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Abstract—This article proposes the modified KNN (K Near-
est Neighbor) algorithm which receives a string vector as its
input data and is applied to the index optimization. The results
from applying the string vector based algorithms to the text
categorizations were successful in previous works, and the
index optimization is able to be viewed into a classification
task where each word is classified into expansion, inclusion,
and removal. In the proposed system, each word in the given
text is classified into one of the three categories by the proposed
KNN algorithm, associates words are added to ones which
are classified into expansion, and ones which are classified
into inclusion are kept by themselves without adding any
word. The proposed KNN version is empirically validated
as the better approach in deciding the importance level of
words in news articles and opinions. We need to define and
characterize mathematically more operations on string vectors
for modifying more advanced machine learning algorithms.

Keywords-Index Optimization; K Nearest Neighbor; String
Vector

I. INTRODUCTION

Index optimization refers to the process of optimizing
a list of words which indicates texts for maximizing the
information retrieval efficiency and performance. We need
to expand the important words by adding their semantically
similar words for improving the performance and remove
unimportant words for improving the efficiency. In this re-
search, we view the index optimization into the classification
task where each word is classified into important words as
targets of expansion, neutral words as ones of inclusion,
and unimportant words as ones of removal. We prepare the
sample words which are labeled with one of the three classes
and construct the classification capacity by learning them.
In this research, we assume that the supervised learning
algorithms are used as the approach to the task, even if other
types of approaches are available.

We mention the problems with which this research needs
to tackle with. In encoding texts or words into numerical
vectors for using the traditional classifiers, many features
are required for keeping the robust classifications [29].
Each numerical vector which represents a word or a text
has usually zero values dominantly as its elements; the
discriminations among numerical vectors get very weak

[2][25]. Although we proposed previously that texts or words
should be encoded into tables as alternative structured forms
to numerical vectors, it is very expensive to carry out
the computation on them[2][25]. Therefore, this research
challenges against the above problems by encoding words
into string vectors.

Let us mention what is proposed in this research, as its
ideas. In this research, we encode the words into string
vectors each of which consists of text identifiers as its
elements. We define the similarity measure between string
vectors; it corresponds to the cosine similarity between
numerical vectors. We modify the KNN into the version
where a string vector is given as the input data, and apply
it to the classification task into which we interpret the index
optimization. The scope of this research is restricted to the
classification of words into one of the three categories; the
process of expanding words semantically is set out of this
research.

Let us mention the benefits which are expected from
this research. From this research, it is expected to represent
words with more compactness and efficiency than to do them
into numerical vectors. The improve discriminations among
string vectors are expected from this research by avoiding
almost completely the sparse distributions. The improved
performance is also expected by solving the problems from
encoding words into numerical vectors. Therefore, the goal
of this research is to implement the index optimization
module for information retrieval system with the benefits.

This article is organized into the five sections. In Section
II, we survey the relevant previous works. In Section III,
we describe in detail what we propose in this research. In
Section IV, we validate empirically the proposed approach
by comparing it with the traditional one. In Section V, we
mention the general discussion on the empirical validations
and remaining tasks for doing the further research.

II. PREVIOUS WORKS

This section is concerned with the previous works which
are relevant to this research. In Section II-A, we explore
the previous cases of applying the KNN algorithm to text
mining tasks. In Section II-B, we survey the schemes of



encoding texts or words into structured data. In Section II-C,
we describe the previous machine learning algorithms which
receive alternative structured data such as tables and string
vectors to numerical vectors. Therefore, in this section, we
provide the history about this research, by surveying the
relevant previous works.

A. Applications to Word Classification Tasks

This section is concerned with the previous works which
deal with applying the modified KNN algorithm to the index
optimization and its similar tasks. We consider the topic
based word categorization which classifies words based on
their meaning as the typical word classification, and derive
the keyword extraction and the index optimization from it.
The KNN algorithm is modified into the modern version
which solves the problems in encoding words into numerical
vectors. The modern KNN algorithm shown its better results
in the mentioned tasks, through the comparison with the
traditional algorithm. This section is intended to explore
the previous works on the modified KNN algorithm and its
applications.

