
Feature Similarity based K Nearest Neighbor for Optimizing of Text Indexes

Taeho Jo
Alpha AI Publication, 28221, South Korea

tjo018@naver.com

Abstract—This article proposes the modified KNN (K Near-
est Neighbor) algorithm which considers the feature similarity
and is applied to the index optimization. The texts which are
given as features for encoding words into numerical vectors are
semantic related entities, rather than independent ones, and
the index optimization is able to be viewed into a classification
task where each word is classified into expansion, inclusion,
and removal. In the proposed system, each word in the given
text is classified into one of the three categories by the proposed
KNN algorithm, associates words are added to ones which are
classified into expansion, and ones which are classified into
inclusion are kept by themselves without adding any word. The
proposed KNN version is empirically validated as the better
approach in deciding the importance level of words in news
articles and opinions. The significance of this research is to
improve the classification performance by utilizing the feature
similarities.

Index Terms-Feature Similarity, Feature Value Similarity,
Index Optimization, K Nearest Neighbor

I. INTRODUCTION

The index optimization refers to the process of adjusting a
list of index terms by adding more similar words, reserving
some words, and removing irrelevant words, in order to
maximize the information retrieval performance. The scope
of this research is restricted to the classification task where
each word is classified into the three categories: ’expansion’,
’reservation’, and ’removal’. We prepare the sample words
which are labeled with one of the three categories and define
the factors which influence on the classification. By learning
the sample words, we construct the classification capacity
and classify novice words which are given afterward as
the input into one of the three categories. In this research,
we assume that a supervised learning algorithm is used as
the approach to the index optimization which is set as a
classification task.

Let us mention some challenges which we try to solve in
this research. The dependency among features exist clearly,
so the Bayesian networks were previously proposed as
a machine learning based approach, but it requires the
complicated analysis among features for using it[?]. The
requirement of many features for keeping the robustness
in encoding words into numerical vectors is caused by the
assumption of feature independences. Because of very little
coverage of each feature, we cannot avoid the sparse dis-
tribution where zero values are dominant in each numerical
vector with more than 95%[?]. Therefore, this research is

intended to solve the problems by considering the feature
similarity as well as the feature value one.

Let us mention what we propose in this research as
its idea. In this research, we consider the both similarity
measures, feature similarity and feature value similarity for
computing the similarity between numerical vectors. This
research interprets the index optimization into a classifica-
tion task where a machine learning algorithm is applicable.
The KNN (K Nearest Neighbor) is modified into the version
which accommodates the both similarity measures, and
applied to the index optimization task which is mapped into
a classification task. Therefore, the goal of this research is
to improve the index optimization performance by solving
the above problems.

Let us mention the benefits which we expect from this
research. Computing the similarity between words using the
feature similarity as well as the feature value similarity
opens potentially the way of reducing the dimensionality
of numerical vectors. The addition of one more similarity
measure cuts down the information loss for computing the
semantic similarity between words. By considering the both
kinds of similarity measures, we expect from this research to
improve the discriminations among numerical vectors which
tend to be sparse.Therefore, the goal of this research is to
implement the index optimization systems with their better
performance by obtaining the benefits.

This article is organized into the five sections. In Section
II, we survey the relevant previous works. In Section III,
we describe in detail what we propose in this research. In
Section IV, we validate empirically the proposed approach
by comparing it with the traditional one. In Section V, we
mention the general discussion on the empirical validations
and remaining tasks for doing the further research.

II. PREVIOUS WORKS

This section is concerned with the previous works which
are relevant to this research. In Section II-A, we explore the
previous cases of applying the modernized KNN algorithms
for the tasks which are relevant to the index optimization. In
Section II-B, we survey the previous works on the semantic
operations on strings. In Section II-C, we describe the
previous works on the schemes of computing the semantic
similarity between two words. In Section II-D, we present
previous works on the schemes of computing the similarity
between texts, as the feature similarity.

A. Relevant Tasks

This section is concerned with the previous works on the
semantic operations on strings. The previous research on
the semantic operations provide the basis for understanding
the index optimization which is an instance of the seman-
tic word classification. The semantic operations which are
operations on strings based on their meanings, rather than
their spellings, are defined under the assumption that each
string has its own meaning. The semantic similarity which is
the typical semantic operation on two strings is to compute
the similarity between strings based on their meanings. This
section is intended to survey the previous works on the
semantic operations on strings.

Let us survey on the cases of applying the modernized
machine learning algorithm to the word categorization as
the first relevant task. In 2015, Jo proposed the idea of
modifying the KNN algorithm considering the feature sim-
ilarity and applying it to the word categorization [3]. In
2018, he presented that its performance is better than that
of the traditional KNN version, in his intermediate report
[24]. In 2018, in his final report, its better performance was
validated in the three test sets: NewsPage.com, Opiniopsis,
and 20NewsGroups [25]. In the above literatures, it is
effective to modify the KNN algorithm into the version
considering the feature similarity in the word categorization.

Let us survey on the effectiveness of the modernized KNN
algorithm in using it for the keyword extraction which is
a special instance of the word categorization. In 2015, it
was proposed that the KNN is modified into the version
as the approach to the keyword extraction [4]. In 2016,
it was proposed that one more modernized KNN which
processes directly graphs instead of numerical vectors as the
approach to the keyword extraction [7]. In 2018, the better
performance of the KNN version which considers the feature
similarity than the traditional version was presented in
extracting keywords from a text [26]. In the above literatures,
the cases of applying the modernized KNN version to the
keyword extraction are presented.

