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Summary of Part 3 
A method for modifying particle decay rate is proposed, potentially enabling charge harvesting. Nuclear structure and 
total energy calculations for various nuclei are demonstrated, revealing the "neutron" as an electron-proton bound in 
some fusion calculations. Deficient results from Classical Mechanics and Einstein's mass defect/excess calculation 
are emphasized, along with the risks associated with insufficient energy calculations. Real released energy and single 
product energy, including radiation energy, are calculated, and the real energy amount released in a fusion matches 
the total energy equation from the Universal Electrodynamic Force. 

 

Abstract 
The increasing need for energy by mankind over time has led to climate change problems and, 

most importantly, human health issues due to the storage of radioactive waste that lasts a very 

long time, thus affecting future generations. 

Many years ago, we experienced advances in atomic and nuclear physics that promised a big 

advantage over coal, gas, or oil burning. Unfortunately, scientists at that time did not make use of 

their brains appropriately. They simply misused and wasted all the advanced knowledge 

acquired in atomic and nuclear physics to just boil water!  

Nuclear fusion was “reborn” as an alternative to generate energy that might be “clean” for the 

environment, with “minimum” radiation risks for mankind and no radioactive waste. Clean energy 

generation and radiation-free risks can only be guaranteed by using certain technology for nuclear 

fusion. 

Making a fusion reaction happen is not complicated (like 14-year-old Taylor Wilson did in his home 

in 2008). However, there are two main problems with nuclear fusion that have prevented it from 

being commercially viable until now: 

a. Efficiency 

b. Safety 

Currently, most scientists experimenting with nuclear fusion are making serious mistakes. They 

are using costly devices and wasting vast amounts of energy in an attempt to replicate conditions 

found in stars on Earth, with no encouraging outcomes to date. Why? Fusions in stars are 

processes that are fully determined by probability, so you cannot build a project just on them. 

Probability is not the same as certainty, even when it represents the likelihood that an event will 

occur. 

Negative mass calculations can provide certainty regarding an effective head-on collision of 

charges, but scattering cross-section calculations cannot. 

https://physics-answers.com/
mailto:infobb20@gmail.com
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Nuclear fusion can be greatly eased by negative mass. I refer the reader to the series of 

articles about Negative Mass in Atom Nuclei [1] to understand how we can have negative mass 

behavior in nuclei. 

• Is nuclear fusion enhanced with negative mass nuclei and particles? 

• Can negative mass nuclear fusion be made efficient? 

• Can negative mass nuclear fusion offer better safety? 

• Does negative mass nuclear fusion rely on statistical processes? 

• Does negative mass nuclear fusion offer a simpler and cheaper method to generate 

energy? 

In the development of this study, you’ll find comprehensible answers to the above questions, 

which are backed by the experimentally proven laws of electrodynamics through the Universal 

Electrodynamic Force and the New Atomic Model. 

 

Introduction 
Nuclear fusion is an extremely fast and violent event that involves the acceleration of charges, 

whether they are nuclei or single charges. Therefore, scientists should not lose sight of the fact 

that in any atomic and nuclear interaction, we are dealing with accelerated electric charges. 

As such, radiation is always present in any nuclear fusion reaction. No exception. 

Due to the huge acceleration of the charges, the spectrum may easily range from X-rays to the 

most powerful gamma radiation. This radiation can be used in our favor to generate electric 

energy [9]. However, if this radiation is not properly handled, it will be harmful for human health. 

For simplicity, the radiation symbols will be omitted in most of the reaction calculations throughout this study. 

However, as radiation is always present in any nuclear fusion, from X-ray to gamma, the right way to write a reaction 

should be to include the radiation symbols as part of the fusion products: 𝐴 + 𝐵 → 𝐶 + 𝐷 + (𝑋, 𝛾). 

Unfortunately, scientists are making deficient calculations of the released energy during 

nuclear fusion. Why? 

Because they use wrong formulas that don’t give the total energy of the system, like the known 

Einstein’s formula 𝐸 = ∆𝑚 𝑐2 for mass excess/defect calculations. This formula only gives a result 

for rest mass energy (potential energy), which should be equivalent to the acquired kinetic energy, 

but it gives no clues about acceleration. The Einstein energy formula is flawed even in its 

"relativistic" form since, as in classical mechanics, acceleration is entirely disregarded. 

The total energy in a fusion reaction is always higher than the results given by Einstein’s 

formulas for rest energy and the calculations of kinetic energy from classical mechanics. 

All the energy values for nuclear fusion given in the scientific literature are deficient 

because none of them consider radiation energy, which on occasion may be much higher than 

kinetic energy alone. 

Applying Einstein's formulas and classical mechanics' kinetic energy calculations to 

nuclear fusion is extremely risky, since you can never be certain of the amount of radiation 

generated during a reaction. 

The scientific community must be aware when using those formulas because: 

• They only give partial energy values.  

https://physics-answers.com/negative-mass-and-negative-refractive-index-in-atom-nuclei-nuclear-wave-equation-gravitational-and-inertial-control-part-1/
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• They are not compatible with a system of charges. 

Those formulas may only be applied to limited, simple mechanical interactions between uncharged 

bodies. 

The derivation of the total energy for a system of charges made in this study will provide 

scientists with a powerful formula to make real energy calculations in any nuclear fusion reaction 

and many other applications that involve the interaction of charges. 

There are no “neutral particles”. The so-called “neutral 

particles” are composed of charges that balance the net 

result [2]. An example of such a particle is the neutron.  

Neutrons are stable in the nucleus. However, outside the 

nucleus, the neutron decays into a proton and an 

electron with a half-life of fewer than 15 minutes. The 

mass of the neutron is the sum of the masses of the 

electron and proton. The neutron has a charge density 

that varies between positive and negative with respect to 

its radius (Fig. 1). These facts suggest that the neutron 

might not be a valid elementary particle but a bound 

combination of an electron and a proton [3]. 

Accordingly, the new atomic model precisely describes 

how electrons and protons are very tightly packed in 

shells in the nucleus due to the balance of 

electromagnetic forces. 

Based on the energy calculations I made for the Deuterium-Tritium fusion, the binding energy 

(potential energy) of the electron-proton pair that makes the neutron should be 𝐸 = −2.127 𝑀𝑒𝑉 

when in the nucleus. Outside the nucleus, this energy is given off (radiation, kinetic) during 

neutron decay time, which unbinds the electron-proton pair. 

Because the neutron is always regarded as a "neutral" particle, scientists' calculations of nuclear 

reactions and stray reactions may only be partially accurate. The electron and proton may take 

part in reactions with nuclei or with other electrons and protons when the electron-proton pair that 

built the neutron unbinds. While some of these reactions will produce energy, others may use 

some of the system's energy to generate the fuel for fusion. 

As far as I know, these “additional” reactions were never mentioned in any scientific paper. 

However, some of them could be of such importance that they cannot be ignored and must be 

considered in calculations, as will be demonstrated in the development of this study. 

Since the neutron is one of the fusion products in several reactions and usually carries a high level 

of kinetic energy and radiation energy, we might be able to use these facts and the internal 

structure of the neutron in our favor. 

The fact that the neutron is a composite of two charges means that we may expect a radiation 

spectrum from X-rays to gamma rays when the particle is in positive or negative accelerated 

motion. This is additional energy that we may harvest from the “neutron”, which can be converted 

into electricity, besides the charges themselves. 

  

 

Figure 1 
Charge density of the proton and neutron 
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Total Energy of the Neutron as a Proton-Electron Bound 

In the series of articles about Negative Mass in Atom Nuclei [1] it is shown how this proton-electron 

bound is organized in the nucleus in extremely tightly packed shells that are balanced by 

electrodynamic forces. It was also demonstrated that the main force keeping that nuclear structure 

so strong is the electrostatic force, while the weaker magnetic forces also contribute to maintaining 

the nuclear dynamic equilibrium. We also stated that the charges shrink heavily under such extreme 

forces because they must fit into the extremely short distance among them. 

The binding energy or potential energy of the “neutron” (electron-proton pair) in the nucleus should 

be approximately 𝐸 = −2.127 𝑀𝑒𝑉 =  −3.40783 10−13 𝐽𝑜𝑢𝑙𝑒𝑠. This amount of energy is the initial 

energy of the “neutron” when starting its decay process outside the nucleus. 