Let us mention the previous cases of applying the mod-
ernized KNN to the topic based word categorization, be-
fore mentioning its application to the index optimization.
The KNN version which considers the similarities among
features in order to solve the poor discriminations among
sparse distribution in each numerical vector, was used for
the word categorization [9]. The KNN was modernized
by modifying it into the version which classifies a table
directly, as the approach to the word categorization [10]. The
KNN was modified into the version which classifies a graph
directly for using it for the task [11]. The topic based word
categorization to which the modernized KNN was applied
becomes the source from which the index optimization is
derived.

The keyword extraction may be derived from the word
categorization as its special type, and let us survey the
previous cases of applying the modernized KNN algorithm
to the task. The modified version of KNN algorithm which
uses the similarity metric considering the feature similarities
was adopted for implementing a keyword extraction system
[12]. The modernized version of KNN algorithm which
processes tables directly was used for extracting keywords
from a text [13]. In implementing a keyword extraction
system, the KNN algorithm which was modernized into the
version which processes graphs directly, was proposed as
the approach to the keyword extraction [14]. The keyword
extraction was interpreted into a binary classification in the
above literatures.

Let us mention the previous cases of applying the mod-
ernized KNN algorithm to the task which is covered in this
study. The KNN algorithm which considers the similarities
among features in computing the similarity between a train-
ing item and a novice item, was used for implementing the

index optimization system [15]. One which was modernized
into the version which process tables directly was adopted as
the approach to the index optimization [16]. The KNN algo-
rithm which is called the graph based version and receives
a graph directly was applied to the index optimization [7].
In the above literatures, together with this study, the index
optimization is viewed as the classification of words into
expansion, inclusion, or removal.

Let us mention some points which distinguish this re-
search from ones which were surveyed above. We explored
the previous cases of applying the three KNN versions which
were modernized with the different directions to the index
optimization and its related tasks. We mentioned the word
categorization from which the index optimization is derived
and the keyword extraction which is derived, together with
the index optimization. The modernized version of the KNN
algorithm which is applied to the index optimization in this
study, deals with the string vectors, instead of the numerical
vectors. In this study, it is applied to the index optimization.

B. Word and Text Encoding

This section is concerned with the previous works on
encoding texts or words into replacements of numerical
vectors. In previous works, the problems in encoding texts or
words into numerical vectors, such as the huge dimensional-
ity and the sparse distribution, were discovered. The previous
works tried to solve the problems by encoding them into
other types of structured form. In this section, we mention
the tables, the string vectors, and the graphs as the numerical
vector replacements. This section is intended to survey the
previous cases of encoding them into the numerical vector
replacements.

Let us survey the previous works on encoding texts or
words into tables. Words were encoded into tables in using
the AHC algorithm for the word clustering [17]. Texts were
encoded into tables in using the KNN algorithm for the text
categorization [18]. Texts were encoded so in using the AHC
algorithm for the text clustering [21]. In the above literatures,
texts and words were encoded into tables in using the AHC
algorithm and the KNN algorithm.

Let us survey the previous works on encoding words or
texts into string vectors. Words were encoded into string
vectors, in using the AHC algorithm for clustering words
[19]. Texts were encoded into string vectors in using the
KNN algorithm for classifying texts [20]. In using the AHC
algorithm for clustering texts, texts were encoded so [22].
In the literatures, we present the previous cases of encoding
raw data into string vectors.

Let us explore the previous works on encoding words
or texts into graphs. It was suggested that words should
be encoded into graphs in applying the AHC algorithm
to the semantic word clustering [8]. It was suggested that
texts should be encoded into graphs in applying the KNN
algorithm to the topic based text classification [23]. It was



suggested that texts should be encoded so in applying the
AHC algorithm to the text clustering [24]. In the above
literatures, we present the cases of mapping raw data into
graphs.

We mentioned the three schemes of encoding words or
texts in the previous works. We adopt the second scheme
where words were encoded into string vectors, in this
research. We define the similarity metric between string
vectors, and modify the KNN algorithm into version which
processes graphs directly. We use the modified version of
KNN for implementing the index optimization system. We
empirically validate the modified version in the index opti-
mization of texts, comparing it with the traditional version.

C. Non-Numerical Vector based Machine Learning Algo-
rithms

This section is concerned with the previous works on the
non-numerical vector based machine learning algorithms. In
the previous section, we presented the cases of encoding
words or texts into non-numerical vectors, in using the
KNN algorithm and the AHC algorithm. In this section, we
mention the string kernel based Support Vector Machine,
the table based matching algorithm, and the Neural Text
Categorizer, as non-numerical vector based machine learning
algorithms which are used for the text categorization. The
reason of mentioning the approaches to the task is to map
the index optimization into a classification task, in this study.
This section is intended to explore the previous works which
are involved in the three machine learning algorithms which
were mentioned above.