Let us explore the cases of applying the modernized KNN
version for the index optimization which is covered in this
research. It was initially proposed that the KNN version
should be applied to the index optimization as the conceptual
idea in 2015 [5]. The KNN version which processes graphs
directly was validated as the better approach than the tra-
ditional version in the index optimization in 2016 [8]. The
better performance of the KNN version was presented in the
index optimization in a single test set in 2018 [27]. In the
above literatures, the two modernized versions of the KNN
which were used for the index optimization are mentioned.

The index optimization is the task which this research tries
to solve. The task is viewed into the classification of each
word into one of the three categories: expansion, inclusion,
and removal. The process of the index optimization is to

index a text into a list of words, to classify the words into
one of the three categories, and to exclude the words which
are labeled with removal. To the words which are labeled
with expansion, more words from external sources are added
as their associative ones. The word categorization is the
classification of each word by its meaning, whereas the index
optimization is the classification by its importance in the
given text.

B. Semantic Operations

This section is concerned with the previous works on the
semantic operations on strings. The previous research on
the semantic operations provide the basis for understanding
the index optimization which is an instance of the seman-
tic word classification. The semantic operations which are
operations on strings based on their meanings, rather than
their spellings, are defined under the assumption that each
string has its own meaning. The semantic similarity which is
the typical semantic operation on two strings is to compute
the similarity between strings based on their meanings. This
section is intended to survey the previous works on the
semantic operations on strings.

Let us explore the previous works on the semantic simi-
larity for presenting its history. The semantic similarity was
initially proposed for defining the string vector kernel in
modifying the SVM as the approach to the text classification
in 2008 [1]. The semantic similarity between string vectors
was applied to the unsupervised neural networks which is
called NTSO (Neural Text Self Organizer) and created as the
approach to the text clustering in 2010 [2]. It was applied for
computing the similarity between string vectors in the KNN
as the approach to the text categorization in 2018 [28]. The
semantic similarity between two strings is basis for deriving
more advanced semantic operations.

Let us mention the semantic similarity average into which
the semantic similarity is expanded. The operation was
described by Jo in 2015 [6]. The semantic similarity average
is to compute the semantic similarities of all possible pairs of
strings and to average them in its definition. The output value
of the semantic similarity average is given as a normalized
one between zero and one, and reflects the semantic cohesion
of words. As the computation complexity, it takes the
quadratic complexity to the number of strings for computing
the value.

Let us mention one more semantic operation on strings,
which is called semantic similarity variance. The operation is
derived from the semantic similarity average, and described
by Jo in 2015, together with the semantic similarity average
[6]. The operation is to compute the semantic similarity
average over strings and to average the difference squares of
the individual semantic similarities of all possible pairs from
the semantic similarity average. The semantic similarity
average and the semantic similarity variance were simulated
on the several text collections, presenting the distribution

over them. The statistical analysis on the data which are
given as strings is opened by inventing the two semantic
operations.

Let us mention some relevancies of the semantic oper-
ations on strings to this research. The index optimization
which is covered in this research is an instance of the
semantic word categorization based on meanings. Because
the text mining tasks are based on meanings, rather than on
spellings, the word meanings are important for performing
the text mining tasks. In this research, the semantic similarity
between words will be utilized in using the KNN algorithm
for the index optimization. The word collocations in the text
is basis for computing the semantic similarity in the previous
works and this work.

C. Word Similarity

This section is concerned with the previous works on the
similarity metric between words. We need the scheme of
computing a similarity between words in using the KNN
algorithm for the index optimization as a word classifica-
tion instance. There are two kinds of word similarity; the
syntactic similarity is the similarity between words based
on their spellings, and the semantic similarity is one based
on their meanings. Because the index optimization is the
task based on meanings, the semantic similarity becomes
the focus of this research. This section is intended to survey
the previous works which provide the schemes of computing
the semantic similarity between words.

Let us survey on the previous works where words are
encoded into tables and the similarity between tables is
computed. In 2006, words are encoded so and the similarity
between tables is defined for using the KNN algorithm for
the topic based word classification [9]. The similarity metric
between tables which represent words was applied in using
the AHC algorithm for the semantic word clustering [10]. It
was also applied in using the KNN algorithm as the approach
to the keyword extraction which is derived from the topic
based word classification [11]. In the above literatures, the
semantic similarity between words is computed by repre-
senting them into tables.

Let us survey on the previous works where words are
encoded into string vectors, and the similarity between string
vectors is defined. In 2016, words are encoded into string
vectors, and the similarity between string vectors is defined
as the operation, for modifying the KNN algorithm as the
approach to the word classification [12]. The KNN algorithm
where the semantic similarity between string vectors was
adopted as the word similarity was applied to the keyword
extraction as another word classification instance [13]. The
semantic similarity between string vectors was applied for
modifying the AHC algorithm as the approach to the seman-
tic word clustering [14]. The semantic similarity between
words is computed by encoding words into string vectors in
the above literatures.

