓0𝜓4 + 𝜓1𝜓7‖𝑒1‖
2 +𝜓2𝜓3 − 𝜓3𝜓2 −𝜓4𝜓0 + 𝜓5𝜓6‖𝑒1‖

2 −𝜓6𝜓5‖𝑒1‖
2 − 𝜓7𝜓1‖𝑒1‖

2 = 0 
 

 

In 𝑒3𝑒1 plane: 
+𝜓0𝜓5 −𝜓1𝜓3 +𝜓2𝜓7‖𝑒2‖

2 + 𝜓3𝜓1 −𝜓4𝜓6‖𝑒2‖
2 − 𝜓5𝜓0 +𝜓6𝜓4‖𝑒2‖

2 − 𝜓7𝜓2‖𝑒2‖
2 = 0 

 

 

In 𝑒1𝑒2 plane: 
 

+𝜓0𝜓6 +𝜓1𝜓2 −𝜓2𝜓1 + 𝜓3𝜓7‖𝑒3‖
2 +𝜓4𝜓5‖𝑒3‖

2 − 𝜓5𝜓4‖𝑒3‖
2 −𝜓6𝜓0 − 𝜓7𝜓3‖𝑒3‖

2 = 0 

In 𝑒1𝑒2𝑒3 plane: 
 

+𝜓0𝜓7 +𝜓1𝜓4 + 𝜓2𝜓5 + 𝜓3𝜓6 −𝜓4𝜓1 − 𝜓5𝜓2 −𝜓6𝜓3 − 𝜓7𝜓0 = 0 

 

So, in this case, we can sum up the result as: 

 
𝜓†𝜓 = 𝜌 + 𝑗 

Being: 

 

𝜌 = (𝜓0)2 + (𝜓1)2𝑔11 + (𝜓
2)2𝑔22 + (𝜓

3)2𝑔33 + (𝜓
4)2𝑔22𝑔33 + (𝜓

5)2𝑔33𝑔11 + (𝜓
6)2𝑔11𝑔22

+ (𝜓7)2𝑔11𝑔22𝑔33 
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𝑗 = 2(𝜓0𝜓1 − 𝜓2𝜓6𝑔22 + 𝜓
3𝜓5𝑔33 +𝜓

4𝜓7𝑔22𝑔33)𝑒1
+ 2(+𝜓0𝜓2 + 𝜓1𝜓6𝑔11 −𝜓

4𝜓3𝑔33 + 𝜓
5𝜓7𝑔33𝑔11)𝑒2

+ 2(+𝜓0𝜓3 − 𝜓1𝜓5𝑔11 +𝜓
2𝜓4𝑔22 + 𝜓

6𝜓7𝑔11𝑔22)𝑒3 
 

 

Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 
 
A3. Annex A3. Bra-Ket product between the reverse of a spinor 
and a spinor in non-Euclidean metric (Non orthogonal and non or-
thonormal).  

 

We should do the following operation again: 

 
𝜓†𝜓 = 𝜓𝜇𝑒𝜇

†𝜓𝜈𝑒𝜈 = (𝜓
0𝑒0
† +𝜓1𝑒1

† +𝜓2𝑒2
† + 𝜓3𝑒3

† +𝜓4𝑒4
† + 𝜓5𝑒5

† + 𝜓6𝑒6
† +𝜓7𝑒7

†)(𝜓0𝑒0 + 𝜓
1𝑒1 +𝜓

2𝑒2
+ 𝜓3𝑒3 + 𝜓

4𝑒4 +𝜓
5𝑒5 + 𝜓

6𝑒6 + 𝜓
7𝑒7) = 

(𝜓0 + 𝜓1𝑒1 +𝜓
2𝑒2 +𝜓

3𝑒3 + 𝜓
4𝑒3𝑒2 +𝜓

5𝑒1𝑒3 + 𝜓
6𝑒2𝑒1 +𝜓

7𝑒3𝑒2𝑒1)(𝜓
0 +𝜓1𝑒1 +𝜓

2𝑒2 + 𝜓
3𝑒3 + 𝜓

4𝑒2𝑒3 +𝜓
5𝑒3𝑒1 +𝜓

6𝑒1𝑒2 + 𝜓
7𝑒1𝑒2𝑒3) = 

 

But using the following rules commented in chapter 3.3.  

 

(𝑒𝑖)
2 = 𝑒𝑖𝑒𝑖 = ‖𝑒𝑖‖

2 = 𝑔𝑖𝑖 
𝑒𝑖𝑒𝑗 = 2𝑔𝑖𝑗 − 𝑒𝑗𝑒𝑖 = 2𝑔𝑗𝑖 − 𝑒𝑗𝑒𝑖 

𝑒𝑖 · 𝑒𝑗 = 𝑒𝑗 · 𝑒𝑖 = 𝑔𝑖𝑗 = 𝑔𝑗𝑖 

𝑒𝑖𝑒𝑗 = 𝑒𝑖 · 𝑒𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 = 𝑔𝑖𝑗 + 𝑒𝑖 ∧ 𝑒𝑗 

 

(𝑒1)
2 = 𝑒1𝑒1 = ‖𝑒1‖

2 = 𝑔11 

(𝑒2)
2 = 𝑒2𝑒2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = 𝑒3𝑒3 = ‖𝑒3‖

2 = 𝑔33 

𝑒1𝑒2 = 2𝑔12 − 𝑒2𝑒1 = 2𝑔21 − 𝑒2𝑒1 

𝑒2𝑒3 = 2𝑔23 − 𝑒3𝑒2 = 2𝑔32 − 𝑒3𝑒2 

𝑒3𝑒1 = 2𝑔31 − 𝑒1𝑒3 = 2𝑔13 − 𝑒1𝑒3 
 

 

I am not going to do it (you have a start of these calculations in[63]), but anyhow, you can 

understand that the result, whatever it is, will have this form: 

 

𝜓†𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 

 

A4. Annex A4. Bra-Ket product between the inverse of a spinor and 
a spinor in non-Euclidean metric (Orthogonal but not orthonor-
mal). 
 