Let us consider the string kernel as the way of avoiding
the problems in encoding texts into numerical vectors.
The string kernel was initially proposed for modifying the
SVM (Support Vector Machine) as the approach to the text
categorization by Lodhi et al. in 2002 [28]. It was utilized
for modifying the k means algorithm as the approach to the
text clustering by Karatzoglou and Feinerer in 2006 [27].
The string kernel based SVM was applied to the sentence
classification by Kate and Mooney in 2006 [26]. The string
kernel which was mentioned in the above literatures is the
similarity metric between two raw texts based on characters.

Let us explore the previous works on the table based
matching algorithm as a non-numerical vector based clas-
sifier. It was initially proposed as the approach to the text
categorization by Jo and Cho, in 2008 [25]. It was applied
to the soft text categorization where each text is allowed
to be categorized into more than one category [2]. It was
upgraded into the more stable version in 2015 [5]. In using
the table based matching algorithm which is covered in the
above literatures, texts should be encoded into tables, instead
of numerical vectors.

Let us mention the Neural Text Categorizer as a non-
numerical vector based approach to the text mining tasks. It

was initially proposed as the approach to the text categoriza-
tion by Jo in 2008 [3]. It was empirically validated as the
better approach than the Naive Bayes and the SVM in both
the soft categorization and the hard categorization in 2010
[4]. It was applied to the classification of Arabian texts by
Abainia et al. in 2015 [1]. It was mentioned as an innovative
neural network model in the research paper about dynamic
neural network models by Vega and Medez-Vasquez [30].

We surveyed the previous works on the non-numerical
vector based classification algorithms as the approaches to
the text categorization. We mentioned the raw texts in using
the string kernel based SVM, the tables in using the table
matching algorithm, and the string vectors in using the
Neural Text Categorizer. In this research, instead of texts,
words are encoded into string vectors, whose elements are
text identifiers which include itself. The KNN algorithm
is modified into the version which processes string vectors
directly as the approach to the index optimization. The task
is viewed as the classification of each word into expansion,
inclusion, and removal.

III. PROPOSED APPROACH

This section is concerned with encoding words into string
vectors, modifying the KNN (K Nearest Neighbor) into the
string vector based version and applying it to the keyword
extraction, and consists of the four sections. In Section III-A,
we deal with the process of encoding words into string
vectors. In Section III-B, we describe formally the similarity
matrix and the semantic operation on string vectors. In
Section III-C, we do the string vector based KNN version
as the approach to the keyword extraction. In Section III-D,
we explain the architecture of the index optimization system
where the proposed KNN is adopted.

A. Word Encoding

This section is concerned with the process of transforming
words into string vectors. In Section II-B and II-C, we
mentioned the previous cases of encoding raw data into
string vectors. The three steps, the feature definition, the
feature matching analysis, and the text identifier assignment,
in encoding words into string vectors. A string vector which
represents a word consists in order of text identifiers which
are related with it. This section is intended to describe the
three steps which are presented in Figure 1-3.

The features for encoding words into string vectors are
presented in Figure 1. In defining the features, for each text,
its first paragraph is assumed to be the key part and the
dimension of a string vector which represents a word is set as
d. The group of d features divided into the four subgroups by
combining the relationship between a text and a word, such
as the frequency and the weight, with the text scope, such
as the entire text and the first paragraph. Texts are ranked by
the relationship within each subgroup to d/4. The features
are defined arbitrary and manually in the current system, and



* Text where word have its first highest frequency in the entire
* Text where word have its second highest frequency in the entire

……………….
* Text where word have its 4/d highest frequency in the entire

* Text where word have its first highest TF-IDF weight  in the entire
* Text where word have its second highest TF-IDF weight in the entire

……………….
* Text where word have its 4/d highest TF-IDF weight in the entire

* Text where word have its first highest frequency in its first paragraph
* Text where word have its second highest frequency in its first paragraph

……………….
* Text where word have its 4/d highest frequency in its first paragraph

* Text where word have its first highest TF-IDF in its first paragraph
* Text where word have its second highest TF-IDF in its first paragraph

……………….
* Text where word have its 4/d highest TF-IDF in its first paragraph

Figure 1. Defined Features

the optimization and the automation of defining features of
string vectors are left in the next research.