Let us explore the previous works where words are en-
coded into graphs and the similarity between them is defined.
As the approach to the topic based word classification, the
KNN algorithm was modified by defining the similarity be-
tween graphs as the semantic word similarity [15]. The mod-
ified KNN algorithm was applied to the keyword extraction
as the task which is derived from the word classification [16].
The AHC algorithm is modified by defining the similarity
metric between graphs as the approach to the word clustering
[17]. In the above literatures, the semantic similarity between
words is computed by encoding them into graphs.

Let us mention some relevance of the previous works
which are explored above to this research. In using the KNN
for the index optimization, we need to define the semantic
similarity metric between words. They are represented into
the alternative structured forms to the numerical vectors for
computing the semantic word similarity. In this research, the
semantic similarity metric between words is proposed by
encoding words into numerical vectors. We consider both
the feature similarity and the feature value similarity for
computing the similarity more reliably.

D. Text Similarity

This section is concerned with the previous works which
deals with the schemes of computing the similarity between
texts. It is necessary to survey the previous works on the
similarity metric between texts for computing it as the
feature similarity. In this research, words are encoded into
numerical vectors and the features are given as texts. In the
previous works, the computation of the similarities among
texts is intended to modify the KNN algorithm as the
approach to the text mining tasks. This section is intended
to survey the previous works which deals with the similarity
metrics between texts.

Let us survey the previous works where texts are encoded
into tables and the similarity between them is computed. Af-
ter encoding texts into tables, the similarity metric between
tables is defined for modifying the KNN algorithm as the
approach to the text classification [18]. The KNN algorithm
which uses the similarity metric between tables was applied
to the text summarization which was derived from the text
classification [19]. The AHC algorithm was modified into
the version where the similarity between tables is computed
by encoding texts into tables [20]. In the above literatures,
the similarity between texts is computed by encoding texts
into tables.

Let us survey on the previous works on another scheme
of computing the similarity between texts. They are encoded
into string vectors and the similarity metric between them is
defined for modifying the KNN algorithm as the approach
to the text classification [21]. The modified version of
the KNN algorithm where the similarity between string
vectors representing texts is computed was applied to the
text summarization which is mapped into the classification

task [22]. The AHC algorithm where the text similarities are
computed by encoding texts into string vectors was applied
to the text clustering [23]. The similarities among texts are
computed by encoding texts into string vectors in the above
literatures.

Let us explore the previous works on the third scheme of
computing the text similarities. In using the KNN algorithm
for the text classification, texts were encoded into graphs,
and the similarity metric between them was defined [29].
The KNN version where the similarities among graphs are
computed was applied to the text summarization [30]. The
AHC algorithm was modified as well as the KNN algorithm
as the approach to the text clustering [31]. In the above
literatures, the text similarities are computed by encoding
texts into graphs.

Let us mention some relevancies of this research to the
previous works which are surveyed above. The texts are
used as the attributes in encoding the words into numerical
vectors. The text similarities were used for applying the
KNN algorithm to the text mining tasks in the above
literatures, whereas in this research, the text similarities are
used as the feature similarities. In this research, the similarity
between texts is computed based on the rate of the shared
words; the more shared words, the higher similarity. We will
consider the adoption of the schemes which were mentioned
in the previous works for the next research.

III. PROPOSED SYSTEM

This section is concerned with modifying the KNN (K
Nearest Neighbor) algorithm into the version which consid-
ers the similarities among features as well as feature values
and its application to the index optimization, and it consists
of the four sections. In Section III-A, we describe the process
of encoding words into numerical vectors. In Section III-B,
we do formally the proposed scheme of computing the
similarity between two numerical vectors. In Section III-C,
we mention the proposed version of KNN algorithm which
considers the similarity among features. In Section III-D, we
explain the system architecture and execution process of the
proposed system.

A. Word Encoding

This section is concerned with the process of encoding
a word into a numerical vector. A corpus is prepared and
the texts in it are given as the feature candidates. Some are
selected among the feature candidates as the features by the
text size. For each feature which is given a text, the TF-
IDF (Term Frequency and Inverse Document Frequency) is
computed as the relationship between a text and a word.
This section is intended to describe the process of mapping
a word into a numerical vector, referring the corpus.

The process of extracting texts from a corpus as the
feature candidates is illustrated in Figure 1. The K words
as encoding targets and the corpus as the text collection are

prepared. For each word, it is linked to the list of texts which
include itself. The text sets which are linked the K words
are unioned into a single set of texts, and the texts in the set
are given as the feature candidates. It is necessary to define
the criteria for selecting some among the feature candidates
as the features.

Figure 1. Feature Candidate Generation

The process of selecting the d texts as the features among
the N texts which are given as the feature candidates is
illustrated in Figure 2. The texts are extracted as the feature
candidates by the process which is illustrated in Figure 1.
The text size or the sum of the TF-IDF weights of words
excluding the stop words is the criteria for selecting texts
from the corpus. The texts are ranked by their sizes and their
weight sum and the d texts with their highest values are
selected. The d texts are used as the attributes for encoding
the words into the numerical vectors.

Figure 2. Feature Selection

The process of assigning feature values to the features
for each word is illustrated in Figure 3. A word is given
as the target to represent into a numerical vector and the
texts which are selected by the above process is given
as the attributes or the features. The TF-IDF weight is
computed for each word and each text by equation which is
presented in Figure 3. The frequency or the binary value
which indicates the presence or the absence in the text
may be used as the alternatives to the TF-IDF weight. In
this research, the TF-IDF weighting scheme is adopted for
implementing the word encoding system.