If instead of multiplying by the reverse, we multiply by the inverse (in orthogonal but not 

orthonormal metric), we should use the following rules from previous chapters: 

 

(𝑒0)
2 = ‖𝑒0‖

2 = 𝑔00 

 

(𝑒1)
2 = ‖𝑒1‖

2 = 𝑔11 
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(𝑒2)
2 = ‖𝑒2‖

2 = 𝑔22 

(𝑒3)
2 = ‖𝑒3‖

2 = 𝑔33 

 

𝑒0𝑒𝑖 = 𝑒𝑖𝑒0 

 

𝑒2𝑒3 = −𝑒3𝑒2 
𝑒3𝑒1 = −𝑒1𝑒3 

𝑒1𝑒2 = −𝑒2𝑒1 

 

 

(𝑒𝑖)
−1 = 𝑒𝑖 =

𝑒𝑖
𝑔𝑖𝑖
=

𝑒𝑖
‖𝑒𝑖‖

2
 

 

(𝑒𝑖𝑒𝑗)
−1
=

𝑒𝑗𝑒𝑖

‖𝑒𝑗‖
2
‖𝑒𝑖‖

2
=
𝑒𝑗𝑒𝑖

𝑔𝑗𝑗𝑔𝑖𝑖
 

 

Where all the above relation we have seen in previous chapters. 

Operating: 

 
𝜓−1𝜓 = (𝜓0 +𝜓1

𝑒1
‖𝑒1‖2

+ 𝜓2
𝑒2

‖𝑒2‖2
+ 𝜓3

𝑒3
‖𝑒3‖2

+𝜓4
𝑒3𝑒2

‖𝑒2‖2‖𝑒3‖2
+ 𝜓5

𝑒1𝑒3
‖𝑒3‖2‖𝑒1‖2

+ 𝜓6
𝑒2𝑒1

‖𝑒1‖2‖𝑒2‖2
+𝜓7

𝑒3𝑒2𝑒1
‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2

) 

 

(𝜓0 +𝜓1𝑒1 + 𝜓
2𝑒2 + 𝜓

3𝑒3 +𝜓
4𝑒2𝑒3 + 𝜓

5𝑒3𝑒1 +𝜓
6𝑒1𝑒2 + 𝜓

7𝑒1𝑒2𝑒3) 
= 

 

      (𝜓0)2 +𝜓1𝜓0
𝑒1

‖𝑒1‖2
+ 𝜓2𝜓0

𝑒2
‖𝑒2‖2

+ 𝜓3𝜓0
𝑒3
‖𝑒3‖2

− 𝜓4𝜓0
𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
−𝜓5𝜓0

𝑒3𝑒1
‖𝑒3‖2‖𝑒1‖2

− 𝜓6𝜓0
𝑒1𝑒2

‖𝑒1‖2‖𝑒2‖2
− 𝜓7𝜓0

𝑒1𝑒2𝑒3
‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2

+ 

 

𝜓0𝜓1𝑒1 + (𝜓
1)2 −𝜓2𝜓1𝑒1

𝑒2
‖𝑒2‖2

+ 𝜓3𝜓1
𝑒3
‖𝑒3‖2

𝑒1 −𝜓
4𝜓1𝑒1

𝑒2𝑒3
‖𝑒2‖2‖𝑒3‖2

− 𝜓5𝜓1
𝑒3
‖𝑒3‖2

+ 𝜓6𝜓1
𝑒2
‖𝑒2‖2

− 𝜓7𝜓1
𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
+ 

 

 

𝜓0𝜓2𝑒2 + 𝜓
1𝜓2

𝑒1
‖𝑒1‖2

𝑒2 + (𝜓
2)2 −𝜓3𝜓2𝑒2

𝑒3
‖𝑒3‖2

+ 𝜓4𝜓2
𝑒3
‖𝑒3‖2

− 𝜓5𝜓2𝑒1𝑒2
𝑒3

‖𝑒3‖2
− 𝜓6𝜓2

𝑒1
‖𝑒1‖2

− 𝜓7𝜓2
𝑒3
‖𝑒3‖2

𝑒1
‖𝑒1‖2

+ 

 

 

𝜓0𝜓3𝑒3 −𝜓
1𝜓3𝑒3

𝑒1
‖𝑒1‖2

+ 𝜓2𝜓3
𝑒2
‖𝑒2‖2

𝑒3 + (𝜓
3)2 − 𝜓4𝜓3

𝑒2
‖𝑒2‖2

+ 𝜓5𝜓3
𝑒1
‖𝑒1‖2

−𝜓6𝜓3
𝑒1
‖𝑒1‖2

𝑒2
‖𝑒2‖2

𝑒3 −𝜓
7𝜓3

𝑒1
‖𝑒1‖2

𝑒2
‖𝑒2‖2

 

 

 

+𝜓0𝜓4𝑒2𝑒3 + 𝜓
1𝜓4

𝑒1
‖𝑒1‖2

𝑒2𝑒3 +𝜓
2𝜓4𝑒3 − 𝜓

3𝜓4𝑒2 + (𝜓
4)2 − 𝜓5𝜓4

𝑒1
‖𝑒1‖2

𝑒2 + 𝜓
6𝜓4𝑒3

𝑒1
‖𝑒1‖2

+𝜓7𝜓4
𝑒1
‖𝑒1‖2

+ 

 

 

+𝜓0𝜓5𝑒3𝑒1 − 𝜓
1𝜓5𝑒3 + 𝜓

2𝜓5𝑒1
𝑒2
‖𝑒2‖2

𝑒3 +𝜓
3𝜓5𝑒1 + 𝜓

4𝜓5𝑒1
𝑒2
‖𝑒2‖2

+ (𝜓5)2 − 𝜓6𝜓5
𝑒2

‖𝑒2‖2
𝑒3 +𝜓

7𝜓6
𝑒2
‖𝑒2‖2

+ 

 

 

+𝜓0𝜓6𝑒1𝑒2 + 𝜓
1𝜓6𝑒2 −𝜓

2𝜓6𝑒1 +𝜓
3𝜓6𝑒1𝑒2

𝑒3
‖𝑒3‖2

− 𝜓4𝜓6
𝑒3
‖𝑒3‖2

𝑒1 +𝜓
5𝜓6𝑒2

𝑒3
‖𝑒3‖2

+ (𝜓6)2 + 𝜓7𝜓6
𝑒3
‖𝑒3‖2

+ 

 
 