The process of feature matching analysis is illustrated as
a pseudo code in Figure 2. A list of texts in the corpus,
one among features which presented in Figure 1, and the
word are given as arguments in the pseudo code. The word
status is generated from each text and compared with the
feature which is given as an argument. If both match with
each other, the current text is returned. The status is viewed
as the structure with the relationship such as the weight and
the frequency, the scope such as the entire text and the first
paragraph, and the rank.

The process of assigning text identifiers as feature values
in the string vector which represents a word is illustrated
in Figure 3. The features which are defined in Figure 1
are notated by f1, f2, . . . , fd and the process of analyzing
the feature matching is viewed as the function, text idi =
F (fi, word). The string vector is expressed by filling text
identifiers as feature values as shown in equation (2),

str = [F (f1, word), F (f2, word), . . . , F (fd, word)]

= [text id1, text id2, . . . , text idd]
(1)

searchTextID(List textIDList, Feature featureItem, Word wordItem){
for each textID in textIDList

if isMatch(textID, featureItem, wordItem)
return textID;

Figure 2. Feature Matching Analysis

The vector, str in equation (2), is the d dimensional string
vector which is filled with the text identifiers which given
as strings. The domain of the function, F is the product of
features and words and the range is the texts in the corpus.

In Figure 1-3, we presented the three steps which are
involved in encoding a word into a string. A string vector
is given as an unordered finite set of strings; its difference
from the numerical vector is that elements are given as
strings instead of numerical values. In the string vector
which represents a word, the features which are shown in
Figure 1, are relations between a word and texts and the
feature values are given as text identifiers which correspond
to the features. If a text is encoded so, the feature values are
given as word. We need to define the operations on string
vectors, for modifying the machine learning algorithms into
the versions which process them directly.

B. Similarity Metric

This section is concerned with the semantic similarity
between two string vectors. In the previous section, we
studied the process of mapping words into string vectors.
We need to define the semantic similarity between two string
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Feature 1 Feature 2 …. Feature d

Text ID 1 Text ID 2 Text ID d

SearchTextID(    ,   )

Figure 3. Text Identifier Assignment

vectors, as an operation on them, for modifying the KNN
algorithm which is used for optimizing index. We understand
the semantic operation conceptually, and start with defining
the semantic operation on strings. This section is intended
to describe the computation of semantic similarity between
two string vectors.

Let us introduce the semantic operation as the basis for
computing the similarity metric between the two string
vectors. The semantic operation was initially proposed by
Jo in 2015 [6] and it is defined as one on strings based
on their meanings. Each string is assumed to have its own
meaning and in [6], the semantic similarity between two
strings, the semantic similarity average of any number of
strings, and the semantic similarity variance were defined
as operations. They were characterized mathematically and
simulated on text collections with their various domains. The
first operation is adopted for defining the similarity metric
between string vectors which represent words.

In Figure 4, the semantic similarity matrix between two
texts is illustrated. The two texts are notated by di and dj
and the similarity between them is notated by sim(di, dj).
The two texts, di and dj , are expressed as the two sets of
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Figure 4. Similarity Matrix

words, Di and Dj , and |Di| and |Dj | are cardinalities of
the two sets. The similarity between two texts is computed
by equation (2),

sim(di, dj) =
2|Di ∩Dj |
|Di|+ |Dj |

(2)

and the similarity is always given as a normalized value
between zero and one. The rows and the columns of the
matrix which is presented in Figure 4, correspond to texts in
the corpus, and each element becomes the similarity between
corresponding texts.

A string vector is defined as an ordered finite set of strings
as shown in equation (3),

str = [str1, str2, ...., strd] (3)

The two string vectors are notated by equation (4) and (5),

str1 = [str11, str12, ...., str1d] (4)

str2 = [str21, str22, ...., str2d] (5)

The similarity between the two string vectors is defined as
average over semantic similarities of one to one elements,



as shown in equation (6),

sim(str1, str2) =
1

d

d∑
i=1

sim(str1i, str2i) (6)

The string vector which represents a word consists of text
identifiers and the value of sim(str1i, str2i) is looked up
from the similarity matrix which is presented in Figure 4.
The similarity between the two string vectors, str1 and str2
is always given as a normalized value between zero and one.