The Universal Force for the electron-proton pair (neutron) in a head-on collision condition is given 

by: 

𝐹𝑁 = −
𝑘 𝑞2((1−

𝑣2

𝑐2
)𝑟−

2𝑟2𝑎

𝑐2
)

𝑟3
+

𝑘 𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
−

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
+

𝑟4𝑎

𝑐2
)

𝑟5
       (1a) 

The binding energy, or potential energy, is normally calculated for zero velocity and acceleration (or 

at least very low kinetic values). Under such conditions, let’s calculate the distance between the 

charge centers of the electron-proton pair for the given binding energy. 

Recall that the total energy is calculated as follows: 

𝐸 = −∫ 𝐹𝑁 𝑑𝑟
𝑟

1027

 

The binding energy of the “neutron” in Joules is 𝐸 = −3.4078310−13[𝐽𝑜𝑢𝑙𝑒𝑠]. Now we can proceed 

with the integration and solve for 𝑟. 

−3.40783 10−13 = −∫ 𝐹𝑁 𝑑𝑟
𝑟

1027

 

As a result, the calculated distance between the charge centers of the electron-proton pair (neutron), 

is 𝑟 = 0.6753 10−15𝑚. 

Now we can calculate the total energy of the “neutron” inside the nucleus, and immediately at the 

beginning of its decay: 

𝐸𝑁 = −∫ 𝐹𝑁

0.6753 10−15

1027

𝑑𝑟 

𝐸𝑁 = −3.408026062 × 10−13 + 4.966056036 × 10−43𝑎 + 3.786695625 × 10−30𝑣2   (1b) 

 

Radioactive Decay Rates can be Modified  
There is no reason to believe that the decay rate is immune to external agents or that it is the same 

for diverse environmental conditions [5]. We should keep in sight that we are dealing with charges. 

As such, their behavior can easily be changed or altered by electric potentials, electromagnetic 

fields, and the presence of other charges nearby. 

We don’t know if we are able to stop decaying at all. Experiments will give the answer. 

https://physics-answers.com/negative-mass-and-negative-refractive-index-in-atom-nuclei-nuclear-wave-equation-gravitational-and-inertial-control-part-1/
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But for sure, the decay rate, half-life time, etc., could be adapted to our necessities by using an 

adequate external agent. 

The high binding energy of the electron-proton pair (“neutron”), once outside the nucleus, can be 

greatly reduced by applying a strong electric field generated by an external potential. The energetic 

“neutron” will give off energy (radiation, kinetic) more quickly than in its usual decay rate, until the 

binding energy of the electron-proton pair eventually comes to a value of 𝐸 = −13.6 𝑒𝑉, which is the 

binding energy of the Hydrogen atom.  

However, due to the strong electric field, the “neutron” will never reach the conditions to remain as 

a Hydrogen atom because the electron-proton pair will be stripped apart by the external potential. 

At this point, we have captured two useful charges, plus the radiation they have emitted in 

the process, and converted everything into electricity [9]. 

We see that the otherwise declared “dangerous” neutron in many scientific papers, could be of 

invaluable help when it is adequately managed. We may extract good amounts of energy from it 

that we may use better than just boiling water. 

Please note that the same criteria can also be applied to the decay of Tritium. 

 

Deuterium: Nuclear Structure, Total Energy, and Deuterium-Deuterium Fusion 
 

Nuclear Structure of Deuterium 

In Fig. 2, we see the nuclear structure of 

Deuterium as shells and the physical 

orientation of the ring charges according to the 

New Atomic Model and the Spinning Ring 

Model of Elementary Particles (a toroidal ring 

of continuous charge) [1]. 

The net Force is the sum of the interactions of 

a shell with all the others. Therefore, the 

combination of all cross products between two 

shells will result in a net force of three terms. 

So, we’ll have 1-2, 1-3 and 2-3 shell interactions, i.e., p-e, p-p, and e-p. 

If the charges assemble in rectilinear motion, the Universal Force is: 

𝐹𝑢⃗⃗  ⃗ = (
𝑘𝑞1𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 −
𝑘𝑞1𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
) 𝑟̂      (1) 

The three interaction forces, each with the proper sign of the charges, are: 

𝐹1 = (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)       𝑝 − 𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛       

𝐹2 = (
𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 −
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     𝑝 − 𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

 

Figure 2 
Nuclear structure of Deutrium 
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𝐹1 = (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3
+

𝑘⋅𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)      𝑒 − 𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

The addition of the three forces above will give us the net force in the Deuterium nucleus: 

𝐹𝐷 = −
𝑘 𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘 𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5         (2) 

 

Total Energy of Deuterium 

Nowadays, masses are measured with very high precision and constitute trustworthy values that we 

may use for very accurate calculations.  

One easy way to calculate the rest energy (binding energy or potential energy) is by using the 

formula that is wrongly named “mass-energy”: 

𝐸 = (𝑚𝑛𝑢𝑐 − (𝑍 ⋅ 𝑚𝑝 + 𝑁 ⋅ 𝑚𝑁)) ⋅ 𝑐2[𝐽𝑜𝑢𝑙𝑒𝑠] 

Where 𝑚𝑛𝑢𝑐 is the nuclear mass, 𝑚𝑝 the proton mass, 𝑚𝑁 the neutron mass, 𝑍 the number of 

protons, 𝑁 the number of neutrons, and 𝑐 the speed of light. 

For Deuteron: 

𝐸D = (3.343583772410−27 − (1 ⋅ 1.6726219210−27 + 1 ⋅ 1.6749274710−27)) ⋅ (3108)2

= −3.569056200 × 10−13[𝐽𝑜𝑢𝑙𝑒𝑠] 

𝐸D = −2.227 𝑀𝑒𝑉   (3) 

To calculate the average distance between charge centers, we make use of the total energy integral 

equated to the energy value above, for v = 0, a = 0, and solve for 𝑟: 

𝐸 = −∫ 𝐹𝐷 𝑑𝑟
𝑟

1027

= −3.569056200 × 10−13[𝐽𝑜𝑢𝑙𝑒𝑠] 

𝑟 = 0.645 10−15𝑚 

Now we can obtain the total energy expression for Deuteron. This can be done in two ways: by 

solving the integral above for the value of 𝑟, or by using Eq. (4) from Part-2. 

By integration: 

𝐸D = −∫ 𝐹𝐷
0.64572 10−15

1027 𝑑𝑟  

𝐸𝐷 = −3.564145450 × 10−13 − 4.968346791 × 10−43𝑎 + 3.960161611 × 10−30𝑣2   (4) 

By using Eq. (4) from Part 2 and considering that the charges assemble in a head-on collision 

condition, i.e., 𝜃 = 𝛼 = 𝜋: 

𝐸 =
1

√1+(cos2(θ)−1)
𝑣2

𝑐2

⋅ (𝑘𝑞1𝑞2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) −

𝑘𝑞1𝑞2

𝑐2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) ⋅ 𝑣2 −

2𝑘𝑞1𝑞2 cos(α)

𝑐2 ⋅ (ln(𝑟𝑖) − ln(𝑟𝑓)) ⋅ 𝑎)  

𝐸𝐷 = −3.564145449 × 10−13 + 3.960161611 × 10−30𝑣2 − 4.968346791 × 10−43𝑎    (5) 
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Deuterium-Deuterium Fusion 

There are two possible reaction products and energies from the D-D fusion: 

𝐻 + 𝐻 → 𝐻𝑒2
3 + 𝑛        𝑄 = 3.3 𝑀𝑒𝑉1

2
1
2  

𝐻 + 𝐻 → 𝐻1
3 + 𝑝        𝑄 = 4.03 𝑀𝑒𝑉1

2
1
2  

Let's take the second reaction with the highest energy value to calculate the average distance 

between the charge centers and the total energy of the fusion. 

The net force for each Deuterium nucleus is given by Eq. (2). In the fusion process of both nuclei, 

the net forces will add up to one force. That is, the resultant net force is 𝐹𝐷−𝐷 = 2 𝐹𝐷. 

𝐹𝐷−𝐷 = −
2𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
2𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (6) 

As we have already calculated the binding energy of Deuteron in the previous paragraph (Eq. 3), 

the total energy of the reaction will be twice that energy, that is 𝐸𝑟 = 2 𝐸𝐷 = −4.45 𝑀𝑒𝑉 

(−7.1296910−13 𝐽𝑜𝑢𝑙𝑒𝑠). 

Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

−7.1296910−13 = −∫ 𝐹𝐷−𝐷

𝑟

1027

𝑑𝑟 

𝑟 = 0.646 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐷𝐷 = −∫ 𝐹𝐷−𝐷

0.646 10−15

1027

𝑑𝑟 

𝐸𝐷𝐷 = −7.125201238 × 10−13 − 9.936649237 × 10−43𝑎 + 7.916890265 × 10−30𝑣2 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the reaction as the total energy of the reactants 

minus the total energy of the products: 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻1 + 𝐸𝐻3) 

Where 𝐸𝐻1 = 0 (proton binding energy), and 𝐸𝐻3 = −8.48 𝑀𝑒𝑉 (binding energy of Tritium), give us 

the released energy of the D-D fusion: 

𝐸𝑟𝑒𝑙 = 4.03 𝑀𝑒𝑉 
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Helium 3: Nuclear Structure, Total Energy, and Helium3-Helium3 Fusion 

 

Nuclear Structure of Helium 3 

In Fig. 3, we see the nuclear structure of Helium 3 in organized 

shells according to the New Atomic Model and the Spinning 

Ring Model of Elementary Particles (a toroidal ring of 

continuous charge) [1]. 

The net Force is the sum of the interactions of a shell with all 

the others. Therefore, the combination of all cross products 

between two shells will result in a net force of three terms. So, 

we’ll have 1-2, 1-3, and 2-3 shell interactions, i.e., 2p-e, 2p-p, 

and e-p. 

If the charges assemble in rectilinear motion, the Universal 

Force is given by Eq. (1). The three interaction forces, each 

with the proper sign of the charges, are: 

𝐹1 = 2 ⋅ (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     2𝑝 − 𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐹2 = 2 ⋅ (
𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 −
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     2𝑝 − 𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐹3 = (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     𝑒 − 𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

The addition of the three forces above will give us the net force in the Helium 3 nucleus: 

𝐹𝐻𝑒3 = −
𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (7) 

 

Total Energy of Helium 3 

Nowadays, masses are measured with very high precision and constitute trustworthy values that we 

may use for very accurate calculations.  

One easy way to calculate the rest energy (binding energy or potential energy) is by using the 

formula that is wrongly named “mass-energy”: 

𝐸 = (𝑚𝑛𝑢𝑐 − (𝑍 ⋅ 𝑚𝑝 + 𝑁 ⋅ 𝑚𝑁)) ⋅ 𝑐2[𝐽𝑜𝑢𝑙𝑒𝑠] 

Where 𝑚𝑛𝑢𝑐 is the nuclear mass, 𝑚𝑝 the proton mass, 𝑚𝑁 the neutron mass, 𝑍 the number of 

protons, 𝑁 the number of neutrons, and 𝑐 the speed of light. 

  

 

Figure 3 
Nuclear structure of Helium 3 
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For Helium 3: 

𝐸𝐻𝑒3 = (5.00641166448 10−27 − (2 ⋅ 1.6726219210−27 + 1 ⋅ 1.6749274710−27)) ⋅ (3108)2 =

−1.238368140 × 10−12  𝐽𝑜𝑢𝑙𝑒𝑠  

𝐸He3 = −7.73 𝑀𝑒𝑉    (8) 

To calculate the average distance between charge centers, we make use of the total energy integral 

equated to the energy value above, for v = 0, a = 0, and solve for 𝑟: 

𝐸 = −∫ 𝐹𝐻𝑒3 𝑑𝑟
𝑟

1027

== −1.238368140 × 10−12[𝐽𝑜𝑢𝑙𝑒𝑠] 

𝑟 = 0.186 10−15𝑚 

Now we can obtain the total energy expression for Helium 3. This can be done in two ways: by 

solving the integral above for the value of 𝑟, or by using Eq. (4) from Part 2. 

By integration: 

𝐸He3 = −∫ 𝐹𝐻𝑒3
0.186 10−15

1027 dr  

𝐸𝐻𝑒3 = −1.237333333 × 10−12 − 5.032000494 × 10−43𝑎 + 1.374814815 × 10−29𝑣2   (9) 

By using Eq. (4) from Part 2 and considering that the charges assemble in a head-on collision 

condition, i.e., 𝜃 = 𝛼 = 𝜋: 

𝐸 =
1

√1+(cos2(θ)−1)
𝑣2

𝑐2

⋅ (𝑘𝑞1𝑞2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) −

𝑘𝑞1𝑞2

𝑐2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) ⋅ 𝑣2 −

2𝑘𝑞1𝑞2 cos(α)

𝑐2 ⋅ (ln(𝑟𝑖) − ln(𝑟𝑓)) ⋅ 𝑎)  

𝐸𝐻𝑒3 = −1.237333333 × 10−12 + 1.374814815 × 10−29𝑣2 − 5.032000494 × 10−43𝑎    (10) 

 

Helium 3-Helium 3 Fusion 

There might be three possible reactions, namely: 

a) 𝐻𝑒2
3 + 𝐻𝑒2

3  →  2 𝐻1
3 + 2𝑝      𝑄 = −14.6 𝑀𝑒𝑉 

b) 𝐻𝑒2
3 + 𝐻𝑒2

3  →  𝐻1
2 + 𝐻𝑒2

4 + 1𝑝      𝑄 = 7 𝑀𝑒𝑉 

c) 𝐻𝑒2
3 + 𝐻𝑒2

3  →  𝐻𝑒2
4 + 2𝑝      𝑄 = 12.86 𝑀𝑒𝑉 

For the calculations that follow, we’ll take the reaction products and energies from the He3-He3 

fusion c). 

Let's calculate the average distance between the charge centers and the total energy of the fusion. 

The net force for each Helium 3 nucleus is given by Eq. (7). In the fusion process of both nuclei, the 

net forces will add up to one force. That is, the resultant net force is 𝐹𝐻𝑒3−𝐻𝑒3 = 2 𝐹𝐻𝑒3. 

𝐹𝐻𝑒3−𝐻𝑒3 = −
2𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
2𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (11) 

As we have already calculated the binding energy of Helium 3 in the previous paragraph (Eq. 8), 

the total energy of the reaction will be twice that energy, that is 𝐸𝑟 = 2 𝐸𝐻𝑒3 = −15.46 𝑀𝑒𝑉 

(−2.476965 10−12 𝐽𝑜𝑢𝑙𝑒𝑠). 
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Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

−2.476965 10−12 = −∫ 𝐹𝐻𝑒3−𝐻𝑒3

𝑟

1027

𝑑𝑟 

𝑟 = 0.186 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐻𝑒3−𝐻𝑒3 = −∫ 𝐹𝐻𝑒3−𝐻𝑒3

0.186 10−15

1027

𝑑𝑟 

𝐸𝐻𝑒3−𝐻𝑒3 = −2.474666667 × 10−12 − 1.006400099 × 10−42𝑎 + 2.749629630 × 10−29𝑣2 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the reaction as the total energy of the reactants 

minus the total energy of the products: 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 2 𝐸𝐻1) 

Where 𝐸𝐻1 = 0 (proton binding energy), and 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), give 

us the released energy of the He3-He3 fusion: 

𝐸𝑟𝑒𝑙 = 12.84 𝑀𝑒𝑉 

 

Tritium: Nuclear Structure, Total Energy, and Tritium-Tritium Fusion 

 

Nuclear Structure of Tritium 

In Fig. 4, we see the nuclear structure of Tritium in organized 

shells according to the New Atomic Model and the Spinning 

Ring Model of Elementary Particles (a toroidal ring of 

continuous charge) [1]. 

The net Force is the sum of the interactions of a shell with all 

the others. Therefore, the combination of all cross products 

between two shells will result in a net force of three terms. So, 

we’ll have 1-2, 1-3, and 2-3 shell interactions, i.e., p-2e, 1p-2p, 

and 2e-2p. 