+𝜓0𝜓7𝑒1𝑒2𝑒3 +𝜓
1𝜓7𝑒2𝑒3 +𝜓

2𝜓7𝑒3𝑒1 +𝜓
3𝜓7𝑒1𝑒2 +𝜓

4𝜓7𝑒1 +𝜓
5𝜓7𝑒2 +𝜓

6𝜓7𝑒3 + (𝜓
7
)
2

 

 

The scalar part is the same as the one multiplying by the reverse in a Euclidean orthonormal 

metric:  

 
𝜌 = (𝜓0)2 + (𝜓1)2 + (𝜓2)2 + (𝜓3)2 + (𝜓4)2 + (𝜓5)2 + (𝜓6)2 + (𝜓7)2 

 

This could be a hint, that probably this is the real operation that has to be done in general, 

instead of the reverse. The issue is that in orthonormal metric, the inverse and the reverse 

are the same operation. But this is not true in general, in non-orthonormal metrics. 

 

If continuing with the operation, for example, we separate by 𝑒1 we can see that the result 

is not as compact and in orthonormal or orthogonal solutions. 

 
𝜓1𝜓0

𝑒1
‖𝑒1‖

2
+ 𝜓0𝜓1𝑒1 −𝜓

6𝜓2
𝑒1
‖𝑒1‖

2
+ 𝜓5𝜓3

𝑒1
‖𝑒1‖

2
+ 𝜓7𝜓4

𝑒1
‖𝑒1‖

2
+𝜓3𝜓5𝑒1 − 𝜓

2𝜓6𝑒1 + 𝜓
4𝜓7𝑒1 

 

Even we can see that the result in the planes is not zero. Example 𝑒2𝑒3: 

 
−𝜓4𝜓0

𝑒2𝑒3
‖𝑒2‖2‖𝑒3‖2

−𝜓7𝜓1
𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
−𝜓3𝜓2𝑒2

𝑒3
‖𝑒3‖2

+ 𝜓2𝜓3
𝑒2
‖𝑒2‖2

𝑒3 +𝜓
0𝜓4𝑒2𝑒3 −𝜓

6𝜓5
𝑒2
‖𝑒2‖2

𝑒3 +𝜓
5𝜓6𝑒2

𝑒3
‖𝑒3‖2

+ 𝜓1𝜓7𝑒2𝑒3 

 

Or 𝑒1𝑒2𝑒3 , also different from zero: 
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−𝜓7𝜓0

𝑒1𝑒2𝑒3
‖𝑒1‖2‖𝑒2‖2‖𝑒3‖2

− 𝜓4𝜓1𝑒1
𝑒2𝑒3

‖𝑒2‖2‖𝑒3‖2
−𝜓5𝜓2𝑒1𝑒2

𝑒3
‖𝑒3‖2

−𝜓6𝜓3
𝑒1
‖𝑒1‖2

𝑒2
‖𝑒2‖2

𝑒3 +𝜓
1𝜓4

𝑒1
‖𝑒1‖2

𝑒2𝑒3 +𝜓
2𝜓5𝑒1

𝑒2
‖𝑒2‖2

𝑒3

+𝜓3𝜓6𝑒1𝑒2
𝑒3
‖𝑒3‖2

+ 𝜓0𝜓7𝑒1𝑒2𝑒3 

 
Anyhow, in general we can always say that whatever the final result is, the product will 

have the following shape: 

𝜓−1𝜓 = 𝑗𝜇𝑒𝜇 

 

Where 𝑗𝜇 are just scalar coefficients (or functions that output a scalar) and the 𝑒𝜇 are the 

basis vectors as they have been defined throughout the paper. 

 
In case that we perform this operation (multiplying by the inverse) in an orthonormal met-

ric, we will get the same result as in Annex A1 (as the inverse is the same as the reverse in 

this case). 

 

In case, that we perform this operation in a non-orthogonal (and therefore non-orthogonal 

case), we will have to follow the rules in chapter 3.3. 

 

Anyhow, the result will always have this form: 

 

𝜓−1𝜓 = 𝑗𝜇𝑒𝜇 

A5. Annex A5. Dirac equation 
 

In [5] I already made a mapping between Matrix Algebra and Geometric Algebra Cl3,0. I 

will put it here again with another nomenclature (1,2,3 instead of x,y,z) and using the op-

erations we commented in chapter 4 to make it even more clear. Similar approaches have 

been done by Baylis, APS [43][73][74]. 

 

A5.1. Dirac equation in Geometric Algebra 
 

We will start with the Dirac Equation as defined by APS [43][73][74], similar one defined 

by [3][5]: 

 

𝜕̅𝜓𝐼𝑒3 = 𝑚𝜓̅
†      

 

Being I the trivector. Now just operating and changing to the nomenclatures of this paper: 

 

𝜕̅𝜓𝐼𝑒3 −𝑚𝜓̅
† = 0 

𝜕̅𝜓𝐼 − 𝑚𝜓̅†𝑒3 = 0 

𝐼𝜕̅𝜓 − 𝑚𝜓̅†𝑒3 = 0  
𝑒123𝜕̅𝜓 − 𝑚𝜓̅

†𝑒3 = 0  
 

Now, if deploy the equation element by element: 

 

(𝑒123
𝜕

𝜕𝑒0
− 𝑒23

𝜕

𝜕𝑒1
− 𝑒31

𝜕

𝜕𝑒2
− 𝑒12

𝜕

𝜕𝑒3
) (𝜓0 + 𝑒1𝜓

1 + 𝑒2𝜓
2 + 𝑒3𝜓

3 + 𝑒12𝜓
12 + 𝑒23𝜓

23 + 𝑒31𝜓
31

+ 𝑒123𝜓
123)

+𝑚(−𝜓0 + 𝑒1𝜓
1 + 𝑒2𝜓

2 + 𝑒3𝜓
3 − 𝑒12𝜓

12 − 𝑒23𝜓
23 − 𝑒31𝜓

31 + 𝑒123𝜓
123)𝑒3 = 0      

 

Making the multiplication element by element, we get: 

 