Let us make some remarks on the process of encoding
words into numerical vectors. The corpus and the K words
which are given as the sample words are prepared as the
initial status. The words are converted into the numerical

Figure 3. Feature Value Assignment

vectors whose features are given as the texts. Each element
of the numerical vector which represents a word indicates the
relationship with the text. The similarities among features
which are given as texts are considered for computing the
similarity between numerical vectors in the next section.

B. Similarity Metric

This section is concerned with the proposed similarity
metric between two words. The cosine similarity was used
as the traditional similarity metric in the case of encoding
words into numerical vector by the process which is de-
scribed in Section III-A. The semantic similarity between
words considering the feature similarities is proposed, in or-
der to avoid the poor discriminations among sparse vectors.
The feature similarity means the similarity between features
which are given as texts and the feature value similarity
means the similarity between two vectors based on their
elements. This section is intended to describe the process of
computing the similarity metric between two words.

The frame of computing the semantic similarity between
words is illustrated in Figure 4. The two vectors, x and y
represent words, and the feature similarity and the feature
value similarity are considered in computing the similarity
between them. The feature similarity is the similar among
the features, f1, f2, . . . , fd and the feature value similar-
ity is the similarity between elements in the two vectors,
x1, x2, . . . , xd and y1, y2, . . . , yd. The similarity between
vectors is computed by combining the both kinds of similar-
ities as shown in Figure 4. One to one computation happens
in the cosine similarity as the traditional one, whereas all
possible pair computation of elements of numerical vectors
is applied to the proposed similarity metric.

The similarity matrix of the features which are given as
texts is illustrated in Figure 5. It is assumed that the texts,
text1, text2, . . . , textd are selected as the features by the
process which is described in Section 3.1. A text is indexed
into a list of words; Ti and Tj are the sets of words which
are indexed respectively from the texts, texti and textj . The
similarity between two texts is computed by equation (1),

Figure 4. Word Similarity Computation Frame

sim(texti, textj) =
2× |Ti ∩ Tj |
|Ti|+ |Tj |

(1)

The similarity between two texts in equation (1) is the
feature similarity based on the rate of shared words to the
words in either of the two texts.

Figure 5. d× d Similarity Matrix

Let us derive the equation for computing the proposed
similarity metric with the feature similarity. Equation (1) is
simplified into equation (2),

sim(texti, textj) = sim(fi, fj) = fij (2)

Two words are encoded into two d dimensional numerical
vectors, x = [x1, x2, ..., xd] and y = [y1, y2, ..., yd]. The
similarity between the two numerical vectors is computed
by equation (3),

sim(x,y) =

∑d
i=1

∑d
j=1 fij · xi · yj

d‖x‖‖y‖
(3)

where ‖x‖ =
√∑d

i=1 x
2
i and ‖y‖ =

√∑d
i=1 y

2
i . It takes

the quadratic complexity to the d dimensional vector for
computing the similarity by equation (3).

Let us make some remarks on the proposed similar-
ity metric between two numerical vectors which represent
words. The numerical vectors which represent words or
texts tend to be sparse. Zero values are very frequent in
computing the similarity between two sparse vectors by the
cosine similarity. The similarity metric which is expressed
in equation (3) prevents from generating zero values. The
higher computation complexity in computing the similarity
is the payment for getting the solution.

C. Proposed Version of KNN

This section is concerned with the proposed KNN version
where the similarities of a novice item with the training
examples are computed, considering the feature similarity

and the feature value similarity. In Section III-B, we already
described the process of computing the proposed similar-
ity metric between two numerical vectors which represent
words. The proposed similarity metric is used for computing
the similarities of a novice item with the training examples
for taking its nearest neighbors as the modification point
of the KNN algorithm. The sample words are encoded into
numerical vectors, in advance, and the label of the novice
item is decided by voting the labels of the nearest neighbors.
This section is intended to describe in detail the modified
KNN algorithm which is used as the approach to the index
optimization.

Figure 6 illustrated the process of computing the simi-
larities of a novice item with the training examples. The
sample words are encoded into numerical vectors, before,
and the novice word is encoded into a numerical vector,
now. The similarities of the numerical vector representing
the novice item with ones representing the sample words
is computed by the similarity metric which is described
in Section III-B. The similarities of the novice item are
assigned as normalized values to the training examples.
It takes the quadratic complexity to the numerical vector
dimension for computing the similarity between the novice
item and a training example.

Figure 7 illustrates the process of selecting the nearest
neighbors by their similarities with the novice item. In the
process which is presented in Figure 6, the similarities of
the notice item with the training examples are computed by
encoding them into numerical vectors. The training examples
are ranked in the descending order of their similarities, and
ones with their higher similarities are taken as the nearest
neighbors. In the KNN variant, called RNN (Radius Nearest
Neighbor), the training examples with their higher similarity
than the threshold are selected, instead of ranking them. In
implementing the process of selecting the nearest neighbors,
we should adopt the advanced sorting algorithm, such as the
quick sorting and the heap sorting.