We mentioned the similarity between two string vectors as
a normalized value between zero and one. If the two string
vectors are exactly same to each other as shown in equation
(7),

str1 = str2 (7)

the semantic similarity between them is 1.0 as shown in
equation (8),

sim(str1, str2) = sim(str1, str1) =

1

d

d∑
i=1

sim(str1i, str1i) = 1.0
(8)

If the semantic similarities between elements of two string
vectors are zeros, the sematic similarity between them is 0.0
as shown in equation (9),

sim(str1, str2) =
1

d

d∑
i=1

sim(str1i, str1i) =
0

d
= 0.0 (9)

Because 0 ≤ sim(str1, str2) ≤ 1 the semantic similarity
between them is always given as a normalized value between
zero and one by equation (10),

0 ≤ sim(str1, str2) ≤ 1

0 ≤ 1

d

d∑
i=1

sim(str1i, str2i) ≤ 1
(10)

The similarity threshold is set between zero and one in
modifying machine learning algorithms using the operation.

C. Proposed Version of KNN

The proposed version of KNN algorithm as the approach
to the index optimization is illustrated in Figure 5. We
describe the process of encoding words into string vectors in
Section III-A and assume that the training examples and a
novice one are given as string vectors. The similarity metric
between string vectors is used for selecting nearest neighbors
from the training examples. The label of a novice example
is decided by voting labels of the selected nearest neighbors
and more variants may be derived by defining more voting
schemes. This section is intended to describe the proposed
version of KNN algorithm which deals with string vectors
and its variants.

Let us mention the process of selecting the nearest
neighbors from the training examples as the references for

Figure 5. The Proposed Version of KNN

classifying data items. The sample words and a novice word
are transformed into string vectors by the process which
was described in Section III-A . The similarities of a novice
one with the training ones are computed by equation (6).
The training examples are ranked by their similarities and
most K similar ones are selected as the nearest neighbors.
The rank based selection is adopted in selecting nearest
neighbors.

Let us mention the process of voting the labels of the
nearest neighbors for deciding one of a novice item. We
notate the set of nearest neighbors of the novice item, str
, whose elements are given as tables and their target labels,
by equation (11),

Nek(str) = {(str1, y1), (str2, y2), . . . , (strk, yk)},
yi ∈ {c1, c2, . . . , cm}

(11)

where c1, c2, . . . , cm are the predefined categories and k
is the number of nearest neighbors. The number of the
nearest neighbors which are labeled with the category,ci is
notated by Count(Nek(str), ci). The label of the novice
item, str, is decided by the majority of categories in the
nearest neighbors, as expressed by equation (12),

cmax =
m

argmax
i=1

Count(Nek(str), ci) (12)

The external parameter,k, is usually set as an odd number
for avoiding the possibility of largest number of nearest
neighbors to more than one category.

Let us mention the weighted voting of labels of
nearest neighbors as the alternative scheme to the
above. Assuming that the similarity between two ta-
bles as a normalized value between zero and one, and
we may use the similarities with the nearest neigh-
bors, sim(str, str1), sim(str, str2), . . . , sim(str, strk) as
weights, w1, w2, . . . , wk by equation (13),

wi = sim(str, stri) (13)

indicates the similarity of a novice table with the ith near-
est neighbor. The total weight of nearest neighbors which



labeled with the category, ci by equation (14),

Weight(Nek(str), ci) =

k∑
strj∈ci

wj (14)

The label of the novice item, str, is decided by the category
which corresponds to the maximum sum of weights as
shown in equation (15),

cmax =
m

argmax
i=1

Weight(Nek(str), ci) (15)

When the weights of nearest neighbors are set constantly,
equation (15) is same to equation (12), as expressed in
equation (16),

Weight(Nek(str), ci) = Count(Nek(str), ci) (16)

We described the proposed version of the KNN algorithm
in this section. In using the proposed KNN algorithm, raw
data is encoded into string vectors, instead of numerical
vectors. The similarities of a novice item with the training
examples are computed by the similarity metric which is
defined in Section III-B. The rank based selection is adopted
as the scheme of selecting nearest neighbors among training
examples. Because we are interested in the comparison of
the traditional version and the proposed version as the ulti-
mate goal, we use the unweighted voting in the experiments
which are covered in Section IV.

