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Abstract

A novel geometry is presented which yields several observed quantities that are
not accounted for by classical relativistic models. Relative motion is re-examined
under which a numerically equivalent function is applied. This function dictates
that velocities should remain equivalent across reference frames, which in turn
implies that it is not time alone that dilates, but rather the time elapsed between
two points in space for a given velocity as space itself dilates.
A peculiar velocity of v̄ ≈ 526.6 km s−1 is presented and briefly compared
with studies carried out through direct observation via supernovae luminosity
and CMB research. A velocity proportional spatial dilation of ds

dx
= Φ ≈ 1.618

is also presented with an error of 0.002%.
This model predicts a mechanism of gravity which can, with further research, offer
an explanation for the bullet cluster’s varied mass effects, the apparent lack of
gravitational aberration, and potentially excess galactic rotation curves without
the need for CDM.
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1 Introduction

Consider an observer at relative rest O. If this observer agrees with another observer,
O′ that O′ should travel at precisely velocity v between two arbitrary points in space,
A and B, it is inconceivable that O′ should reach point B at a time greater than
t = d

v . While current relativistic models rightly ascertain that time dependent quan-
tities might appear dilated as an observer approaches the speed of causality, c, it is
unreasonable to conclude that a quantity can actually be of two different magnitudes.

Following the premise that if an observer who will remain at relative rest conspires
with a second observer that the second observer should travel at precisely velocity v,
and that v in the rest reference frame should be of an equivalent magnitude to that
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same velocity in the moving reference frame, v′, it is trivial to deduce that it must
be the distance that dilates between two previously shared points in space; not time
alone.

Despite the mathematical convenience of describing many physical processes as a
function of time, γ as described in equation 1 indicates that time is in fact a function
of velocity, and consequentially, dilating velocity as proportional to dx

dt′ may produce
unforeseen asymmetries. While differential forms of the relationship between velocity
and time may exist, the most fundamental of symmetries, d = vt should remain intact.

∆t′ = ∆tγ = ∆t
1√

1− v2

c2

(1)

Given further that velocity is a vector of a magnitude directly influenced by the
observer, and that t dilates with respect to the magnitude of v, it is apparent that it
is distance that maintains the most dependent nature in the primary identity, d = vt.

Of course the approximation of describing some physical process f with respect to
time as df

dt is accurate for v ≪ c, but how should a ’final’ derivative be defined if not

as df
dt?

1 Of course any changing parameter can be measured as a rate of change with
respect to another changing parameter, but current differential forms of relativistic
geometries produce asymmetries that are yet to be remedied, and a true understanding
of time and it’s rate of change remains elusive. Let us address these asymmetries here.

2 Covariance, Contravariance and Shared
Coordinate Systems

vdt′

cdt′ cdt

A B

A critical piece of the model being proposed is the notion that absolute motion is
indeed physically consequential. This should not discount the significance of relative
motion as defined by SR2, but rather expand upon it to include external, tertiary
reference frames.

Consider equation 1 with respect to figure 2. If observer O′ is moving between
points A and B at velocity v′, how is it possible that O′ should reach point B at a
time that is larger than d

v where d is the Euclidean distance between A and B and v
is the velocity of O′ agreed upon by both observers?

∆t′ = ∆tγ >
d

v
(2)

While current relativistic models dilate time in accordance with both SR and GR3,
they in turn must dilate time dependent variables. This breaks the most fundamental
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symmetries, including those that exist not as a matter of observation and experiment,
but of pure definition. Symmetry breaking models are objectively permissible when
nature itself appears to break symmetries we’ve come to take for granted, but breaking
identities that flow from pure definition is a clear indicator that the model is based
on a misunderstanding of the underlying mechanisms.

d = vt ⇒ d ̸= vt′ ⇐⇒ t′ = tγ (3)

Let us further examine the scenario described earlier, in which an observer in
relative motion travels at a predetermined velocity. Despite the fact that v might
appear different to the observer in relative motion as causality itself red shifts, this
dilation of causality should be completely inconsequential for the observer at relative
rest. If c does indeed remain constant in each reference frame as Maxwell’s equations
surmise, and v ≡ v′, then the Euclidean distance between points A and B must be
larger in the primed frame of reference.