If the charges assemble in rectilinear motion, the Universal 

Force is given by Eq. (1). The three interaction forces, each 

with the proper sign of the charges, are: 

𝐹1 = 2 ⋅ (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     1𝑝 − 2𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐹2 = 2 ⋅ (
𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 −
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     1𝑝 − 2𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

 

Figure 4 
Nuclear structure of Tritium 
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𝐹3 = 4 ⋅ (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3
+

𝑘⋅𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)    2𝑒 − 2𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

The addition of the three forces above will give us the net force in the Tritium nucleus: 

𝐹𝐻3 = −
4𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
4𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (12) 

 

Total Energy of Tritium 

Nowadays, masses are measured with very high precision and constitute trustworthy values that we 

may use for very accurate calculations.  

One easy way to calculate the rest energy (binding energy or potential energy) is by using the 

formula that is wrongly named “mass-energy”: 

𝐸 = (𝑚𝑛𝑢𝑐 − (𝑍 ⋅ 𝑚𝑝 + 𝑁 ⋅ 𝑚𝑁)) ⋅ 𝑐2[𝐽𝑜𝑢𝑙𝑒𝑠] 

Where 𝑚𝑛𝑢𝑐 is the nuclear mass, 𝑚𝑝 the proton mass, 𝑚𝑁 the neutron mass, 𝑍 the number of 

protons, 𝑁 the number of neutrons, and 𝑐 the speed of light. 

For Tritium: 

𝐸𝐻3 = (5.0073561458110−27 − (1 ⋅ 1.6726219210−27 + 2 ⋅ 1.6749274710−27)) ⋅ (3108)2 =

−1.360864260 10−12  𝐽𝑜𝑢𝑙𝑒𝑠  

𝐸H3 = −8.49 𝑀𝑒𝑉    (13) 

To calculate the average distance between charge centers, we make use of the total energy integral 

equated to the energy value above, for v = 0, a = 0, and solve for 𝑟: 

𝐸 = −∫ 𝐹𝐻3 𝑑𝑟
𝑟

1027

== −1.36086426010−12[𝐽𝑜𝑢𝑙𝑒𝑠] 

𝑟 = 0.676 10−15𝑚 

Now we can obtain the total energy expression for Tritium. This can be done in two ways: by 

solving the integral above for the value of 𝑟, or by using Eq. (4) from Part 2. 

By integration: 

𝐸H3 = −∫ 𝐹𝐻3
0.676 10−15

1027 𝑑𝑟  

𝐸𝐻3 = −1.361798817 × 10−12 − 1.986401220 × 10−42𝑎 + 1.513109796 × 10−29𝑣2   (14) 

By using Eq. (4) from Part-2 and considering that the charges assemble in a head-on collision 

condition, i.e., 𝜃 = 𝛼 = 𝜋. Note that we must match factor 4 as in force (Eq. 12): 

𝐸 =
1

√1+(cos2(θ)−1)
𝑣2

𝑐2

⋅ 4 (𝑘𝑞1𝑞2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) −

𝑘𝑞1𝑞2

𝑐2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) ⋅ 𝑣2 −

2𝑘𝑞1𝑞2 cos(α)

𝑐2 ⋅ (ln(𝑟𝑖) − ln(𝑟𝑓)) ⋅ 𝑎)  

𝐸𝐻3 = −1.361798817 × 10−12 + 1.513109797 × 10−29𝑣2 − 1.986401221 × 10−42𝑎    (15) 
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Tritium-Tritium Fusion 

There are two possible reactions. One that takes energy from the system, and another one that 

generates energy. 

The reaction products and energies from both cases in the H3-H3 fusion are: 

𝐻1
3 + 𝐻1

3   →   𝐻2
4 𝑒 + 2n      Q = 11.3 MeV 

𝐻1
3 + 𝐻1

3   →   𝐻1
2 + 𝐻1

2 + 2n      Q = −12.5 MeV 

Being optimistic (though not realistic), we may assume that the system is unable to supply the 

energy for the second reaction to happen. So, in our example, we’ll work with the first reaction. 

Let's calculate the average distance between the charge centers and the total energy of the fusion. 

The net force for each Tritium nucleus is given by Eq. (12). In the fusion process of both nuclei, the 

net forces will add up to one force. That is, the resultant net force is 𝐹𝐻3−𝐻3 = 2 𝐹𝐻3. 

𝐹𝐻3−𝐻3 = −
8𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
8𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (16) 

As we have already calculated the binding energy of Tritium in the previous paragraph (Eq. 13), the 

total energy of the reaction will be twice that energy, that is 𝐸𝑟 = 2 𝐸𝐻3 = −16.98 𝑀𝑒𝑉 

(−2.720496 10−12 𝐽𝑜𝑢𝑙𝑒𝑠). 

Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

−2.720496 10−12 = −∫ 𝐹𝐻3−𝐻3

𝑟

1027

𝑑𝑟 

𝑟 = 0.677 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐻3−𝐻3 = −∫ 𝐹𝐻3−𝐻3

0.677 10−15

1027

𝑑𝑟 

𝐸𝐻3−𝐻3 = −2.719574594 × 10−12 − 3.972741960 × 10−42𝑎 + 3.021749549 × 10−29𝑣2 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the reaction as the total energy of the reactants 

minus the total energy of the products. The released energy calculation will depend on how we 

consider the neutron: as a “neutral” unbound particle, or as an electron-proton bound. 

a. Released energy with the neutron as an unbound, “neutral particle”: 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 0 ⋅ 𝐸𝑁) 

Where 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), and 𝐸𝑁 = 0 𝑀𝑒𝑉 (binding energy of the 

neutron), give us the released energy of the T-T fusion: 

𝐸𝑟𝑒𝑙 = 11.32 𝑀𝑒𝑉 
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b. Released energy with the neutron as an electron-proton bound: 

We assume that the neutron keeps its binding energy immediately after leaving the nucleus, 

before starting its decay. It means that this released energy will reach its maximum in this instant, 

and then gradually decrease. 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 𝐸𝑁) 

Where 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), and 𝐸𝑁 = −2.127 𝑀𝑒𝑉 (binding energy of 

the electron-proton that constitutes the “neutron”, immediately after leaving the nucleus). That gives 

us the released energy of the T-T fusion at the earliest instant: 

𝐸𝑟𝑒𝑙 = 13.4 𝑀𝑒𝑉 

 

Helium 4: Nuclear Structure, Total Energy, and Helium4-Helium4 Fusion 

 

Nuclear Structure of Helium 4 

In Fig. 5 we see the nuclear structure of Helium 4 in organized 

shells according to the New Atomic Model and the Spinning 

Ring Model of Elementary Particles (a toroidal ring of 

continuous charge) [1]. 

The net Force is the sum of the interactions of a shell with all 

the others. Therefore, the combination of all cross products 

between two shells will result in a net force of three terms. So, 

we’ll have 1-2, 1-3, and 2-3 shell interactions, i.e., 2p-2e, 2p-

2p, and 2e-2p. 

If the charges assemble in rectilinear motion, the Universal 

Force is given by Eq. (1). The three interaction forces, each 

with the proper sign of the charges, are: 

𝐹1 = 4 ⋅ (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)     2𝑝 − 2𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐹2 = 4 ⋅ (
𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 −
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)    2𝑝 − 2𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐹3 = 4 ⋅ (
−𝑘⋅𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘⋅𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
)    2𝑒 − 2𝑝 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

The addition of the three forces above will give us the net force in the Helium-4 nucleus: 

𝐹𝐻𝑒4 = −
4𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3
+

4𝑘𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
       (17) 

  

 

Figure 5 
Nuclear structure of Helium 4 
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Total Energy of Helium-4 

Nowadays, masses are measured with very high precision and constitute trustworthy values that we 

may use for very accurate calculations.  

One easy way to calculate the rest energy (binding energy or potential energy) is by using the 

formula that is wrongly named “mass-energy”: 

𝐸 = (𝑚𝑛𝑢𝑐 − (𝑍 ⋅ 𝑚𝑝 + 𝑁 ⋅ 𝑚𝑁)) ⋅ 𝑐2[𝐽𝑜𝑢𝑙𝑒𝑠] 

Where 𝑚𝑛𝑢𝑐 is the nuclear mass, 𝑚𝑝 the proton mass, 𝑚𝑁 the neutron mass, 𝑍 the number of 

protons, 𝑁 the number of neutrons, and 𝑐 the speed of light. 