𝑒123
𝜕𝜓0

𝜕𝑒0
+ 𝑒23

𝜕𝜓1

𝜕𝑒0
+ 𝑒31

𝜕𝜓2

𝜕𝑒0
+ 𝑒12

𝜕𝜓3

𝜕𝑒0
− 𝑒3

𝜕𝜓12

𝜕𝑒0
− 𝑒1

𝜕𝜓23

𝜕𝑒0
− 𝑒2

𝜕𝜓31

𝜕𝑒0
−
𝜕𝜓123

𝜕𝑒0
− 

−𝑒23
𝜕𝜓0

𝜕𝑒1
− 𝑒123

𝜕𝜓1

𝜕𝑒1
+ 𝑒3

𝜕𝜓2

𝜕𝑒1
− 𝑒2

𝜕𝜓3

𝜕𝑒1
− 𝑒31

𝜕𝜓12

𝜕𝑒1
+
𝜕𝜓23

𝜕𝑒1
+ 𝑒12

𝜕𝜓31

𝜕𝑒1
+ 𝑒1

𝜕𝜓123

𝜕𝑒1
− 
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−𝑒31
𝜕𝜓0

𝜕𝑒2
− 𝑒3

𝜕𝜓1

𝜕𝑒2
− 𝑒123

𝜕𝜓2

𝜕𝑒2
+ 𝑒1

𝜕𝜓3

𝜕𝑒2
+ 𝑒23

𝜕𝜓12

𝜕𝑒2
− 𝑒12

𝜕𝜓23

𝜕𝑒2
+
𝜕𝜓31

𝜕𝑒2
+ 𝑒2

𝜕𝜓123

𝜕𝑒2
− 

−𝑒12
𝜕𝜓0

𝜕𝑒3
+ 𝑒2

𝜕𝜓1

𝜕𝑒3
− 𝑒1

𝜕𝜓2

𝜕𝑒3
− 𝑒123

𝜕𝜓3

𝜕𝑒3
+
𝜕𝜓12

𝜕𝑒3
+ 𝑒31

𝜕𝜓23

𝜕𝑒3
− 𝑒23

𝜕𝜓31

𝜕𝑒3
+ 𝑒3

𝜕𝜓123

𝜕𝑒3
− 

−𝑚𝜓0𝑒3 − 𝑒31𝑚𝜓
1 + 𝑒23𝑚𝜓

2 +𝑚𝜓3 − 𝑒123𝑚𝜓
12 − 𝑒2𝑚𝜓

23 + 𝑒1𝑚𝜓
31 + 𝑒12𝑚𝜓

123

= 0   
 

If we separate the equations depending on the element they are multiplying (the vector, 

bivector, trivector or scalars) we get these 8 equations: 

𝜕𝜓0

𝜕𝑒0
−
𝜕𝜓1

𝜕𝑒1
−
𝜕𝜓2

𝜕𝑒2
−
𝜕𝜓3

𝜕𝑒3
−𝑚𝜓12 = 0    

𝜕𝜓1

𝜕𝑒0
−
𝜕𝜓0

𝜕𝑒1
+
𝜕𝜓12

𝜕𝑒2
−
𝜕𝜓31

𝜕𝑒3
+𝑚𝜓2 = 0    

𝜕𝜓2

𝜕𝑒0
−
𝜕𝜓12

𝜕𝑒1
−
𝜕𝜓0

𝜕𝑒2
+
𝜕𝜓23

𝜕𝑒3
−𝑚𝜓1 = 0    

𝜕𝜓3

𝜕𝑒0
+
𝜕𝜓31

𝜕𝑒1
−
𝜕𝜓23

𝜕𝑒2
−
𝜕𝜓0

𝜕𝑒3
+𝑚𝜓123 = 0    

−
𝜕𝜓12

𝜕𝑒0
+
𝜕𝜓2

𝜕𝑒1
−
𝜕𝜓1

𝜕𝑒2
+
𝜕𝜓123

𝜕𝑒3
−𝑚𝜓0 = 0   

−
𝜕𝜓23

𝜕𝑒0
+
𝜕𝜓123

𝜕𝑒1
+
𝜕𝜓3

𝜕𝑒2
−
𝜕𝜓𝑦

𝜕𝑒3
+𝑚𝜓31 = 0   

−
𝜕𝜓31

𝜕𝑒0
−
𝜕𝜓𝑧
𝜕𝑒1

+
𝜕𝜓123

𝜕𝑒2
+
𝜕𝜓1

𝜕𝑒3
−𝑚𝜓23 = 0   

−
𝜕𝜓123

𝜕𝑒0
+
𝜕𝜓23

𝜕𝑒1
+
𝜕𝜓31

𝜕𝑒2
+
𝜕𝜓12

𝜕𝑒3
+𝑚𝜓3 = 0   

 

A5.2. Dirac equation in Matrix Algebra 
 

For this chapter 5.2 I will use the old nomenclature in which I used t,x,y,z instead of 0,1,2,3 

and used subscripts instead of superscripts. 

 

In matrix algebra the solution to Dirac equation has this form: 

𝜓 = (

𝜓1
𝜓2
𝜓3
𝜓4

)      

Where the 𝜓𝑘 are complex functions. If we consider that they can be divided in the real 

and the imaginary part of the function, the wavefunction would have the form: 

𝜓 = (

𝜓1
𝜓2
𝜓3
𝜓4

) = (

𝜓1𝑟 + 𝑖𝜓1𝑖
𝜓2𝑟 + 𝑖𝜓2𝑖
𝜓3𝑟 + 𝑖𝜓3𝑖
𝜓4𝑟 + 𝑖𝜓4𝑖

)       

Now, we apply the Dirac equation in matrix algebra according [48]: 

 

(

 
 
 
 
 
 
𝑖
𝜕

𝜕𝑡
− 𝑚 0 𝑖

𝜕

𝜕𝑧
𝑖
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦

0 𝑖
𝜕

𝜕𝑡
− 𝑚 𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
−𝑖
𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑧
−𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
−𝑖
𝜕

𝜕𝑡
− 𝑚 0

−𝑖
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
𝑖
𝜕

𝜕𝑧
0 −𝑖

𝜕

𝜕𝑡
− 𝑚

)

 
 
 
 
 
 

(

𝜓1
𝜓2
𝜓3
𝜓4

) = (

0
0
0
0

) 