This yields a geometric interpretation of time as a density axis, such that

S′ = S


1√

1− v2

c2

0 0

0 1√
1− v2

c2

0

0 0 1√
1− v2

c2

 dt (4)

While contradictory to current relativistic models, this dilation of space is in
accordance with the concept of cosmic inflation, and requires fewer modifications to
pre-relativity theories than SR itself. By providing the ability to define a state of
absolute rest and absolute motion this model can provide a significant leap forward
in observational astronomy while remedying multiple relativistic paradoxes. As this
model of spatial dilation is examined further, a gravitational and inflationary geom-
etry arises that no longer yields singularities or a ’big bang’. This does not discredit
the theory that those states at one time existed, but rather calls into question the
fundamental nature of chronological ordering on a cosmic scale.

3 Relativity and Tertiary Reference Frames

Let us consider this proposed dilation of space as it relates to both cosmic inflation
and the equivalence principle. As SR and GR rely heavily on both the equivalence
principle and Mach’s principle, we should then examine the inflationary properties of
this model necessary to produce local gravitational effects. Recall that:

g⃗ =
∑
i ̸=j

G
mi

R2
ji

R̂ji (5)

If we instead inverse this equation so that it is not mj that is being pulled towards
mi, but rather the space around mi that is dilating in the direction of mj we find a
nearly identical equation as:

g⃗ =
∑
i ̸=j

−G
mi

R2
ij

R̂ij (6)
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Differentiating this with respect to R gives:

δ(R) =
d

dR

[
−G

mi

R2
ij

R̂ij

]
= 2G

mi

R3
ij

dR (7)

3.1 Applying δ(R) as a Spatial Dilation Scalar

As γ is applied as a scalar of time dependent relativistic quantities, let us then consider
δ(R) as it would be applied under a similar mathematical context. As integrating δ(R)

with respect to R gives g⃗ +Rinitial, we find the following:∫ R⊕

0

[
2G

M⊕

R3
⊕
R̂

]
dR = R⊕ − g (8)

Note that the negative g in this result is reference frame dependent. If an observer
is initially at some radial vector r⃗ = ⟨x, 0, 0⟩ with respect to the source of gravitation,
then ∥r′∥ = ∥r∥ − g according to the underlying R3 space in a larger R4 spatial
context after this spatial dilation is applied.4 This is to say that for an observer at
l = ⟨x, 0, 0, s⟩, l remains unchanged. However as the space around that observer
dilates according to the model being proposed, l 7→ ⟨x− g, 0, 0, s− f(t)⟩ where f
is some function of time required to scale physically accurate time scales to our own
units of time. This negative g would be accurate for any ∥r∥ > 0. In order to consider
observations such that the center of mass of the gravitational source is at (0, 0, 0)
and the observer is at some ∥r∥ > 0, let us allow that:

ds = R⊕ + g ⇐⇒ r = 0 (9)

Let us then factor R⊕ from equation 8 in order to yield a mathematical context
similar to that of γ. We then find:

R⊕γ̄ = R⊕

(
1 +

g

R⊕

)
(10)

While numerically equivalent, this result in the form of γ̄ as opposed to
∫
δ allows

us to apply this quantity in a manner that is symmetrical with that of the classical γ.
Note that γ̄ is equivalent to the average of δ over a definite integral from 0 to R⊕,

as:

1

R⊕

∫ R⊕

0

[
2G

M⊕

R3
⊕
R̂

]
dR = γ̄ (11)

4 δ(R) as a Function of Velocity

Let us re-examine the classical γ factor as:

γ =
1√

1− v2

c2
(12)

Rearranging this to find v gives:
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v = c

√
1− 1

γ2
(13)

If we consider equation 13 in the context of equation 10, we find:

v̄ = c

√√√√1− 1(
1 + g

R⊕

)2 = 526, 596.4
m

s
(14)

While observational astronomy struggles to accurately quantify our local peculiar
velocity on a super-galactic5 scale due to inherent hurdles fundamental to the measure-
ment of light traveling through interstellar dust, this value follows closely with several
observational studies[1][2] and can offer a foundation for observational astronomy.

5 Physically Accurate Time Scales

This model of divergent coordinate systems supposes that the fourth coordinate in 4-
vector equations, commonly attributed to time, is a position along this density axis.
Let us further examine how the nature of this density axis differs from our current
understanding of time, and describe the physics of a Universe without the need for a
time derivative in any classical sense.

Let ds represent the dilation of R3 space as a function of both position and the
velocity of surrounding massive bodies.

dx

dx′

ds

Consider figure 5, in which over the course of the integral
∫ dx

0
the linear distance

according to the observer at relative rest, dx, dilates to the density of dx′ in the
coordinate system of the observer in relative motion.