For Helium-4: 

𝐸𝐻𝑒4 = (6.64465675310−27 − (2 ⋅ 1.6726219210−27 + 2 ⋅ 1.6749274710−27)) ⋅ (3108)2 =

−4.539782430 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠  

𝐸He4 = −28.3 𝑀𝑒𝑉    (18) 

To calculate the average distance between charge centers, we make use of the total energy integral 

equated to the energy value above, for v = 0, a = 0, and solve for 𝑟: 

𝐸 = −∫ 𝐹𝐻𝑒4 𝑑𝑟
𝑟

1027

= −4.53978243010−12[𝐽𝑜𝑢𝑙𝑒𝑠] 

𝑟 = 0.203 10−15𝑚 

Now we can obtain the total energy expression for Helium-4. This can be done in two ways: by 

solving the integral above for the value of 𝑟, or by using Eq. (4) from Part-2. 

By integration: 

𝐸He4 = −∫ 𝐹𝐻𝑒4
0.203 10−15

1027 𝑑𝑟  

𝐸𝐻𝑒4 = −4.534857143 × 10−12 − 2.011011021 × 10−42𝑎 + 5.038730159 × 10−29𝑣2   (19) 

 

By using Eq. (4) from Part-2 and considering that the charges assemble in a head-on collision 

condition, i.e., 𝜃 = 𝛼 = 𝜋. Note that we must match factor 4 as in force (Eq. 17): 

𝐸 =
1

√1+(cos2(θ)−1)
𝑣2

𝑐2

⋅ 4 (𝑘𝑞1𝑞2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) −

𝑘𝑞1𝑞2

𝑐2 ⋅ (
1

𝑟𝑓
−

1

𝑟𝑖
) ⋅ 𝑣2 −

2𝑘𝑞1𝑞2 cos(α)

𝑐2 ⋅ (ln(𝑟𝑖) − ln(𝑟𝑓)) ⋅ 𝑎)  

𝐸𝐻𝑒4 = −4.534857144 × 10−12 + 5.038730160 × 10−29𝑣2 − 2.011011022 × 10−42𝑎    (20) 

 

Helium 4-Helium 4 Fusion 

There are several possible reactions, but most of them (if they can happen) will take energy from 

the system. The reaction products and energies for all possible reactions in the He4-He4 fusion are 

given below. 

a) Possible reactions by considering the neutron as a “neutral” electron-proton bound:  

He42
4 + He42

4   →   B4
8 e → He42

4 + He42
4        Q = −0.1 MeV 
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This is a highly unstable reaction that takes some energy from the system. Beryllium 8 will decay 

back into two alpha particles with a half lifetime of approximately 10−16𝑠. 

If another alpha particle can fuse with the beryllium nucleus before it decays, stable carbon is 

formed along with gamma radiation. This reaction generates energy: 

𝐵4
8 e + 𝐻2

4
𝑒4  → 𝐶6

12   + γ      Q = 7.3 MeV 

More reactions: 

He42
4 + He42

4   →   Li3
6 + H1

2        Q = −22.4 MeV 

He42
4 + He42

4   →   He2
3 +   He2

3 + 2n      Q = −41.1 MeV 

He42
4 + He42

4   →  2 H1
3 +   H1

2 + 1p      Q = −45.5 MeV 

He42
4 + He42

4   → 2  H1
3 + 2p      Q = −39.6 MeV 

He42
4 + He42

4   →   H1
2 +   H1

3 + He2
3       Q = −38.2 MeV 

 

b) Possible reactions by considering the neutron as an unbound electron-proton pair:  

Once the electron-proton pair that makes the neutron is practically unbound, both charges might 

participate in reactions involving nuclei or other electrons and protons. 

𝐻𝑒4 + 𝐻𝑒4 → 2𝐻3 + 2𝑝         𝑄 = −39.6 𝑀𝑒𝑉 

He4 + He4 → 𝐻2 + H3 + He3          Q = −38.2 MeV 

𝐻𝑒4 + 𝐻𝑒4 → 𝐵𝑒8         𝑄 = −0.1 𝑀𝑒𝑉 

𝐻𝑒4 + 𝐻𝑒4 → 𝐻2 + 𝐿𝑖          𝑄 = −22.4 𝑀𝑒𝑉 

The first three reactions coincide with three of the reactions described in the previous paragraph. 

None of the reactions above are useful because almost all of them take huge quantities of energy 

from the system. Even the second one in a) that generates energy, might never occur. You must 

be very, very lucky to get that in such a short lifetime of beryllium. 

Due to the huge amount of energy needed, the reactions above may only take place at some stars 

that can supply the necessary energy. Otherwise, they will never happen. 

In our example, we’ll work with the first reaction of section a) above, i.e., until the production of 

Beryllium-8. 

Let's calculate the average distance between the charge centers and the total energy of the fusion 

for the chosen reaction chain. 

The net force for each Helium-4 nucleus is given by Eq. (17). In the fusion process of both nuclei, 

the net forces will add up to one force. That is, the resultant net force is 𝐹𝐻𝑒4−𝐻𝑒4 = 2 𝐹𝐻𝑒4. 

𝐹𝐻𝑒4−𝐻𝑒4 = −
8𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
8𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (21) 

As we have already calculated the binding energy of Helium-4 in the previous paragraph (Eq. 18), 

the total energy of the reaction will be twice that energy, that is 𝐸𝑟 = 2 𝐸𝐻𝑒4 = −56.6 𝑀𝑒𝑉 

(−9.06832 10−12𝐽𝑜𝑢𝑙𝑒𝑠). 
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Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

−9.06832 10−12 = −∫ 𝐹𝐻𝑒4−𝐻𝑒4

𝑟

1027

𝑑𝑟 

𝑟 = 0.203 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐻𝑒4−𝐻𝑒4 = −∫ 𝐹𝐻𝑒4−𝐻𝑒4

0.203 10−15

1027

𝑑𝑟 

𝐸𝐻𝑒4−𝐻𝑒4 = −9.069714286 × 10−12 − 4.022022042 × 10−42𝑎 + 1.007746032 × 10−28𝑣2 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the chosen fusion chain as the total energy of the 

reactants minus the total energy of the products. 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐵𝑒8) 

Where 𝐸𝐵𝑒8 = −56.5 𝑀𝑒𝑉 (the binding energy of Beryllium-8), that gives us the released energy of 

the chosen fusion chain: 

𝐸𝑟𝑒𝑙 = −0.1 𝑀𝑒𝑉 

 

Helium3-Deuterium Fusion 

The reaction products and energy of the 

He3-D fusion are given below. 

𝐻𝑒2
3 + 𝐻1

2   →   𝐻𝑒2
4 + 1𝑝      Q = 18.3 MeV 

 

Let's calculate the average distance 

between the charge centers and the total 

energy of the fusion. 

The net force for Helium-3 nucleus is 

given by Eq. (7), while the net force for 

Deuterium nucleus corresponds to Eq. (2). 

In the fusion process of both nuclei, the net forces will add up to one force. That is, the resultant net 

force is 𝐹𝐻𝑒3−𝐷 = 𝐹𝐻𝑒3 + 𝐹𝐷. 

𝐹𝐻𝑒3−𝐷 = −
2𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
2𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5        (22) 

As we have already calculated the binding energies of Helium-3 (Eq. 8) and Deuterium (Eq. 3), the 

total energy of the reaction will be the sum of both energies, that is 𝐸𝑟 = 𝐸𝐻𝑒3 + 𝐸𝐷 = −9.96 𝑀𝑒𝑉 

(−1.59577 10−12𝐽𝑜𝑢𝑙𝑒𝑠). 

Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

 

Figure 6 
Nuclear structure of Deuterium (left) and Helium-3 (right) 
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−1.59577 10−12 = −∫ 𝐹𝐻𝑒3−𝐷

𝑟

1027

𝑑𝑟 

𝑟 = 0.288 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐻𝑒3−𝐷 = −∫ 𝐹𝐻𝑒3−𝐷

0.288 10−15

1027

𝑑𝑟 

𝐸𝐻𝑒3−D = −1.598222222 × 10−12 − 1.001928004 × 10−42𝑎 + 1.775802469 × 10−29𝑣2 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the fusion as the total energy of the reactants minus 

the total energy of the products. 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 𝐸𝐻1) 

Where 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), and 𝐸𝐻1 = 0 𝑀𝑒𝑉 (binding energy of the 

proton), give us the released energy of the fusion: 

𝐸𝑟𝑒𝑙 = 18.34 𝑀𝑒𝑉 

Now let’s find the distance between charge centers for the released energy  
𝐸𝑟𝑒𝑙 of the reaction (for v = 0 and a = 0): 

2.938392 10−12 = −∫ 𝐹𝐻𝑒3−𝐷

1027

𝑟

𝑑𝑟 

𝑟 = 0.156 10−15𝑚 

Then, the total released energy of the fusion will be: 

𝐸𝐻𝑒3−𝐷 = −∫ 𝐹𝐻𝑒3−𝐷

0.156 10−15

1027

𝑑𝑟 

𝐸 = 2.950564103 × 10−12 + 1.008199218 × 10−42𝑎 − 3.278404558 × 10−29𝑣2   (22a) 

 

Deuterium-Tritium Fusion 
The reaction products and energy of the 

D-T fusion are given below. 