Applying the division in real and imaginary parts commented, we have: 
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(

 
 
 
 
 
 
𝑖
𝜕

𝜕𝑡
− 𝑚 0 𝑖

𝜕

𝜕𝑧
𝑖
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦

0 𝑖
𝜕

𝜕𝑡
− 𝑚 𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
−𝑖
𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑧
−𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
−𝑖
𝜕

𝜕𝑡
− 𝑚 0

−𝑖
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
𝑖
𝜕

𝜕𝑧
0 −𝑖

𝜕

𝜕𝑡
− 𝑚

)

 
 
 
 
 
 

(

𝜓1𝑟 + 𝑖𝜓1𝑖
𝜓2𝑟 + 𝑖𝜓2𝑖
𝜓3𝑟 + 𝑖𝜓3𝑖
𝜓4𝑟 + 𝑖𝜓4𝑖

) = (

0
0
0
0

)      

 

And now, performing the matrix multiplication, we have for the first line: 

(𝑖
𝜕

𝜕𝑡
− 𝑚) (𝜓1𝑟 + 𝑖𝜓1𝑖) + (𝑖

𝜕

𝜕𝑧
) (𝜓3𝑟 + 𝑖𝜓3𝑖) + (𝑖

𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
) (𝜓4𝑟 + 𝑖𝜓4𝑖) = 0    

 

𝑖
𝜕𝜓1𝑟
𝜕𝑡

−
𝜕𝜓1𝑖
𝜕𝑡

− 𝑚𝜓1𝑟 − 𝑖𝑚𝜓1𝑖 + 𝑖
𝜕𝜓3𝑟
𝜕𝑧

−
𝜕𝜓3𝑖
𝜕𝑧

+ 𝑖
𝜕𝜓4𝑟
𝜕𝑥

−
𝜕𝜓4𝑖
𝜕𝑥

+
𝜕𝜓4𝑟
𝜕𝑦

+ 𝑖
𝜕𝜓4𝑖
𝜕𝑦

= 0    

Dividing in two equations, one for the real part and another one for the imaginary part, we 

get: 

−
𝜕𝜓1𝑖
𝜕𝑡

− 𝑚𝜓1𝑟 −
𝜕𝜓3𝑖
𝜕𝑧

−
𝜕𝜓4𝑖
𝜕𝑥

+
𝜕𝜓4𝑟
𝜕𝑦

= 0     

𝜕𝜓1𝑟
𝜕𝑡

− 𝑚𝜓1𝑖 +
𝜕𝜓3𝑟
𝜕𝑧

+
𝜕𝜓4𝑟
𝜕𝑥

+
𝜕𝜓4𝑖
𝜕𝑦

= 0      

For the second line of the matrix, we get: 

(𝑖
𝜕

𝜕𝑡
− 𝑚) (𝜓2𝑟 + 𝑖𝜓2𝑖) + (𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
) (𝜓3𝑟 + 𝑖𝜓3𝑖) + (−𝑖

𝜕

𝜕𝑧
) (𝜓4𝑟 + 𝑖𝜓4𝑖) = 0 

𝑖
𝜕𝜓2𝑟
𝜕𝑡

−
𝜕𝜓2𝑖
𝜕𝑡

−𝑚𝜓2𝑟 − 𝑖𝑚𝜓2𝑖 + 𝑖
𝜕𝜓3𝑟
𝜕𝑥

−
𝜕𝜓3𝑖
𝜕𝑥

−
𝜕𝜓3𝑟
𝜕𝑦

− 𝑖
𝜕𝜓3𝑖
𝜕𝑦

− 𝑖
𝜕𝜓4𝑟
𝜕𝑧

+
𝜕𝜓4𝑖
𝜕𝑧

= 0 

 

Again, dividing in two equations (real and imaginary part): 

−
𝜕𝜓2𝑖
𝜕𝑡

− 𝑚𝜓2𝑟 −
𝜕𝜓3𝑖
𝜕𝑥

−
𝜕𝜓3𝑟
𝜕𝑦

+
𝜕𝜓4𝑖
𝜕𝑧

= 0    

𝜕𝜓2𝑟
𝜕𝑡

− 𝑚𝜓2𝑖 +
𝜕𝜓3𝑟
𝜕𝑥

−
𝜕𝜓3𝑖
𝜕𝑦

−
𝜕𝜓4𝑟
𝜕𝑧

= 0     

 

For the third line of the equation, you have 

(−𝑖
𝜕

𝜕𝑧
) (𝜓1𝑟 + 𝑖𝜓1𝑖) + (−𝑖

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
) (𝜓2𝑟 + 𝑖𝜓2𝑖) + (−𝑖

𝜕

𝜕𝑡
− 𝑚) (𝜓3𝑟 + 𝑖𝜓3𝑖) = 0 

−𝑖
𝜕𝜓1𝑟
𝜕𝑧

+
𝜕𝜓1𝑖
𝜕𝑧

− 𝑖
𝜕𝜓2𝑟
𝜕𝑥

+
𝜕𝜓2𝑖
𝜕𝑥

−
𝜕𝜓2𝑟
𝜕𝑦

− 𝑖
𝜕𝜓2𝑖
𝜕𝑦

− 𝑖
𝜕𝜓3𝑟
𝜕𝑡

+
𝜕𝜓3𝑖
𝜕𝑡

−𝑚𝜓3𝑟 − 𝑖𝑚𝜓3𝑖

= 0 

Dividing in real and imaginary part, we get: 

𝜕𝜓1𝑖
𝜕𝑧

+
𝜕𝜓2𝑖
𝜕𝑥

−
𝜕𝜓2𝑟
𝜕𝑦

+
𝜕𝜓3𝑖
𝜕𝑡

− 𝑚𝜓3𝑟 = 0       
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−
𝜕𝜓1𝑟
𝜕𝑧

−
𝜕𝜓2𝑟
𝜕𝑥

−
𝜕𝜓2𝑖
𝜕𝑦

−
𝜕𝜓3𝑟
𝜕𝑡

− 𝑚𝜓3𝑖 = 0       

And for the fourth line: 