Figure 8 illustrated the process of deciding the label of
the novice item by voting ones of the nearest neighbors. The
nearest neighbors are selected from the training examples by
the process which is presented in Figure 7. From the nearest
neighbors, their labels are collected, and the label with the
majority of them is selected as one of the novice one. Here,
the nearest neighbors are treated equally for deciding the
label, but in the KNN variant, the discriminations may be put
among them based on their similarities. The various KNN
variants are derived by modifying the scheme of selecting
nearest neighbors and one of voting their labels.

Let us make some remarks on the proposed KNN which is
described in this section. The sample words and the novice
word are encoded into numerical vectors. The similarity
metric which is described in Section III-B is used for com-
puting the similarity of each novice item with the training
examples. The scheme of selecting nearest neighbors by

1 2
...

d
x x x

novice item
11 12 1

21 22 2

...

...

d

d

x x x

x x x

1 2
...

N N Nd
x x x

…………

Training Examples

Feature Similarity
+

Feature Value Similarity

Figure 6. The Process of computing Similarities of a Novice Item with
the Training Examples

ranking the training examples is adopted in this research.
The unweighted voting of the labels is adopted for deciding
the label of the novice item.

D. System Architecture

This section is concerned with the architecture and the
execution flow of the proposed system. The proposed version
of the KNN algorithm as the approach to implementing the
system was already described in Section 3.3. The sample
words, the system architecture, and the execution flow, for
implementing the proposed system are presented, respec-
tively, in Figure 9, 10, and 11. The only brief design of the
system is covered in this study, and the source code in Java
or Python which implements the system will be presented
in the next work. This section is intended to describe the
proposed system where the proposed KNN algorithm is
adopted as the approach.

Collecting the sample words for implementing the index
optimization system is illustrated in Figure 9. The index
optimization is interpreted into a domain dependent classifi-
cation; even same word may be classified into the expansion
in one domain and done into the removal in another domain

11 12 1

21 22 2

...

...

d

d

x x x

x x x

1 2
...

N N Nd
x x x

…………

Training Examples
Similarity 1
Similarity 2

Similarity N

similarity

Sorted Training Examples

Sorting

K most similar training examples
(Nearest Neighbors)

Figure 7. The Process of selecting Nearest Neighbors

in this classification type. The independent classification task
where each word is classified into one of the three categories
is given for each domain. Several domains are defined and in
each domain, words which are exclusively labeled with one
of the three categories are collected. It is required to present
the domain as a tag for performing the index optimization.

The entire system architecture of the index optimization
system which is implemented in this research is illustrated
in Figure 10. The words which are labeled with one of
the three categories are collected sample words, and they
are encoded into numerical vectors by the encoder module.
The d × d similarity matrix which is used for computing
the feature similarity is constructed and the similarities of
each word which is indexed from a text by the text indexer
are computed considering both the feature similarity and
the feature value similarity, in the similarity computation
module. In the voting module, the nearest neighbors are
selected and the category is decided, for each word in
the text. The ranking module is nested in the similarity
computation module for selecting the nearest neighbors.

The execution process of the index optimization system
is illustrated in Figure 11. Texts are collected within the

11 12 1

21 22 2

...

...

d

d

x x x

x x x

1 2
...

k k kd
x x x

…………

Nearest Neighbors
Label 1

Label 2

Label k

………

Voting

Label 1 2
...

d
x x x

novice item

Figure 8. The Process of voting Labels of Nearest Neighbors

domain and sample words are prepared as numerical vectors.
A text is indexed into a list of words and they are encoded
into numerical vectors. Each word is classified into one of
the three categories; the word group is divided into the three
subgroups: the expansion group, the inclusion group, and
the removal group. The words in the removal group are
excluded, the words in the inclusion group are indexed in the
index, and associated words are added from external sources
to the words in the expansion group.

Let us make some remarks on the index optimization
system which are presented in Figure 10 and 11, respectively
as the system architecture and the execution flow. We need
two collections for implementing the system: the collection
of sample words and the collection of texts within each
domain. The system is implemented as multiple independent
subsystems, domain by domain, and it is required to present
the domain as a tag for performing the index optimization
to a text. The proposed system is described staying in the
design step; we will present the source code in Java or
Python in the next research. We need to implement the
additional module for the index expansion to the words in
the expansion group by defining its detail algorithm.

…. …. …. ….

Domain 1 Domain 2 Domain 3 Domain 4Domain 2

Expansion

Inclusion

Expansion

Inclusion

Expansion

Inclusion

Expansion

Inclusion

Words

Numerical
Vectors

Proposed
KNN

Removal Removal Removal Removal

Expansion

Inclusion

Removal

Numerical
Vectors

Numerical
Vectors

Numerical
Vectors

Numerical
Vectors

Figure 9. The Process of collecting Sample Words for Index Optimization

Figure 10. System Architecture of the Index Optimization System

IV. EXPERIMENTS

This section is concerned with the empirical experiments
for validating the proposed version of KNN, and consists
of the four sections. In Section IV-A, we present the results
from applying the proposed version of KNN to the index
optimization on the collection, NewsPage.com. In Section
IV-B and IV-C, we mention the results from comparing the

Figure 11. Execution Process of the Index Optimization System

two versions of KNN with each other in the task of index
optimization from 20NewsGroups.

