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Abstract. In this paper, we consider the abc conjecture. Assuming the conjecture c <
rad2(abc) is true, we give the proof of the abc conjecture for ϵ ≥ 1. For the case ϵ ∈]0, 1[,
we consider that the abc conjecture is false, from the proof, we arrive in a contradiction.
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1. Introduction and notations

Let a positive integer a =
∏

i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as :

(1.1) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We note:

(1.2) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the

University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6)

[1]. It describes the distribution of the prime factors of two integers with those of its

sum. The definition of the abc conjecture is given below:

Conjecture 1.1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ) > 0 such

that if a, b, c positive integers relatively prime with c = a+ b, then :

(1.3) c < K(ϵ).rad1+ϵ(abc)
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where K is a constant depending only of ϵ.

The difficulty to find a proof of the abc conjecture is due to the incomprehensibility

how the prime factors are organized in c giving a, b with c = a+ b. So, I will give a

simple proof that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was proposed

that c < rad2(abc) [4]. It is the key to resolve the abc conjecture. In the following,

assuming the conjecture c < rad2(abc) holds, I propose an elementary proof of the

abc conjecture.

2. The Proof of the abc conjecture

Proof. We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case

c = a+ 1.

2.1. Case : ϵ ≥ 1. As c < R2 is true, we have ∀ϵ ≥ 1:

(2.1) c < R2 ≤ R1+ϵ < K(ϵ).R1+ϵ, with K(ϵ) = e, ϵ ≥ 1

Then the abc conjecture is true.

2.2. Case: 0 < ϵ < 1. For the cases c < R, it is trivial that the abc conjecture is true.

In the following we consider that c > R. From the statement of the abc conjecture

1.1, we want to give a proof that c < K(ϵ)R1+ϵ =⇒ LogK(ϵ)+(1+ϵ)LogR−Logc > 0.

For our proof, we proceed by contradiction of the abc conjecture. We suppose

that the abc conjecture is false:

∃ ϵ0 ∈]0, 1[,∀K(ϵ) > 0, ∃ c0 = a0 + b0; a0, b0, c0 coprime so that

c0 > K(ϵ0)R
1+ϵ0
0(2.2)

We choose the constant K(ϵ) = e

1

ϵ2 . Let :

(2.3) Yc0(ϵ) =
1

ϵ2
+ (1 + ϵ)LogR0 − Logc0, ϵ ∈]0, 1[

From the above explications, if we will obtain ∀ϵ ∈ ]0, 1[, Yc0(ϵ) > 0 =⇒ c0 <

K(ϵ)R1+ϵ
0 =⇒ c0 < K(ϵ0)R

1+ϵ0
0 , then the contradiction with (2.2).
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About the function Yc0 , we have:

limϵ−→1Yc0(ϵ) = 1 + Log(R2
0/c0) = λ > 0

limϵ−→0Yc0(ϵ) = +∞

The function Yc0(ϵ) has a derivative for ∀ϵ ∈ ]0, 1[, we obtain:

(2.4) Y ′
c0(ϵ) = − 2

ϵ3
+ LogR0 =

ϵ3LogR0 − 2

ϵ3

Y ′
c0(ϵ) = 0 =⇒ ϵ = ϵ′ = 3

√
2

LogR0
∈ ]0, 1[ for R0 ≥ 8.

Figure 1. Table of variations

Discussion from the table (Fig.: 1):

- If Yc0(ϵ
′) ≥ 0, it follows that ∀ϵ ∈ ]0, 1[, Yc0(ϵ) ≥ 0, then the contradiction with

Yc0(ϵ0) < 0 =⇒ c0 > K(ϵ0)R
1+ϵ0
0 and the supposition that the abc conjecture is false

can not hold. Hence the abc conjecture is true for ϵ ∈ ]0, 1[.

- If Yc0(ϵ
′) < 0 =⇒ ∃ 0 < ϵ1 < ϵ′ < ϵ2 < 1, so that Yc0(ϵ1) = Yc0(ϵ2) = 0. Then we

obtain:

(2.5) c0 = K(ϵ1)R
1+ϵ1
0 = K(ϵ2)R

1+ϵ2
0

We recall the following definition:

Definition 2.1. The number ξ is called algebraic number if there is at least one

polynomial:

(2.6) l(x) = l0 + l1x+ · · ·+ lmxm, lm ̸= 0
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with integral coefficients such that l(ξ) = 0, and it is called transcendental if no such

polynomial exists.

We consider the equality :

(2.7) c0 = K(ϵ1)R
1+ϵ1
0 =⇒ c0

R0
=

µc0

rad(a0b0)
= e

1

ϵ21 Rϵ1
0

i) - We suppose that ϵ1 = β1 is an algebraic number then β0 = 1/ϵ21 and α1 = R0

are also algebraic numbers. We obtain:

(2.8)
c0
R0

=
µc0

rad(a0b0)
= e

1

ϵ21 Rϵ1
0 = eβ0 .αβ1

1

From the theorem (see theorem 3, page 196 in [2]):

Theorem 2.2. eβ0αβ1

1 . . . αβn
n is transcendental for any nonzero algebraic numbers

α1, . . . , αn, β0, . . . , βn.

we deduce that the right member eβ0 .αβ1

1 of (2.8) is transcendental, but the term
µc0

rad(a0b0)
is an algebraic number, then the contradiction and the case Yc0(ϵ

′) < 0 is

impossible. It follows Yc0(ϵ
′) ≥ 0 then the abc conjecture is true.

ii) - We suppose that ϵ1 is transcendental, then 1/(ϵ21) is transcendental. If not, 1/(ϵ
2
1)

is an algebraic number and from the definition (2.1) above, we find a contradiction.

As R0 > 0 is an algebraic number, then LogR0 is transcendental. We rewrite the

equation (2.5) as:

c0
R0

= e

1

ϵ21 Rϵ1
0 = e

1

ϵ22 Rϵ2
0 =⇒ c0

R0
= e

1

ϵ21
+ϵ1LogR0

= e
1

ϵ22
+ϵ2LogR0

(2.9)

As e is transcendental and let z = 1
ϵ21
+ ϵ1LogR0 > 0, then ez is transcendental [5], it

follows the contradiction with c0/R0 an algebraic number. It follows that Yc0(ϵ
′) ≥ 0

and the abc conjecture is true.

Then the proof of the abc conjecture is finished. Assuming c < R2 is true, we obtain

that ∀ϵ > 0, ∃K(ϵ) > 0, if c = a+ b with a, b, c positive integers relatively coprime,

then :

(2.10) c < K(ϵ).rad1+ϵ(abc)

and the constant K(ϵ) depends only of ϵ.
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Q.E.D

Ouf, end of the mystery!

□

3. Conclusion

Assuming c < R2 is true, we have given an elementary proof of the abc conjecture.

We can announce the important theorem:

Theorem 3.1. Assuming c < R2 is true, the abc conjecture is true:

For each ϵ > 0, there exists K(ϵ) > 0 such that if a, b, c positive integers relatively

prime with c = a+ b, then:

(3.1) c < K(ϵ).rad1+ϵ(abc)

where K is a constant depending of ϵ.
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