(−𝑖
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
) (𝜓1𝑟 + 𝑖𝜓1𝑖) + (𝑖

𝜕

𝜕𝑧
) (𝜓2𝑟 + 𝑖𝜓2𝑖) + (−𝑖

𝜕

𝜕𝑡
− 𝑚) (𝜓4𝑟 + 𝑖𝜓4𝑖) = 0 

−𝑖
𝜕𝜓1𝑟
𝜕𝑥

+
𝜕𝜓1𝑖
𝜕𝑥

+
𝜕𝜓1𝑟
𝜕𝑦

+ 𝑖
𝜕𝜓1𝑖
𝜕𝑦

+ 𝑖
𝜕𝜓2𝑟
𝜕𝑧

−
𝜕𝜓2𝑖
𝜕𝑧

− 𝑖
𝜕𝜓4𝑟
𝜕𝑡

+
𝜕𝜓4𝑖
𝜕𝑡

− 𝑚𝜓4𝑟 − 𝑖𝑚𝜓4𝑖

= 0 

Getting these two equations: 

𝜕𝜓1𝑖
𝜕𝑥

+
𝜕𝜓1𝑟
𝜕𝑦

−
𝜕𝜓2𝑖
𝜕𝑧

+
𝜕𝜓4𝑖
𝜕𝑡

− 𝑚𝜓4𝑟 = 0        

−
𝜕𝜓1𝑟
𝜕𝑥

+
𝜕𝜓1𝑖
𝜕𝑦

+
𝜕𝜓2𝑟
𝜕𝑧

−
𝜕𝜓4𝑟
𝜕𝑡

− 𝑚𝜓4𝑖 = 0       

Putting all the equations together: 

 

−
𝜕𝜓1𝑖
𝜕𝑡

− 𝑚𝜓1𝑟 −
𝜕𝜓3𝑖
𝜕𝑧

−
𝜕𝜓4𝑖
𝜕𝑥

+
𝜕𝜓4𝑟
𝜕𝑦

= 0      

𝜕𝜓1𝑟
𝜕𝑡

− 𝑚𝜓1𝑖 +
𝜕𝜓3𝑟
𝜕𝑧

+
𝜕𝜓4𝑟
𝜕𝑥

+
𝜕𝜓4𝑖
𝜕𝑦

= 0         

−
𝜕𝜓2𝑖
𝜕𝑡

− 𝑚𝜓2𝑟 −
𝜕𝜓3𝑖
𝜕𝑥

−
𝜕𝜓3𝑟
𝜕𝑦

+
𝜕𝜓4𝑖
𝜕𝑧

= 0       

𝜕𝜓2𝑟
𝜕𝑡

− 𝑚𝜓2𝑖 +
𝜕𝜓3𝑟
𝜕𝑥

−
𝜕𝜓3𝑖
𝜕𝑦

−
𝜕𝜓4𝑟
𝜕𝑧

= 0        

𝜕𝜓1𝑖
𝜕𝑧

+
𝜕𝜓2𝑖
𝜕𝑥

−
𝜕𝜓2𝑟
𝜕𝑦

+
𝜕𝜓3𝑖
𝜕𝑡

− 𝑚𝜓3𝑟 = 0      

−
𝜕𝜓1𝑟
𝜕𝑧

−
𝜕𝜓2𝑟
𝜕𝑥

−
𝜕𝜓2𝑖
𝜕𝑦

−
𝜕𝜓3𝑟
𝜕𝑡

− 𝑚𝜓3𝑖 = 0       

𝜕𝜓1𝑖
𝜕𝑥

+
𝜕𝜓1𝑟
𝜕𝑦

−
𝜕𝜓2𝑖
𝜕𝑧

+
𝜕𝜓4𝑖
𝜕𝑡

− 𝑚𝜓4𝑟 = 0        

−
𝜕𝜓1𝑟
𝜕𝑥

+
𝜕𝜓1𝑖
𝜕𝑦

+
𝜕𝜓2𝑟
𝜕𝑧

−
𝜕𝜓4𝑟
𝜕𝑡

−𝑚𝜓4𝑖 = 0        

 

If we transform the nomenclature txyz to 0123 and we put superscripts to be coherent with 

the rest of the paper and order the elements we have: 

 

−
𝜕𝜓1𝑖

𝜕𝑒0
−
𝜕𝜓4𝑖

𝜕𝑒1
+
𝜕𝜓4𝑟

𝜕𝑒2
−
𝜕𝜓3𝑖

𝜕𝑒3
−𝑚𝜓1𝑟 = 0    

𝜕𝜓1𝑟

𝜕𝑒0
+
𝜕𝜓4𝑟

𝜕𝑒1
+
𝜕𝜓4𝑖

𝜕𝑒2
+
𝜕𝜓3𝑟

𝜕𝑒3
−𝑚𝜓1𝑖 = 0      

−
𝜕𝜓2𝑖

𝜕𝑒0
−
𝜕𝜓3𝑖

𝜕𝑒1
−
𝜕𝜓3𝑟

𝜕𝑒2
+
𝜕𝜓4𝑖

𝜕𝑒3
−𝑚𝜓2𝑟 = 0      

𝜕𝜓2𝑟

𝜕𝑒0
+
𝜕𝜓3𝑟

𝜕𝑒1
−
𝜕𝜓3𝑖

𝜕𝑒2
−
𝜕𝜓4𝑟

𝜕𝑒3
−𝑚𝜓2𝑖 = 0       

𝜕𝜓3𝑖

𝜕𝑒0
+
𝜕𝜓2𝑖

𝜕𝑒1
−
𝜕𝜓2𝑟

𝜕𝑒2
+
𝜕𝜓1𝑖

𝜕𝑒3
−𝑚𝜓3𝑟 = 0       
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−
𝜕𝜓3𝑟

𝜕𝑒0
−
𝜕𝜓2𝑟

𝜕𝑒1
−
𝜕𝜓2𝑖

𝜕𝑒2
−
𝜕𝜓1𝑟

𝜕𝑒3
−𝑚𝜓3𝑖 = 0      

𝜕𝜓4𝑖

𝜕𝑒0
+
𝜕𝜓1𝑖

𝜕𝑒1
+
𝜕𝜓1𝑟

𝜕𝑒2
−
𝜕𝜓2𝑖

𝜕𝑒3
−𝑚𝜓4𝑟 = 0    

−
𝜕𝜓4𝑟

𝜕𝑒0
−
𝜕𝜓1𝑟

𝜕𝑒1
+
𝜕𝜓1𝑖

𝜕𝑒2
+
𝜕𝜓2𝑟

𝜕𝑒3
−𝑚𝜓4𝑖 = 0      

 
A5.3. Matching Dirac equation in Geometric Algebra with Matrix 
Algebra 
 

 