D. Index Optimization System

This section is concerned with the index optimization
system which adopts the string vector based KNN algorithm.
In Section III-C, we described the proposed version of
KNN algorithm as the approach to the index optimization.
It is viewed into the classification task where each word
is classified into removal, expansion, and inclusion. The
scope of this system is restricted to indexing a text into
words, encoding them into tables, and classifying each table
into one of the three categories. This section is intended to
describe the index optimization system with respect to its
functions and architecture.

The sample words for implementing the index optimiza-
tion is illustrated in Figure 6. The task is viewed in this study
into the classification task where each word is classified
into one of expansion, inclusion, and removal. The topic
based word classification belongs to the domain independent
classification where a word is classified identically with
regardless of domain, whereas the index optimization be-
longs to the domain dependent classification where a word
is classified differently depending on the domain. Domain
by domain, the sample words which are labeled with one
of the three categories are collected as shown in Figure 6.
Before executing the index optimization in the system, the
domain of the input text should be presented.

The entire architecture of the proposed index optimization
system is illustrated in Figure 7. A text is given as the

Figure 6. Sample Words

input and the words are extracted from it in the indexing
module. The sample words in the three groups, the expansion
group, the inclusion one, and the removal one, and ones
indexed from the text are mapped into string vectors in
the encoding module. The words are classified into one of
the three categories, in the similarity computation module
and the voting module. The words which are classified into
removal will be discarded in the system.

Figure 7. Proposed System Architecture

The execution process of the proposed system is illus-
trated as a block diagram in Figure 8. The sample words
which are labeled with one of the three categories are
collected from each domain, and encoded into string vectors.
The input text is indexed into a list of words and they
are also encoded into string vectors. The nearest neighbors
are selected by the similarity computation and the label of
decided by ones of its nearest neighbors. The words which
are classified into removal are removed from the system.

Let us make some remarks on the proposed system which
is illustrated in Figure 7, as the architecture. The index



Figure 8. Execution Process of Proposed System

optimization is defined as the classification task where each
word is classified into expansion, inclusion, or removal. Each
word is encoded into a string vector instead of a numerical
vector, and a string vector is classified directly. Ones which
are classified into removal are excluded from indexing the
input ext. We need to add module which retrieve more words
which are relevant to ones which are labeled with expansion
for implementing the index expansion.

IV. EXPERIMENTS

This section is concerned with the empirical experiments
for validating the proposed version of KNN, and consists
of the four sections. In Section IV-A, we present the results
from applying the proposed version of KNN to the index
optimization on the collection, NewsPage.com. In Section
IV-B and IV-C, we mention the results from comparing the
two versions of KNN with each other in the task of index
optimization from 20NewsGroups.

A. NewsPage.com

This section is concerned with the experiments for val-
idating the better performance of the proposed version on
the collection: NewsPage.com. We interpret the index opti-
mization into the trinary classification where each word is
classified into expansion, inclusion, and removal, and gather
words which are labeled with one of the three categories,
from the collection, topic by topic. Each word is allowed
to be classified into one of the three labels, exclusively. We
fix the input size as 50 dimensions of numerical vectors and
50 entries of tables, and use the accuracy as the evaluation
measure. Therefore, this section is intended to observe the
performance of the both versions of KNN in the four
different domains.

In Table I, we specify NewsPage.com which is used as
the source for extracting the classified words, in this set
of experiments. The text collection, NewsPage.com, was
used in previous works for evaluating approaches to text
categorization [5]. In each topic, 375 words are extracted:
125 words labeled with expansion, 125 words labeled with

inclusion, and 125 words labeled with removal. In each
category, the set of 375 words is portioned into the 300
words as training examples and the 75 words as the test
example, keeping the balanced distributions over the three
labels. We decide target labels of words by their frequen-
cies concentrated in the given category, combined with the
subjectivity in scanning texts.

Table I
THE NUMBER OF TEXTS AND WORDS IN NEWSPAGE.COM

Category #Texts #Training Words #Test Words
Business 500 300(100+100+100) 75(25+25+25)
Health 500 300(100+100+100) 75(25+25+25)
Internet 500 300(100+100+100) 75(25+25+25)
Sports 500 300(100+100+100) 75(25+25+25)

Let us mention the experimental process of validating
empirically the proposed approach to the task of index
optimization. We collect sample words which are labeled
with expansion, inclusion, or removal, in each of the four
domains: Business, Sports, Internet, and Health, depending
on subjectivities and concentrated frequencies of words, and
encode them into numerical and string vectors. In each
domain, for each of the 75 test examples, the KNN computes
its similarities with the 300 training examples, and select the
three most similar training examples as its nearest neighbors.
Independently, we perform the four experiments each of
which classifies each word into one of the three labels
by the two versions of KNN algorithm. For evaluating the
both versions of KNN in the classification which is mapped
from the index optimization, we compute the classification
accuracy by dividing the number of correctly classified test
examples by the number of test examples.