A. NewsPage.com

This section is concerned with the experiments for val-
idating the better performance of the proposed version on
the collection: NewsPage.com. We interpret the index opti-
mization into the trinary classification where each word is
classified into expansion, inclusion, and removal, and gather
words which are labeled with one of the three categories,
from the collection, topic by topic. Each word is allowed
to be classified into one of the three labels, exclusively. We
fix the input size as 50 dimensions of numerical vectors and
use the accuracy as the evaluation measure. Therefore, this
section is intended to observe the performance of the both
versions of KNN in the four different domains.

In Table I, we specify NewsPage.com which is used as
the source for extracting the classified words, in this set
of experiments. The text collection, NewsPage.com, was
used in previous works for evaluating approaches to text
categorization [?]. In each topic, 375 words are extracted:
125 words labeled with expansion, 125 words labeled with
inclusion, and 125 words labeled with removal. In each
category, the set of 375 words is portioned into the 300
words as training examples and the 75 words as the test
example, keeping the balanced distributions over the three
labels. We decide target labels of words by their frequen-
cies concentrated in the given category, combined with the
subjectivity in scanning texts.

Table I
THE NUMBER OF TEXTS AND WORDS IN NEWSPAGE.COM

Category #Texts #Training Words #Test Words
Business 500 300(100+100+100) 75(25+25+25)
Health 500 300(100+100+100) 75(25+25+25)
Internet 500 300(100+100+100) 75(25+25+25)
Sports 500 300(100+100+100) 75(25+25+25)

Let us mention the experimental process of validating
empirically the proposed approach to the task of index
optimization. We collect sample words which are labeled
with expansion, inclusion, or removal, in each of the four

domains: Business, Sports, Internet, and Health, depending
on subjectivities and concentrated frequencies of words,
and encode them into numerical vectors. In each domain,
for each of the 75 test examples, the KNN computes its
similarities with the 300 training examples, and select the
three most similar training examples as its nearest neighbors.
Independently, we perform the four experiments each of
which classifies each word into one of the three labels
by the two versions of KNN algorithm. For evaluating the
both versions of KNN in the classification which is mapped
from the index optimization, we compute the classification
accuracy by dividing the number of correctly classified test
examples by the number of test examples.

In Figure 12, we illustrate the experimental results from
classifying the words into one of the three categories as the
process of index optimization, using the both versions of
KNN algorithm. The y-axis indicate the accuracy which is
the rate of the correctly classified words in the test set. In
the x-axis, each group indicates the domain within which
the index optimization which is viewed as the classification
task is performed, independently. In each group, the gray bar
and the black bar indicate the achievements of the traditional
version and the proposed version, respectively. In the x-
axis, the most right group indicates the average over the
accuracies of the left four groups, and the input size which
is the dimensional of numerical vectors is fixed to 50.

Figure 12. Results from Index Optimization in Text Collection: News-
Page.com

Let us make the discussions on the results from doing
the index optimization, using the both versions of KNN
algorithm, as shown in Figure 12. The accuracy which is
the performance measure of this classification task is in
the range between 0.33 and 0.41. The proposed version of
KNN algorithm works better in the three domains: Business,
Health, and Internet. However, it loses in the domain, Sports.
From this set of experiments, we conclude that the proposed
version works slightly better than the traditional one, in
averaging over the four cases.

B. 20NewsGroups I: General Version
This collection is concerned with one more set of experi-

ments for validating the better performance of the proposed
version on text collection: 20NewsGroups I. We gather
words which are labeled with ‘expansion’, ‘inclusion’ or
‘removal’ from each broad category of 20NewsGroups,
under the view of the index optimization into a binary
classification. The task in this set of experiments is to clas-
sify each word exclusively into one of the three categories
in each topic which is called domain. We fix the input
size to 50 in encoding words, and use the accuracy as the
evaluation measure. Therefore, in this section, we observe
the performances of the both versions in the four different
domains.

In Table II, we specify the general version of 20News-
Groups which is used for evaluating the two versions of
KNN algorithm. In 20NewsGroup, the hierarchical classifi-
cation system is defined with the two levels; in the first level,
the six categories, alt, comp, rec, sci, talk, misc, and soc, are
defined, and among them, the four categories are selected,
as shown in Table II. In each category, we select 1000 texts
at random and extract 375 words from them. Among the
375 words, one third of them is labeled with ‘expansion’,
the second third is labeled with ‘inclusion’, and the other
third is labeled with ’removal’. As shown in Table II, the
375 words is partitioned into the 300 words in the training
set, and the 75 words in the test set, keeping the complete
balance over them. In the process of gathering the classified
words, each of them is labeled manually into one of the
three categories by scanning individual texts.

Table II
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS I

Category #Texts #Training Words #Test Words
Comp 1000 300(100+100+100) 75(25+25+25)
Rec 1000 300(100+100+100) 75(25+25+25)
Sci 1000 300(100+100+100) 75(25+25+25)
Talk 1000 300(100+100+100) 75(25+25+25)

The experimental process is identical is that in the previ-
ous sets of experiments. We collect the words by labeling
manually them with ‘expansion’, ‘inclusion’, and ‘removal’,
by scanning individual texts in each of the four domains,
comp, rec, sci, and talk, and encode them into numerical
vectors with the input size fixed to 50. For each test example,
we compute its similarities with the 300 training examples,
and select the three similar ones as its nearest neighbors.
The versions of KNN algorithm classify each of the 75
test examples into one of the three categories by voting the
labels of its nearest neighbors. Therefore, we perform the
four independent set of experiments as many as domains,
in each of which the two versions are compared with each
other in the binary classification task.