If we put the equations obtained in 5.1 and 5.2 together (changing sometimes the order for 

better understanding), from 5.1: 

 

𝜕𝜓0

𝜕𝑒0
−
𝜕𝜓1

𝜕𝑒1
−
𝜕𝜓2

𝜕𝑒2
−
𝜕𝜓3

𝜕𝑒3
−𝑚𝜓12 = 0   

𝜕𝜓1

𝜕𝑒0
−
𝜕𝜓0

𝜕𝑒1
+
𝜕𝜓12

𝜕𝑒2
−
𝜕𝜓31

𝜕𝑒3
+𝑚𝜓2 = 0   

𝜕𝜓2

𝜕𝑒0
−
𝜕𝜓12

𝜕𝑒1
−
𝜕𝜓0

𝜕𝑒2
+
𝜕𝜓23

𝜕𝑒3
−𝑚𝜓1 = 0   

𝜕𝜓3

𝜕𝑒0
+
𝜕𝜓31

𝜕𝑒1
−
𝜕𝜓23

𝜕𝑒2
−
𝜕𝜓0

𝜕𝑒3
+𝑚𝜓123 = 0    

−
𝜕𝜓12

𝜕𝑒0
+
𝜕𝜓2

𝜕𝑒1
−
𝜕𝜓1

𝜕𝑒2
+
𝜕𝜓123

𝜕𝑒3
−𝑚𝜓0 = 0   

−
𝜕𝜓23

𝜕𝑒0
+
𝜕𝜓123

𝜕𝑒1
+
𝜕𝜓3

𝜕𝑒2
−
𝜕𝜓𝑦

𝜕𝑒3
+𝑚𝜓31 = 0   

−
𝜕𝜓31

𝜕𝑒0
−
𝜕𝜓𝑧
𝜕𝑒1

+
𝜕𝜓123

𝜕𝑒2
+
𝜕𝜓1

𝜕𝑒3
−𝑚𝜓23 = 0   

−
𝜕𝜓123

𝜕𝑒0
+
𝜕𝜓23

𝜕𝑒1
+
𝜕𝜓31

𝜕𝑒2
+
𝜕𝜓12

𝜕𝑒3
+𝑚𝜓3 = 0   

 

From 5.2: 

𝜕𝜓4𝑖

𝜕𝑒0
+
𝜕𝜓1𝑖

𝜕𝑒1
+
𝜕𝜓1𝑟

𝜕𝑒2
−
𝜕𝜓2𝑖

𝜕𝑒3
−𝑚𝜓4𝑟 = 0    

−
𝜕𝜓1𝑖

𝜕𝑒0
−
𝜕𝜓4𝑖

𝜕𝑒1
+
𝜕𝜓4𝑟

𝜕𝑒2
−
𝜕𝜓3𝑖

𝜕𝑒3
−𝑚𝜓1𝑟 = 0      

𝜕𝜓1𝑟

𝜕𝑒0
+
𝜕𝜓4𝑟

𝜕𝑒1
+
𝜕𝜓4𝑖

𝜕𝑒2
+
𝜕𝜓3𝑟

𝜕𝑒3
−𝑚𝜓1𝑖 = 0      

−
𝜕𝜓2𝑖

𝜕𝑒0
−
𝜕𝜓3𝑖

𝜕𝑒1
−
𝜕𝜓3𝑟

𝜕𝑒2
+
𝜕𝜓4𝑖

𝜕𝑒3
−𝑚𝜓2𝑟 = 0      

−
𝜕𝜓4𝑟

𝜕𝑒0
−
𝜕𝜓1𝑟

𝜕𝑒1
+
𝜕𝜓1𝑖

𝜕𝑒2
+
𝜕𝜓2𝑟

𝜕𝑒3
−𝑚𝜓4𝑖 = 0      

−
𝜕𝜓3𝑟

𝜕𝑒0
−
𝜕𝜓2𝑟

𝜕𝑒1
−
𝜕𝜓2𝑖

𝜕𝑒2
−
𝜕𝜓1𝑟

𝜕𝑒3
−𝑚𝜓3𝑖 = 0      

𝜕𝜓3𝑖

𝜕𝑒0
+
𝜕𝜓2𝑖

𝜕𝑒1
−
𝜕𝜓2𝑟

𝜕𝑒2
+
𝜕𝜓1𝑖

𝜕𝑒3
−𝑚𝜓3𝑟 = 0       

𝜕𝜓2𝑟

𝜕𝑒0
+
𝜕𝜓3𝑟

𝜕𝑒1
−
𝜕𝜓3𝑖

𝜕𝑒2
−
𝜕𝜓4𝑟

𝜕𝑒3
−𝑚𝜓2𝑖 = 0      

 

You can see that there is a one-to-one map that corresponds to: 



J.Sánchez 
 

 

 41  

 

 

𝜓1𝑟 = −𝜓2      
𝜓1𝑖 = −𝜓1       
𝜓2𝑟 = 𝜓123       
𝜓2𝑖 = 𝜓3         
𝜓3𝑟 = −𝜓23      
𝜓3𝑖 = 𝜓31       
𝜓4𝑟 = 𝜓12      
𝜓4𝑖 = 𝜓0 

 

This means considering the solution in geometric algebra as: 

 

𝜓 = 𝜓0 + 𝑒1𝜓
1 + 𝑒2𝜓

2 + 𝑒3𝜓
3 + 𝑒12𝜓

12 + 𝑒23𝜓
23 + 𝑒31𝜓

31 + 𝑒123𝜓
123 

 

And the solution in matrix algebra as: 

𝜓 =

(

 
 

𝜓1𝑟 + 𝑖𝜓1𝑖

𝜓2𝑟 + 𝑖𝜓2𝑖

𝜓3𝑟 + 𝑖𝜓3𝑖

𝜓4𝑟 + 𝑖𝜓4𝑖)

 
 
  