Since this model proposes that it is distance rather than time that dilates, and that
velocity is more accurately described as the rate of a motion through space proportional
to the motion of space, let us consider these two distances as time independent. We
can find ds by

ds = dx′ − dx

= dx
(
1 + δ(dx)

)
− dx

= dxδ(dx)

(15)

Let us then consider this rate of change, ds
dx with respect to the magnitude of v̄.

We find
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ds(v̄) = v̄δ(v̄) = 1.61800 = Φ− 3.29× 10−5

= Φ− 0.00203%
(16)

6 Gravitational Acceleration

Let a body of mass m be at some height h above the surface of the Earth. As that
body falls, it’s velocity appears to accelerate proportional to t2, however this scalar of
t2 occurs as a consequence of integrating t. This indicates that while ds varies across
space, it is not changing temporally. Consider the equation for this apparent free fall
velocity as it appears in standard theories of gravity:

v =

∫
[gt] dt =

1

2
gt2 (17)

If we then consider this equation in the context of relative spatial dilation, where
ẍ = 0 but ds =

∫ r

0
δ, we should first integrate δ with respect to r as:∫ r

0

δ(r) = g +R (18)

As we are only concerned with the positional derivative at R, and not R itself, we
can find the dilation of space at R to be

ds =

∫ r

0

δ(r) = g + 0 (19)

If we consider that time itself is this dilation of space as a function of the magnitude
of motion through space, as

v̄ = c

√√√√1− 1(
1
R

∫ R

0
δ(R)

)2 ⇐⇒ 1

R

∫ R

0

δ(R) = γ =
1√

1− v̄2

c2

(20)

then we should scale dx = v̄ to be equivalent to our scales of time. Let σ be the
proportionality constant such that τ = σx∫

τ dτ =

∫
t dt ⇒ σ =

1

x
(21)

We can then define the velocity of a body in free fall for time t with an initial
velocity of 0 at height h to be

vo =

∫∫ [
δ(R)x

]
∂R ∂x =

1

2
G
M

R2
τ2x2 =

1

2
G
M

R2
t2 (22)

By finding the spatial dilation at every point along the radial vector r⃗ from the
center of mass of the gravitational source, for every point along the trajectory x of that
same body, we can describe a physically and numerically equivalent gravitational effect
without the need for time as a mysterious, perpetual medium. All kinematic equations
and physical processes should be able to be defined as functions of the motion of
space, ds, and the motion through space, dx. The passage of this mysterious medium
we’ve described as time is no longer necessary to describe the Universe as we know it.
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Note that while the coordinate of the body in free fall changes with the dilation of
space, the velocity of that body does not change from it’s inertial state. As it is the
coordinate system dilating that leads to the body’s change in displacement, ẍ = 0,
and therefore

Fg = mẍ = 0 (23)

which fits closely with the mass independent nature of g.

7 Conclusion

While Einstein changed our understanding of the Universe on a fundamental level
with his revelation regarding time dilation, SR and GR break down under extreme
quantities, either very massive or very small, and produce paradoxes at velocities of
equal or greater magnitude than c. This description of time as a concurrent density
axis no longer requires a beginning or an end of time, only a trajectory and a magni-
tude of motion. Distant galaxies may appear more developed than the elapsed period
since the big bang permits, because a greater period has elapsed according to their dis-
placement 4-vector, with the fourth coordinate being a position along this concurrent
density axis. Gravity may appear to have no observable aberration not because the
velocity of gravitational waves is infinite, but because the medium at which this gravi-
tational dilation was emitted is more dense and therefore, in the ’past’ with respect to
the orbiting body, producing an elongated 4-vector as the temporal component is ini-
tial separated. The bullet cluster may express mass effects that appear extra-spacial,
because space itself is dilating as two extremely massive and fast moving clusters dilate
space toward the other. Black holes may no longer lead to singularities, and may not
even exist in the form that they are currently understood. If space itself is relative and
all bodies within a dilating coordinate system scale with the dilation of that coordi-
nate system, black holes and singularities only arise as ds ≥ c. SR’s dependence upon
a constant speed of light must be re-examined, as Maxwell’s equations do not indicate
a constant speed of light, but a speed of light that is proportional to h and the charge
radius r. If c dilates proportionally to the density of space, black holes may exist in
the same manner as the end of the rainbow; if one were to approach and experience
this dilation of c, causality, space and time might remain completely intact.

And perhaps most importantly, if c is proportional to both the density of space and
Maxwell’s equations describing electromagnetic fields, and we experience an almost
perpetual dilation of space, can electromagnetism and the dilation of space be unified
to harness this endless supply of pollutionless power?
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space and time obey laws far beyond our own understanding; without whom this
theory wouldn’t exist.
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