In Figure 13, we illustrate the experimental results from
deciding the importance degree of each word for maximize

the information retrieval performance, on the broad version
of 20NewsGroups. Figure 13 has the identical frame of
presenting the results to those of Figure 12. In each group,
the gray bar and the black bar indicates the achievements
of the traditional version and the proposed version of KNN
algorithm, respectively. Each group in the x axis indicates
the domain within which each word is judged as one of the
three importance degree. This set of experiments consists of
the four binary classifications in each of which each word
is classified into one of the three categories as the index
optimization.

Figure 13. Results from Index Optimization in Text Collection: 20News-
Group I

Let us discuss the results from doing the index opti-
mization using the both versions of KNN algorithm, on
the broad version of 20NewsGroups. The accuracies of the
both versions of KNN algorithm range between 0.34 and
0.40. The proposed version shows the better performance
in the three of the four domains; it does its outstandingly
better performance in the domain, sci. However, it shows
its competitive performances in the domain, talk. From this
set of experiments, the proposed version wins over the
traditional one, in averaging its four achievements.

C. 20NewsGroups II: Specific Version

This section is concerned with one more set of ex-
periments where the better performance of the proposed
version is validated on another version of 20NewsGroups.
We gather the words which are labeled with ‘expansion’,
‘inclusion’, or ‘removal’. We map the index optimization
into a binary classification, and carry out the independent
four binary classification tasks as many as topics, in this set
of experiments. We fix the input size in representing words to
50, and use the accuracy as the evaluation metric. Therefore,
in this section, we observe the performances of the both
versions of the KNN with the four different domains.

In Table III, we specify the second version of 20News-
Groups which is used in this set of experiments. Within the
general category, sci, the four categories, electro, medicine,
script, and space, are predefined. In each specific category
as a domain, we build the collection of labeled words by

extracting 375 important words from approximately 1000
texts. We label manually the words with ‘expansion’, ‘in-
clusion’ or ‘removal’, maintaining the complete balance. In
each domain, the set of 375 words is partitioned with the
training set of 300 words and the test set of 75 words, as
shown in Table III.

Table III
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS II

Category #Texts #Training Words #Test Words
Electro 1000 300(100+100+100) 75(25+25+25)

Medicine 1000 300(100+100+100) 75(25+25+25)
Script 1000 300(100+100+100) 75(25+25+25)
Space 1000 300(100+100+100) 75(25+25+25)

The process of doing this set of experiments is same to
that in the previous sets of experiments. We collect the sam-
ple words which are labeled with ‘expansion’, ‘inclusion’, or
‘removal’, in each of the four domains: ‘electro’, ‘medicine’,
‘script’, and ’space, and encode them, fixing the in input size
to 50. We use the two versions of KNN algorithm for their
comparisons. Each example is classified into one of the three
categories, by the both versions. We use the classification
accuracy as the evaluation metric.

We present the experimental results from classifying the
words using the both versions of KNN algorithm on the
specific version of 20NewsGroups. The frame of illustrating
the classification results is identical to the previous ones.
In each group, the gray bar and the black bar stand for
the achievements of the traditional version and the proposed
version, respectively. The y-axis in Figure 14, indicates the
classification accuracy which is used as the performance
metric. In this set of experiments, we execute the four inde-
pendent classification tasks which correspond to their own
domains, where each word is classified into ‘expansion’,
‘inclusion’, or ‘removal’.

Figure 14. Results from Index Optimization in Text Collection: 20News-
Group II

Let us discuss on the results from doing the index
optimization on the specific version of 20NewsGroups, as
shown in Figure 14. The accuracies of both versions of
KNN algorithm range between 0.31 and 0.46. The proposed

version shows its better results in three of the four domains.
However, it is leaded in the domain, ‘electro’. In spite of
that, from this set of experiments, it is concluded that the
proposed version wins over the traditional one, according to
the average over the four accuracies.

V. CONCLUSION

Let us discuss the entire results from performing the index
optimization using the two versions of KNN algorithm. The
both versions are compared with each other in the task
of word classification which is mapped from the index
optimization, in these sets of experiments. The proposed
version shows its better results in all of the three collections
and its matching ones in the others. The accuracies of the
traditional version range between 0.21 and 0.39 and those
of the proposed version range between 0.31 and 0.41. From
the three sets of experiments, we conclude the proposed
version improved the index optimization performance as the
contribution of this research.

Let us mention the remaining tasks for doing the fur-
ther research. We need to validate the proposed approach
in specific domains such as medicine, engineering, and
economics, as well as in generic domains such as ones
of news articles. We may consider the computation of
similarities among some main features rather than among
all features for reducing the computation time. We try to
modify other machine learning algorithms such as Na?ve
Bayes, Perceptrons, and SVM (Support Vector Machine)
based on both kinds of similarities. By adopting the proposed
approach, we may implement the index optimization system
as a real program.

REFERENCES

[1] T. Jo, “Modified Version of SVM for Text Categorization”,
52-60, International Journal of Fuzzy Logic and Intelligent
Systems, Vol 8, No1, 2008.

[2] T. Jo, “NTSO (Neural Text Self Organizer): A New Neural
Network for Text Clustering”, 31-43, Journal of Network Tech-
nology, Vol 1, No 1, 2010.