In Figure 9, we illustrate the experimental results from
classifying the words into one of the three categories as the
process of index optimization, using the both versions of
KNN algorithm. The y-axis indicate the accuracy which is
the rate of the correctly classified words in the test set. In
the x-axis, each group indicates the domain within which
the index optimization which is viewed as the classification
task is performed, independently. In each group, the gray bar
and the black bar indicate the achievements of the traditional
version and the proposed version, respectively. In the x-
axis, the most right group indicates the average over the
accuracies of the left four groups, and the input size which
is the dimensional of numerical vectors is fixed to 50.

Let us make the discussions on the results from doing
the index optimization, using the both versions of KNN
algorithm, as shown in Figure 9. The accuracy which is
the performance measure of this classification task is in
the range between 0.33 and 0.52. The proposed version of
KNN algorithm works better in the two domains: Business
and Sports. It loses slightly in the others. From this set of
experiments, we conclude that the proposed version works
slightly better than the traditional one, in averaging over the



Figure 9. Results from Index Optimization in Text Collection: News-
Page.com

four cases.

B. 20NewsGroups I: General Version

This collection is concerned with one more set of experi-
ments for validating the better performance of the proposed
version on text collection: 20NewsGroups I. We gather
words which are labeled with ‘expansion’, ‘inclusion’ or
‘removal’ from each broad category of 20NewsGroups,
under the view of the index optimization into a binary
classification. The task in this set of experiments is to clas-
sify each word exclusively into one of the three categories
in each topic which is called domain. We fix the input
size to 50 in encoding words, and use the accuracy as the
evaluation measure. Therefore, in this section, we observe
the performances of the both versions in the four different
domains.

In Table II, we specify the general version of 20News-
Groups which is used for evaluating the two versions of
KNN algorithm. In 20NewsGroup, the hierarchical classifi-
cation system is defined with the two levels; in the first level,
the six categories, alt, comp, rec, sci, talk, misc, and soc, are
defined, and among them, the four categories are selected,
as shown in Table II. In each category, we select 1000 texts
at random and extract 375 words from them. Among the
375 words, one third of them is labeled with ‘expansion’,
the second third is labeled with ‘inclusion’, and the other
third is labeled with ’removal’. As shown in Table II, the
375 words is partitioned into the 300 words in the training
set, and the 75 words in the test set, keeping the complete
balance over them. In the process of gathering the classified
words, each of them is labeled manually into one of the
three categories by scanning individual texts.

The experimental process is identical is that in the previ-
ous sets of experiments. We collect the words by labeling
manually them with ‘expansion’, ‘inclusion’, and ‘removal’,
by scanning individual texts in each of the four domains,
comp, rec, sci, and talk, and encode them into numerical and
string vectors with the input size fixed to 50. For each test
example, we compute its similarities with the 300 training

Table II
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS I

Category #Texts #Training Words #Test Words
Comp 1000 300(100+100+100) 75(25+25+25)
Rec 1000 300(100+100+100) 75(25+25+25)
Sci 1000 300(100+100+100) 75(25+25+25)
Talk 1000 300(100+100+100) 75(25+25+25)

examples, and select the three similar ones as its nearest
neighbors. The versions of KNN algorithm classify each of
the 75 test examples into one of the three categories by
voting the labels of its nearest neighbors. Therefore, we
perform the four independent set of experiments as many as
domains, in each of which the two versions are compared
with each other in the binary classification task.

In Figure 10, we illustrate the experimental results from
deciding the importance degree of each word for maximize
the information retrieval performance, on the broad version
of 20NewsGroups. Figure 10 has the identical frame of
presenting the results to those of Figure 9. In each group,
the gray bar and the black bar indicates the achievements
of the traditional version and the proposed version of KNN
algorithm, respectively. Each group in the x axis indicates
the domain within which each word is judged as one of the
three importance degree. This set of experiments consists of
the four binary classifications in each of which each word
is classified into one of the three categories as the index
optimization.