𝜓 =

(

 
 
−𝜓2 − 𝑖𝜓1

𝜓123 + 𝑖𝜓3

−𝜓23 + 𝑖𝜓31

𝜓12 + 𝑖𝜓0 )

 
 
  

To be noted that when we try to make other mappings like getting the fermionic current as 

the result of a wavefunction by its reverse Annexes A1-A4 [63] we obtain the mapping of 

𝜓0 and 𝜓123 with different sign as follows. The mapping to use will depend on the con-

text: 

 

𝜓2𝑟 = −𝜓123   
𝜓4𝑖 = −𝜓0 

 

 

A6. Relation between standard nomenclature and Geometric Alge-
bra 
 

During my studies of Geometric Algebra Cl3,0. I have got to the following relations. When 

a ± means that could be a + or – sign depending on context. This mainly happens with 

𝛾0 and 𝛾5 depending on if they pre or post multiply in the original equations before mak-

ing the mapping. The 𝜎𝑖 are the sigma matrices and the 𝛾𝑖 the Dirac matrices. 

The imaginary unit is in general converted to the trivector. But when it is implying a direc-

tion (like can be in linear momentum in quantum mechanics) could be substituted by a 

bivector (but as commented this is a very special case, trivector should work in general). 

 

𝜎1 = 𝛾
1𝛾0 → 𝑒1 

𝜎2 = 𝛾
2𝛾0 → 𝑒2 

𝜎3 = 𝛾
3𝛾0 → 𝑒3 

𝑖 → ±𝜎1𝜎2𝜎3 = ±𝛾
0𝛾1𝛾2𝛾3 → ±𝑒123 ≡ ±𝑒1𝑒2𝑒3 

𝑖 → ±𝑒𝑗𝑘 ≡ ±𝑒𝑗𝑒𝑘    𝑗 ≠ 𝑘   (𝑓𝑜𝑟 𝑣𝑒𝑟𝑦 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑠𝑒𝑠)  

𝛾0 → ±1 
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𝛾1 → ±𝑒1  𝑜𝑟  ± 𝑒2𝑒3   (𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

𝛾2 → ±𝑒2  𝑜𝑟  ± 𝑒3𝑒1   (𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

𝛾3 → ±𝑒3  𝑜𝑟  ± 𝑒1𝑒2   (𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

𝛾5 → ±(̅ †)  (𝑜𝑟 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑠𝑒𝑒 𝑐ℎ𝑎𝑝𝑡𝑒𝑟 7) 

 

A7. Lorentz Force 

 

In [6] I used a different equation that was: 

 

𝑑𝑝

𝑑𝜏
= 𝑞𝐹𝑈     

 

Where U was defined as: 

 

𝑈 = 𝑈𝑥𝑦𝑧𝑥̂𝑦̂𝑧̂ + 𝑈𝑥𝑦̂𝑧̂ + 𝑈𝑦𝑧̂𝑥̂+𝑈𝑧𝑥̂𝑦̂       (18) 

 

In fact, an exact equation that does not oblige us to change the naming of the U elements 

is the following: 

𝑑𝑝̅

𝑑𝜏
= 𝐼𝑞𝐹𝑈 

With: 

𝑑𝑝

𝑑𝜏
=
𝑑𝑝0
𝑑𝜏

+
𝑑𝑝𝑦𝑧

𝑑𝜏
𝑥̂ +

𝑑𝑝𝑧𝑥
𝑑𝜏

𝑦̂ +
𝑑𝑝𝑥𝑦

𝑑𝜏
𝑧̂ +

𝑑𝑝𝑥
𝑑𝜏
𝑦̂𝑧̂ +

𝑑𝑝𝑦

𝑑𝜏
𝑧̂𝑥̂ +

𝑑𝑝𝑧
𝑑𝜏
𝑥̂𝑦̂ +

𝑑𝑝𝑥𝑦𝑧

𝑑𝜏
𝑥̂𝑦̂𝑧̂    

 
𝐹 = 𝐸𝑥𝑥̂ + 𝐸𝑦𝑦̂ + 𝐸𝑧𝑧̂ + 𝐵𝑥𝑦̂𝑧̂ + 𝐵𝑦𝑧̂𝑥̂ + 𝐵𝑧𝑥̂𝑦̂        

 
𝑈 = 𝑈0 + 𝑈𝑥𝑥̂ + 𝑈𝑦𝑦̂+𝑈𝑧𝑧̂ 

 
𝐼 = 𝑥̂𝑦̂𝑧̂ 

 

As we can do (the trivector is commutative): 

𝑑𝑝̅

𝑑𝜏
= 𝑞𝐹𝐼𝑈 

 

Getting the magnitude: 

𝐼𝑈 =  𝑈0𝑥̂𝑦̂𝑧̂ + 𝑈𝑥𝑦̂𝑧̂ + 𝑈𝑦𝑧̂𝑥̂+𝑈𝑧𝑥̂𝑦̂ 

 

So, obtaining the same result in the end. 

The other difference is the Clifford reversion in the momentum 𝑝̅ . This is to be able to 

accommodate the final equations, without having to change any sign, see [6]: 

 

𝑑𝑝0
𝑑𝜏

=
𝑑𝑝4
𝑑𝜏
             

𝑑𝑝𝑥̅̅ ̅

𝑑𝜏
= −

𝑑𝑝𝑥
𝑑𝜏

= −
𝑑𝑝1
𝑑𝜏
            

𝑑𝑝𝑦̅̅ ̅

𝑑𝜏
= −

𝑑𝑝𝑦
𝑑𝜏

= −
𝑑𝑝2
𝑑𝜏
              

𝑑𝑝𝑧̅
𝑑𝜏

= −
𝑑𝑝𝑧
𝑑𝜏

= −
𝑑𝑝3
𝑑𝜏
    

So: 
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𝑑𝑝0
𝑑𝜏

=
𝑑𝑝4
𝑑𝜏
             

𝑑𝑝𝑥
𝑑𝜏

=
𝑑𝑝1
𝑑𝜏
            

𝑑𝑝𝑦

𝑑𝜏
=
𝑑𝑝2
𝑑𝜏
              

𝑑𝑝𝑧
𝑑𝜏

=
𝑑𝑝3
𝑑𝜏
    

 