[3] T. Jo, “KNN based Word Categorization considering Feature
Similarities”, 343-346, The Proceedings of 17th International
Conference on Artificial Intelligence, 2015.

[4] T. Jo, “Keyword Extraction by KNN considering Feature
Similarities”, 64-68, The Proceedings of The 2nd International
Conference on Advances in Big Data Analysis, 2015.

[5] T. Jo, “Index Optimization with KNN considering Similarities
among Features”, 120-124, The Proceedings of 14th Interna-
tional Conference on Advances in Information and Knowledge
Engineering, 2015.

[6] T. Jo, “Simulation of Numerical Semantic Operations on
String in Text Collection”, 45585-45591, International Journal
of Applied Engineering Research, Vol 10, No 24, 2015.

[7] T. Jo, “Extracting Keywords by Graph based KNN”, 96-101,
The Proceedings of 12th International Conference on Multime-
dia Information Technology and Applications, 2016.

[8] T. Jo, “Graph based KNN for Optimizing Index of News
Articles”, 53-62, Journal of Multimedia Information System, Vol
3, No 3, 2016.

[9] T. Jo, “Table based KNN for Categorizing Words”, 696-700,
The Proceedings of 18th International Conference on Advanced
Communication Technology, 2016.

[10] T. Jo, “Table based AHC Algorithm for Clustering Words”,
574-579, The Proceedings of 18th International Conference on
Advanced Communication Technology, 2016.

[11] T. Jo, “Table based KNN for Extracting Keywords”, 812-817,
The Proceedings of 18th International Conference on Advanced
Communication Technology, 2016.

[12] T. Jo, “Encoding Words into String Vectors for Word Cat-
egorization”, 271-276, The Proceedings of 18th International
Conference on Artificial Intelligence, 2016.

[13] T. Jo, “String Vector based AHC as Approach to Word
Clustering”, 133-138, The Proceedings of 12th International
Conference on Data Mining, 2016.

[14] T. Jo, “Using String Vector based KNN for Keyword Extrac-
tion”, 27-32, The Proceedings of 15th International Conference
on Advances in Information and Knowledge Engineering, 2016.

[15] T. Jo, “Graph based KNN for Content based Word Classifica-
tion”, 24-29, The Proceedings of 12th International Conference
on Multimedia Information Technology and Applications, 2016.

[16] T. Jo, “Encoding Words into Graphs for Clustering Word by
AHC Algorithm”, 90-95, The Proceedings of 12th International
Conference on Multimedia Information Technology and Appli-
cations, 2016.

[17] T. Jo, “Extracting Keywords by Graph based KNN”, 96-
101, The Proceedings of 12th International Conference on
Multimedia Information Technology and Applications, 2016.

[18] T. Jo, “Table based KNN for Article Classification”, 271-276,
The Proceedings of 19th International Conference on Artificial
Intelligence, 2017.

[19] T. Jo, “Table based KNN for Text Summarization”, 31-36,
The Proceedings of 4th International Conference on Advances
in Big Data Analysis, 2017.

[20] T. Jo, “Table based AHC for Text Clustering”, 133-138, The
Proceedings of 13th International Conference on Data Mining,
2017.

[21] T. Jo, “String Vector based KNN for Text Categorization”,
458-462, The Proceedings of 18th International Conference on
Advanced Communication Technology, 2017.

[22] T. Jo, “K Nearest Neighbor for Text Summarization using
Feature Similarity”, DOI: 10.1109/ICCCCEE.2017.7866705,
Proceedings of International Conference on Communication,
Control, Computing and Electronics Engineering, 2017.

[23] T. Jo, “String Vector based AHC for Text Clustering”, 673-
677, The Proceedings of 18th International Conference on
Advanced Communication Technology, 2017.

[24] T. Jo, “Word Classification in Domain on Current Affairs by
Feature Similarity based K Nearest Neighbor”, 348-351, The
Proceedings of International Conference on Artificial Intelli-
gence, 2018.

[25] T. Jo, “Semantic Word Categorization using Feature Similar-
ity based K Nearest Neighbor”, 67-78, Journal of Multimedia
Information Systems, 2018.

[26] T. Jo, “Extracting Keywords from News Articles using Fea-
ture Similarity based K Nearest Neighbor”, 68-71, The Proceed-
ings of International Conference on Information and Knowledge
Engineering, 2018.

[27] T. Jo, “Index Optimization in News Articles using Feature
Similarity based K Nearest Neighbor”, 106-109, The Pro-
ceedings of 17th Int’l Conference on e-Learning, e-Business,
Enterprise Information Systems, and e-Government, 2018.

[28] T. Jo, “Improving K Nearest Neighbor into String Vector Ver-
sion for Text Categorization”, 1091-1097, ICACT Transaction
on Communication Technology, Vol 7, No 1, 2018.

[29] T. Jo, “Graph based KNN for Text Categorization”, 260-
264, The Proceedings of IEEE 18th International Conference
on Advanced Communication Technology, 2018.

[30] T. Jo, “Graph based KNN for Text Summarization”, 438-
442, The Proceedings of IEEE 18th International Conference
on Advanced Communication Technology, 2018.

[31] T. Jo, “Applying Table based AHC Algorithm to News Article
Clustering”, 8-11, The Proceedings of International Conference
on Green and Human Information Technology, Part I, 2019.