Figure 10. Results from Index Optimization in Text Collection: 20News-
Group I

Let us discuss the results from doing the index opti-
mization using the both versions of KNN algorithm, on the
broad version of 20NewsGroups. The accuracies of the both
versions of KNN algorithm range between 0.34 and 0.47.
The proposed version shows the better performance in one of
the four domains. Tt shows its competitive performances in
the two domains, rec and talk, and its less performance in sci.
From this set of experiments, the proposed version matches
the traditional one, in averaging its four achievements.



C. 20NewsGroups II: Specific Version
This section is concerned with one more set of ex-

periments where the better performance of the proposed
version is validated on another version of 20NewsGroups.
We gather the words which are labeled with ‘expansion’,
‘inclusion’, or ‘removal’. We map the index optimization
into a binary classification, and carry out the independent
four binary classification tasks as many as topics, in this set
of experiments. We fix the input size in representing words to
50, and use the accuracy as the evaluation metric. Therefore,
in this section, we observe the performances of the both
versions of the KNN with the four different domains.

In Table III, we specify the second version of 20News-
Groups which is used in this set of experiments. Within the
general category, sci, the four categories, electro, medicine,
script, and space, are predefined. In each specific category
as a domain, we build the collection of labeled words by
extracting 375 important words from approximately 1000
texts. We label manually the words with ‘expansion’, ‘in-
clusion’ or ‘removal’, maintaining the complete balance. In
each domain, the set of 375 words is partitioned with the
training set of 300 words and the test set of 75 words, as
shown in Table III.

Table III
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS II

Category #Texts #Training Words #Test Words
Electro 1000 300(100+100+100) 75(25+25+25)

Medicine 1000 300(100+100+100) 75(25+25+25)
Script 1000 300(100+100+100) 75(25+25+25)
Space 1000 300(100+100+100) 75(25+25+25)

The process of doing this set of experiments is same to
that in the previous sets of experiments. We collect the sam-
ple words which are labeled with ‘expansion’, ‘inclusion’, or
‘removal’, in each of the four domains: ‘electro’, ‘medicine’,
‘script’, and ’space, and encode them, fixing the in input size
to 50. We use the two versions of KNN algorithm for their
comparisons. Each example is classified into one of the three
categories, by the both versions. We use the classification
accuracy as the evaluation metric.

We present the experimental results from classifying the
words using the both versions of KNN algorithm on the
specific version of 20NewsGroups. The frame of illustrating
the classification results is identical to the previous ones.
In each group, the gray bar and the black bar stand for
the achievements of the traditional version and the proposed
version, respectively. The y-axis in Figure 11, indicates the
classification accuracy which is used as the performance
metric. In this set of experiments, we execute the four inde-
pendent classification tasks which correspond to their own
domains, where each word is classified into ‘expansion’,
‘inclusion’, or ‘removal’.

Let us discuss on the results from doing the index
optimization on the specific version of 20NewsGroups, as

Figure 11. Results from Index Optimization in Text Collection: 20News-
Group II

shown in Figure 11. The accuracies of both versions of
KNN algorithm range between 0.31 and 0.41. The proposed
version shows its better results in two of the four domains.
However, it is comparable in the others. In spite of that, from
this set of experiments, it is concluded that the proposed
version wins over the traditional one, according to the
average over the four accuracies.

V. CONCLUSION

Let us discuss the entire results from performing the index
optimization using the two versions of KNN algorithm. The
both versions are compared with each other in the task
of word classification which is mapped from the index
optimization, in these sets of experiments. The proposed
version shows its better results in all of the three collections
and its matching ones in the others. The accuracies of the
traditional version range between 0.21 and 0.39 and those
of the proposed version range between 0.21 and 0.51. From
the three sets of experiments, we conclude the proposed
version improved the index optimization performance as the
contribution of this research.

Let us mention the remaining tasks for doing the further
research. The proposed approach should be validated and
specialized in the specific domains: medicine, engineering
and economics. Other features such as grammatical and
posting features may be considered for encoding words into
string vectors as well as text identifiers. Other machine
learning algorithms as well as the KNN may be modified
into their string vector based versions. By adopting the
proposed version of the KNN, we may implement the index
optimization system as a real program.
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