𝐻1
2 + 𝐻1

3   →   𝐻𝑒2
4 + 1𝑛      Q = 17.6 MeV 

 

Let's calculate the average distance 

between the charge centers and the total 

energy of the fusion. 

The net force for Tritium nucleus is given 

by Eq. (12), while the net force for 

Deuterium nucleus corresponds to Eq. (2). 

 

Figure 7 
Nuclear structure of Deuterium (left) and Tritium (right) 
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In the fusion process of both nuclei, the net forces will add up to one force. That is, the resultant net 

force is 𝐹𝐷−𝑇 = 𝐹𝐷 + 𝐹𝑇. 

𝐹𝐷−𝑇 = −
5𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3
+

5𝑘𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
       (23) 

As we have already calculated the binding energies of Tritium (Eq. 13) and Deuterium (Eq. 3), the 

total energy of the reaction will be the sum of both energies, that is 𝐸𝑟 = 𝐸𝐻3 + 𝐸𝐷 = −10.7 𝑀𝑒𝑉 

(−1.71433 10−12𝐽𝑜𝑢𝑙𝑒𝑠). 

Now let’s find the distance between charge centers for the given reaction energy (for v = 0 and a = 

0): 

−1.71433 10−12 = −∫ 𝐹𝐷−𝑇

𝑟

1027

𝑑𝑟 

𝑟 = 0.671 10−15𝑚 

Then, the total reaction energy of the fusion will be: 

𝐸𝐷−𝑇 = −∫ 𝐹𝐷−𝑇

0.671 10−15

1027

𝑑𝑟 

𝐸𝐷−𝑇 = −1.714932936 × 10−12 − 2.483191367 × 10−42𝑎 + 1.905481040 × 10−29𝑣2   (24) 

 

We can calculate the released energy (𝐸𝑟𝑒𝑙) of the reaction as the total energy of the reactants 

minus the total energy of the products. The released energy calculation will depend on how we 

consider the neutron: as a “neutral” unbound particle, or as an electron-proton bound. 

a. Released energy with the neutron as an unbound, “neutral particle”: 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 0 ⋅ 𝐸𝑁) 

Where 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), and 𝐸𝑁 = 0 𝑀𝑒𝑉 (binding energy of the 

neutron), give us the released energy of the T-T fusion: 

𝐸𝑟𝑒𝑙 = 17.6 𝑀𝑒𝑉 

b. Released energy with the neutron as an electron-proton bound: 

We assume that the neutron keeps its binding energy immediately after leaving the nucleus, 

before starting its decay. It means that this released energy will reach its maximum in this instant, 

and then gradually decrease. 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − (𝐸𝐻𝑒4 + 𝐸𝑁) 

Where 𝐸𝐻𝑒4 = −28.3 𝑀𝑒𝑉 (binding energy of Helium-4), and 𝐸𝑁 = −2.127 𝑀𝑒𝑉 (binding energy of 

the electron-proton that constitutes the “neutron”, immediately after leaving the nucleus). That gives 

us the released energy of the D-T fusion at the earliest instant: 

𝐸𝑟𝑒𝑙 = 19.7 𝑀𝑒𝑉 

The released Energy Calculated with Classical Mechanics 
Until now, physicists have been unable to provide a way of calculating the total energy of a 

dynamic system that, besides velocity, can also account for the acceleration of the particles. You 



19 
 

can make kinetic energy calculations based only on the velocity of the particles. But you’ll never 

know what acceleration was needed to reach that velocity. 

Classical Mechanics and the Theory of Relativity are no exceptions, because neither of them 

provides the right calculation method for the total energy. 

Ignoring acceleration in a dynamic system of electric charges will yield totally wrong 

results. In other words, you are completely dismissing radiation! 

That said, let’s make the deficient energy calculations for the fusion products. 

We assume that the released energy is given by the addition of the kinetic energy of the products, 

namely: 

𝐸𝑟𝑒𝑙 = 𝐾𝐻𝑒4 + 𝐾𝑁 = 2.82 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 

1

2
𝑚𝐻𝑒4𝑣𝐻𝑒4

2 +
1

2
𝑚𝑁𝑣𝑁

2 = 2.82 10−12     (24a) 

We have one equation with two unknowns (velocities), so we need a second equation to get the 

velocities. Assuming also that both particles had undergone an elastic collision, the conservation 

of momentum is given by: 

𝑝𝐻𝑒4 + 𝑝𝑁 = 0 

𝑚𝐻𝑒4𝑣𝐻𝑒4 + 𝑚𝑁𝑣𝑁 = 0     (24b) 

When solving the system of equations (24a) and (24b) for 𝑣𝐻𝑒4 and 𝑣𝑁, we get: 𝑣𝐻𝑒4 = 1.3 107 𝑚

𝑠
 

and 𝑣𝑁 = 5.2 107 𝑚

𝑠
.  

The kinetic energy of the products is: 

𝐾𝐻𝑒4 =
1

2
𝑚𝐻𝑒4𝑣𝐻𝑒

2 = 5.677695370 × 10−13 𝐽𝑜𝑢𝑙𝑒𝑠 =  3.5 𝑀𝑒𝑉      (24c) 

𝐾𝑁 =
1

2
𝑚𝑁𝑣𝑁

2 = 2.252230463 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 =  14 𝑀𝑒𝑉       (24d) 

By completely ignoring radiation, we finally get the deficient result of the released energy: 

𝐸𝑟𝑒𝑙 = 𝐾𝐻𝑒4 + 𝐾𝑁 = 17.5 𝑀𝑒𝑉    (24e) 

 

How to Calculate the Real Released Energy and the Single Energy of the Products 
So far, we have reviewed several nuclear fusion reactions in previous paragraphs and calculated 

the released energy in each case. 

However, those released energy values are incorrect because they resulted from an 

inadequate calculation method that completely ignored the radiation energy and relied only 

on Einstein's mass excess/defect formula or potential energy alone. 

In this section, it will be demonstrated how to make the right calculation for the total released 

energy of the reaction and the single energy of each reaction product. 

The Deuterium-Tritium fusion from the previous paragraph will be taken as an example. 
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To calculate the total energy of the products, we must add the net force of the neutron given by 

Eq. (1a) to the net force of helium-4 given by Eq. (17). The resultant net force of the products is 

then: 

𝐹𝐻𝑒4−𝑁 = −
4𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3
+

4𝑘𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5
−

𝑘𝑞2((1−
𝑣2

𝑐2
)𝑟−

2𝑟2𝑎

𝑐2
)

𝑟3
+

𝑘𝑞2(1−
𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
−

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
+

𝑟4𝑎

𝑐2
)

𝑟5       (25) 

Now let’s find the distance between charge centers for the released energy (for v = 0 and a = 0): 

−2.81983 10−12 = −∫ 𝐹𝐻𝑒4−𝑁

𝑟

1027

𝑑𝑟 

𝑟 = 0.408 10−15𝑚 

Then, the total products’ energy from the fusion will be: 

𝐸𝑝 = −∫ 𝐹𝐻𝑒4−𝑁

0.408 10−15

1027

𝑑𝑟 

𝐸𝑝 = −2.820392157 × 10−12 − 1.497547959 × 10−42𝑎 + 3.133769063 × 10−29𝑣2     (26) 

Where 𝑣, 𝑎 are the relative velocity and acceleration between the particles. 

On the other hand, the released energy is the total energy of the reactants minus the total energy 

of the products (Eq. 24 minus Eq. 26): 

𝐸𝑟𝑒𝑙 = 𝐸𝑟 − 𝐸𝑝 = 2.8198310−12 𝐽𝑜𝑢𝑙𝑒𝑠 

𝐸𝑟𝑒𝑙 = −7.355155092 × 10−12 − 3.980739327 × 10−42𝑎 + 5.039250104 × 10−29𝑣2 = 0    (27) 

Where 𝑣, 𝑎 are the relative velocity and acceleration between the particles. 

Solving the equation system given by Eq. (26) and Eq. (27) gives us the values of the relative 

velocity and acceleration. 

𝑣 = ± 6.56 107  
𝑚

𝑠
,  𝑎 = − 1.79 1030  

𝑚

𝑠2       (27a) 

Where 𝑣 = (𝑣𝐻𝑒4 − 𝑣𝑁) and 𝑎 = (𝑎𝐻𝑒4 − 𝑎𝑁). As we have four unknowns, we need four equations 

to get the solutions. The four equations will be: 𝐸𝑟𝑒𝑙, 𝐸𝑝, 𝐸𝐻𝑒4 and 𝐸𝑁. 

The total energy of Helium-4 for the released energy is given by the following equation: 

𝐸𝐻𝑒4 = 2.256313725 × 10−12 + 1.996730613 × 10−42𝑎 − 2.507015251 × 10−29𝑣2   (28) 

 

The system of Equations 

Our system of equations is made up of Eq. (1b), Eq. (26), Eq. (27) and Eq. (28), which are 

rewritten below in terms of the single velocity and acceleration of the products:  

𝐸𝑟𝑒𝑙 = −7.355155092 × 10−12 − 3.980739327 × 10−42(𝑎𝐻𝑒4 − 𝑎𝑁) + 5.039250104 × 10−29(𝑣𝐻𝑒4 − 𝑣𝑁)2 = 0  

𝐸𝑝 = −2.820392157 × 10−12 − 1.497547959 × 10−42(𝑎𝐻𝑒4 − 𝑎𝑁) + 3.133769063 × 10−29(𝑣𝐻𝑒4 − 𝑣𝑁)2 

𝐸𝐻𝑒4 = 2.256313725 × 10−12 + 1.996730613 × 10−42𝑎𝐻𝑒4  − 2.507015251 × 10−29𝑣𝐻𝑒4
2  
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𝐸𝑁 = −3.408026062 × 10−13 + 4.966056036 × 10−43𝑎𝑁 + 3.786695625 × 10−30𝑣𝑁
2  

The four solutions of this system are: 

1) 𝑣𝐻𝑒4 = − 3.635803959 107  
𝑚

𝑠
; 𝑎𝐻𝑒4 = −1.113406736 1030  

𝑚

𝑠2
; 𝑣𝑁 =  2.931466029 107  

𝑚

𝑠
; 

𝑎𝑁 = 6.79681560 1029  
𝑚

𝑠2 

2) 𝑣𝐻𝑒4 = −1.32685352 107  
𝑚

𝑠
; 𝑎𝐻𝑒4 = −1.127793609 1030  

𝑚

𝑠2
; 𝑣𝑁 =  5.240416466 107  

𝑚

𝑠
; 𝑎𝑁 =

6.652946875 1029  
𝑚

𝑠2 

3) 𝑣𝐻𝑒4 = 3.635803959 107  
𝑚

𝑠
; 𝑎𝐻𝑒4 = −1.113406736 1030  

𝑚

𝑠2
; 𝑣𝑁 = −2.931466029 107  

𝑚

𝑠
; 

𝑎𝑁 = 6.79681560 1029  
𝑚

𝑠2 

4) 𝑣𝐻𝑒4 = 1.32685352 107  
𝑚

𝑠
; 𝑎𝐻𝑒4 = −1.127793609 1030  

𝑚

𝑠2
; 𝑣𝑁 = −5.240416466 107  

𝑚

𝑠
; 𝑎𝑁 =

6.652946875 1029  
𝑚

𝑠2 

The velocity of the products in solutions 2) and 4) coincides with the values obtained in the 

conventional Mechanics calculations in the prior section. The relative velocity and acceleration 

given in (27a) are also satisfied. 

Solution 2) will be taken for the calculation that follows. 

 

Generic Total Energy Equation for Helium-4 

The net force for Helium-4 nucleus is given by Eq. (17). Now let’s calculate the generic equation 

for the total energy: 

𝐸𝐻𝑒4 = −∫ 𝐹𝐻𝑒4 𝑑𝑟
𝑟𝑓

𝑟𝑖

 

Where 𝑟𝑖, 𝑟𝑓 are the initial and final distances between charge centers. After integration, we get the 

generic expression of the total energy of Helium-4: 

𝐸𝐻𝑒4 = −4𝑘𝑞2 (
1

𝑟𝑓
) +

4𝑘𝑞2

𝑐2
(

1

𝑟𝑓
) ⋅ 𝑣2 +

8𝑘𝑞2

𝑐2 (ln(𝑟𝑓) − ln(𝑟𝑖)) ⋅ 𝑎     (29) 

As we have seen in the derivation of the total energy in Part 2, the second term is the classic 

kinetic energy, which is related to the mass and velocity of the particle. From this term, we are 

going to make a very accurate estimation of the distance between charge centers 𝑟𝑓. Recall from 

the derivation of the total energy in Part 2 that the mass is given by 𝑚𝑠𝑦𝑠 =
2𝑘𝑞1𝑞2

𝑐2
(

1

𝑟𝑓
−

1

𝑟𝑖
), which in 

our case turns out to be: 𝑚𝐻𝑒4 =
8 𝑘𝑞2

𝑐2
(

1

𝑟𝑓
). Therefore, we can write the second term as follows, 

and solve for 𝑟𝑓: 

4𝑘𝑞2

𝑐2
(
1

𝑟𝑓
)𝑣𝐻𝑒4

2 =
1

2
⋅ 𝑚𝐻𝑒4 ⋅ 𝑣𝐻𝑒4

2  

𝑟𝑓𝐻𝑒4 = 3.1 10−18𝑚    (30) 

Recall that the initial distance was chosen to be: 𝑟𝑖 = 1027𝑚. 
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Evaluation of the Total Energy of Helium-4 and the Single Terms that make it up 

Taking solution 2) from previous paragraphs, we’ll get the values of the total energy of Helium-4 

that is released in the Deuterium-Tritium fusion and evaluate the magnitude of the single terms in 

the total energy equation. 

𝐸𝐻𝑒4 = −4𝑘𝑞2 (
1

𝑟𝑓𝐻𝑒4
) +

4𝑘𝑞2

𝑐2 (
1

𝑟𝑓𝐻𝑒4
) ⋅ 𝑣𝐻𝑒4

2 +
8𝑘𝑞2

𝑐2 (ln(𝑟𝑓𝐻𝑒4) − ln(𝑟𝑖)) ⋅ 𝑎𝐻𝑒4 = 2.965505961 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 

𝐸𝐻𝑒4 = 18.4 𝑀𝑒𝑉     (31) 

 

Now let’s evaluate the single terms of the total energy equation above (Eq. 29): 

UHe4 = −4k𝑞2 (
1

𝑟𝑓𝐻𝑒4
) = −9.205760000 × 10−28 Joules  ≅ 0 MeV    potential energy 

𝐾𝐻𝑒4 =
4𝑘𝑞2

𝑐2
(

1

𝑟𝑓𝐻𝑒4
) ⋅ 𝑣𝐻𝑒4

2 = 5.809000428 × 10−13 𝐽𝑜𝑢𝑙𝑒𝑠 =  3.6 𝑀𝑒𝑉     kinetic energy   (32) 

𝐸𝑟𝑎𝑑 =
8𝑘𝑞2

𝑐2 (ln(𝑟𝑓𝐻𝑒4) − ln(𝑟𝑖)) ⋅ 𝑎𝐻𝑒4 = 2.364486072 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 = 14.75 𝑀𝑒𝑉   radiation energy   (33) 

 

The Radiation Frequency of the Alpha Particle 

We can apply the Planck equation to the result (33) to calculate the radiation frequency, recalling 

that the Planck constant is ℎ = 6.6260701510−34  
𝐽

𝐻𝑧
. 

𝑓 =
𝐸𝑟𝑎𝑑

ℎ
= 3.56 × 1021 𝐻𝑧 

This frequency corresponds to gamma radiation. 

 

Generic Total Energy Equation for the Neutron (electron-proton bound) 

The net force for the neutron is given by Eq. (1a). Now let’s calculate the generic equation of the 

total energy: 

𝐸𝑁 = −∫ 𝐹𝑁 𝑑𝑟
𝑟𝑓

𝑟𝑖

 

Where 𝑟𝑖, 𝑟𝑓 are the initial and final distance between charge centers. After integration, we get the 

generic expression for the total energy of the Neutron: 

𝐸𝑁 = −𝑘𝑞2 (
1

𝑟𝑓
) +

𝑘𝑞2

𝑐2
(

1

𝑟𝑓
) 𝑣2 −

2𝑘𝑞2

𝑐2
(ln(𝑟𝑓) − ln(𝑟𝑖)) 𝑎     (34) 

As we have seen in the derivation of the total energy in Part 2, the second term is the classic 

kinetic energy, which is related to the mass and velocity of the particle. From this term, we are 

going to make a very accurate estimation of the distance between charge centers 𝑟𝑓. Recall from 

the derivation of the total energy in Part 2 that the mass is given by 𝑚𝑠𝑦𝑠 =
2𝑘𝑞1𝑞2

𝑐2
(

1

𝑟𝑓
−

1

𝑟𝑖
), which in 

our case turns out to be: 𝑚𝑁 =
2 𝑘𝑞2

𝑐2
(

1

𝑟𝑓
). Therefore, we can write the second term as follows, and 

solve for 𝑟𝑓: 
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𝑘𝑞2

𝑐2
(
1

𝑟𝑓
)𝑣𝑁

2 =
1

2
⋅ 𝑚𝑁 ⋅ 𝑣𝑁

2  

𝑟𝑓𝑁 = 3.05 10−18𝑚    (35) 

Recall that the initial distance was chosen to be: 𝑟𝑖 = 1027𝑚. 

 

Evaluation of the Total Energy of the Neutron and the Single Terms that make it up 

Taking solution 2) from previous paragraphs, we’ll get the values of the total energy of the Neutron 

(electron-proton pair) that is released in the Deuterium-Tritium fusion and evaluate the magnitude 

of the single terms in the total energy equation. 

𝐸𝑁 = −𝑘𝑞2 (
1

𝑟𝑓𝑁
) +

𝑘𝑞2

𝑐2 (
1

𝑟𝑓𝑁
)𝑣𝑁

2 −
2𝑘𝑞2

𝑐2 (ln(𝑟𝑓𝑁) − ln(𝑟𝑖))𝑎𝑁 = 2.651205890 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 

𝐸𝑁 = 16.5 𝑀𝑒𝑉     (36) 

 

Now let’s evaluate the single terms of the total energy equation above (Eq. 34): 

UN = −k𝑞2 (
1

𝑟𝑓𝑁
) = −2.301440000 × 10−28 Joules ≅ 0 MeV          potential energy 

𝐾𝑁 =
𝑘𝑞2

𝑐2
(

1

𝑟𝑓𝑁
) 𝑣𝑁

2 = 2.302443138 × 10−12 𝐽𝑜𝑢𝑙𝑒𝑠 = 14.4 𝑀𝑒𝑉     kinetic energy   (37) 

𝐸𝑟𝑎𝑑 = −
2𝑘𝑞2

𝑐2 (ln(𝑟𝑓𝑁) − ln(𝑟𝑖))𝑎𝑁 = 3.487627523 × 10−13 𝐽𝑜𝑢𝑙𝑒𝑠 = 2.17 𝑀𝑒𝑉  radiation energy    (38) 

 

The Radiation Frequency of the Neutron (electron-proton pair) 

We can apply the Planck equation to the result (38) to calculate the radiation frequency, recalling 

that the Planck constant is ℎ = 6.6260701510−34  
𝐽

𝐻𝑧
. 

𝑓 =
𝐸𝑟𝑎𝑑

ℎ
= 5.24 × 1020 𝐻𝑧 

This frequency corresponds to gamma radiation. 

 

Verifying if the Total Momentum change is satisfied by the solutions 

The total momentum change was derived in Part 2, but let’s quickly calculate it for the fusion 

products. The net forces of Helium-4 and Neutron are: 

𝐹𝐻𝑒4 = −
4𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟+

2𝑟2𝑎

𝑐2
)

𝑟3 +
4𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
+

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
−

𝑟4𝑎

𝑐2
)

𝑟5   

𝐹𝑁 = (−
𝑘𝑞2((1−

𝑣2

𝑐2
)𝑟−

2𝑟2𝑎

𝑐2
)

𝑟3 +
𝑘𝑞2(1−

𝑣2

𝑐2
)((

𝑣2𝑟2

𝑐2
−

𝑟3𝑎

𝑐2
)𝑟−

𝑣2𝑟3

𝑐2
+

𝑟4𝑎

𝑐2
)

𝑟5
)  

The momentum change of the products is given by the integral of the forces in time, where r is the 

distance between charge centers for the released energy (𝑟 = 0.408 10−15𝑚) and 𝑣, 𝑎 the relative 

velocity and acceleration. 
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𝑃𝑃 = ∫ (𝐹𝐻𝑒4 + 𝐹𝑁)𝑑𝑡

𝑟
𝑣

0

 

After integration, we get: 

𝑃𝑃 = −
2.820392157×10−12

𝑣
+ 3.133769062 × 10−29𝑣 −

1.534293333×10−44𝑎

𝑣
  

𝑃𝑃 = −
2.820392157×10−12

(𝑣𝐻𝑒4−𝑣𝑁)
+ 3.133769062 × 10−29(𝑣𝐻𝑒4 − 𝑣𝑁) −

1.534293333×10−44(𝑎𝐻𝑒4−𝑎𝑁)

(𝑣𝐻𝑒4−𝑣𝑁)
         (39) 

As an example, if we take solution 2) from the “The System of Equations” section above, and plug 

it in (39), we obtain: 

𝑃𝑝 = 4.04 × 10−20 = 0 

As 𝑃𝑝 ≅ 0, the momentum change of the products is satisfied. 

 

The Real Released Energy 

The energy calculations made for the Deuterium-Tritium fusion products in previous paragraphs, 

gives us a total released energy that is given by the addition of (31) and (36): 𝐸𝑟𝑒𝑙 = 𝐸𝐻𝑒4 + 𝐸𝑁 =

34.9 MeV. 

The scientific community in general ignores the radiation energy and takes it as granted that 

the released energy is only given by the addition of (32) and (37):  𝐾 = 𝐾𝐻𝑒4 + 𝐾𝑁 = 18 𝑀𝑒𝑉*. 

* We have a little difference with the published value of 𝐾 = 17.6 𝑀𝑒𝑉. This is mainly due to the number of 

significant figures we used for the calculations. 

We see that the real released energy is almost double the kinetic energy of the products. 

 

You can now see how dangerous it is to use incorrect calculation formulas, like the mass 

defect or excess, which is based on the well-known Einstein equation 𝐄 = ∆𝒎 𝒄𝟐, and 

kinetic energy from classical mechanics, which produce insufficient outcomes because 

they don't account for radiation. 

The mass excess/defect formula can only be used for a quick and accurate calculation of the rest 

energy (potential energy) of a system of masses. That’s all. The formula doesn’t handle the 

dynamics of electric charges.  

So far as I know, the only equation that will give you the real energy of a system of charges 

subject to any motion, is the total energy equation that has been derived from the Universal 

Electrodynamic Force in Part 2. 
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Conclusions 
A method of modifying particle decay rate has been suggested, which may lead to additional 

possibilities for charge harvesting. 

The nuclear structure and total energy calculations have been shown for several nuclei with the 

derived total energy equation. 

It has been demonstrated that the “neutron” is an electron-proton bound in the calculations of 

energy for some fusions. 

The deficient results obtained with usual Classical Mechanics and Einstein’s mass defect/excess 

calculation have been put into evidence. 

The dangers derived from deficient energy calculations have been clearly highlighted. 

It has been demonstrated how to calculate the real released energy and the single energy of the 

products, which includes radiation energy. 

It was demonstrated that the real energy amount released in a fusion matched the total energy 

equation derived from the Universal Electrodynamic Force.  
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