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Abstract

Relevant to Quantum field theory, Sieve of Eratosthenes (as generating algorithm
for all prime numbers) and Dirichlet eta function (proxy function for Riemann
zeta function as generating function for all nontrivial zeros) are infinite series.
We apply infinitesimals to their outputs. We ignore even prime number 2. The
complete set and its derived subsets of Odd Primes all contain arbitrarily large
number of elements while fully satisfying Prime number theorem for Arithmetic
Progressions, Generic Squeeze theorem and Theorem of Divergent-to-Convergent
series conversion for Prime numbers. With these theorems satisfied by all Odd
Primes, Polignac’s and Twin prime conjectures are proven to be true when
usefully regarded as Incompletely Predictable Problems. Riemann hypothesis
proposes all nontrivial zeros of Riemann zeta function are located on its critical
line. It is separately proven to be true when usefully regarded as an Incompletely
Predictable Problem. (Submitted on May 24, 2024)
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1 Introduction

Complex number z = a+ bi. Real part a & imaginary part b are real numbers. Imag-
inary unit i satisfy power-series expansions as well as basic facts about powers of i.
i0 = 1, i1 = i, i2 = −1, i3 = −i,

i4 = 1, i5 = i, i6 = −1, i7 = −i

...
...

...
...

Using above power-series definition, we prove Euler’s formula for real values of x

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix− x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+

x8

8!
+ · · ·

=

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

)
+ i

(
x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= cosx+ i sinx

In the last step we recognize the two terms are Maclaurin series [alternating power
series or, broadly, alternating infinite series] for cosx and sinx with rearrangement of
terms justified because each series is absolutely convergent.

Related or extended Lindemann-Weierstrass theorem, Gelfond-Schneider theorem,
Baker’s theorem, four exponentials conjecture and Schanuel’s conjecture can be used
to establish transcendence of a large class of numbers constituted from (algebraic)
irrational numbers, transcendental (irrational) numbers and rational numbers. The
natural logarithm of any natural number other than 0 and 1 (more generally, of
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any positive algebraic number other than 1) e.g. ln 2 and ln
√
2 = ln 2

1
2 =

1

2
ln 2 are

transcendental numbers by Lindemann-Weierstrass theorem. By Gelfond-Schneider

theorem, eπ [Gelfond’s constant], 2
√
2 [Gelfond-Schneider constant as an example of ab

where a is algebraic but not 0 or 1, and b is (algebraic) irrational number], e−
π
2 = ii,

etc are all transcendental numbers.

Transcendental numbers
π

4
=

∞∑
n=1

(−1)n+1

2n− 1
and ln

√
2 =

∞∑
n=1

(−1)n+1

2n
form two

related alternating harmonic series [or, broadly, alternating infinite series]. Analogous
to Euler’s formula, we obtain the relationship formed by imaginary number i and real
number 1 with even numbered denominators:

− ln(1 − i) = − ln
√
2 + i

π

4
=

i

1
− 1

2
− i

3
+

1

4
+

i

5
− 1

6
− i

7
+

1

8
· · ·

=

(
−1

2
+

1

4
− 1

6
+

1

8
− · · ·

)
+ i

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

A formal series is an infinite series (sum) that is considered independently from any
notion of convergence, and is manipulated with usual algebraic operations on series
such as addition, subtraction, multiplication, division, partial sums, etc. A power series
defines a function by taking numerical values for the variable WITHIN a radius of
convergence. In contrast with NO requirements of convergence, a formal power series
is a special kind of formal series whose terms are of the form axn where xn is the
nth power of a variable x (n is a non-negative integer), and a is called the coefficient.
Hence, a formal power series can be viewed as a generalization of polynomials where
the number of terms is allowed to be infinite.

Not actually regarded as a function per se with its ”variable” remaining an inde-
terminate, a generating function (or series) is a representation of infinite sequences
of numbers as coefficients of a formal power series. More generally, a formal power
series can include series with any finite (or countable) number of variables, and with
coefficients in an arbitrary ring. Rings of formal power series are complete local rings,
and this allows using calculus-like methods in the purely algebraic framework of alge-
braic geometry and commutative algebra. They are analogous in many ways to p-adic
integers which can be defined as formal series of the powers of p. Various types of
generating functions include ordinary generating functions, exponential generating
functions, Lambert series, Bell series, and Dirichlet series. Sieve of Eratosthenes (as
generating algorithm for all prime numbers) and Dirichlet eta function (the proxy
function for Riemann zeta function as generating function for all nontrivial zeros)
are infinite series since they both encapsulate ”infinite sequences of numbers”. In this
sense, generating functions and generating algorithms are literally synonymous with
infinite series. By the same token as further discussed below, harmonic series that are
formed by summing all positive [or alternating positive and negative] unit fractions,
are infinite series and can thus also be conveniently regarded as generating functions.

In mathematics and theoretical physics, techniques of zeta function regularization,
dimensional regularization and analytic regularization are types of regularization or
summability methods that assigns finite values to divergent sums or products. They are
then used to define determinants and traces of some self-adjoint operators [which admit
orthonormal eigenbasis with real eigenvalues]. Inspired by the Method of Smoothed
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asymptotics previously developed by Prof. Terence Tao in 2010, we broadly base some
deductions in this paper on recent introduction in 2024 by Prof. Antonio Padilla and
Prof. Robert Smith of a new ultra-violet regularization scheme for loop integrals in
Quantum field theory dubbed η regularization. We outline in section 4 rich underlying
connections between analytic number theory and perturbative quantum field theory.

Broadly viewed as vast ”resource materials” that support the completed 2001 proofs
on modularity theorem, we have bi-directional correspondences (bridges) existing
between Number theory ↔ Harmonic analysis forming ”framework” for L-functions
and modular forms database (LMFDB, launched on May 10, 2016)[2]: (i) {Elliptic
curves ↔ Modular forms}; (ii) {Counting problem 1 + p−number of solutions mod p
[in finite series Elliptic curves] ↔ Coefficients of qp [in infinite series Modular forms]}
whereby nome q = eπiτ & p = prime numbers from Modular forms act as (periodic)
’generating series or functions’ having Group of symmetry = SL2(Z) [involving unit
disk in complex plane], which is analogous to Group of symmetry = Group of integers
Z [involving real number line present in general solutions such as sin (x+ 2πn) = sin
(x) with n = ...−3,−2,−1, 0, 1, 2, 3...]; viz, these properties conform to Langlands pro-
gram ”Theory of Symmetry” [for Transformations of Rotation, Translation, Dilation
and Reflection]; and (iii) {Representations of Galois groups ↔ Automorphic forms}
whereby the modular forms are classified as a specific type of these [more general]
automorphic forms, which are ultimate objects in Harmonic analysis.

Diophantine equations are effectively various ”finite series” polynomial equations
that generally involve the operation of adding finitely many terms e.g. Fermat’s
equation xn + yn = zn and elliptic curve y2 = x3 + ax + b. Proposed by Pierre de
Fermat in 1637, Fermat’s Last Theorem states that no three positive integers a, b and
c can satisfy Fermat’s equation for any integer value of n greater than 2. The modu-
larity theorem asserts that every elliptic curve over the rational numbers is modular,
meaning that it can be associated with an ”infinite series” modular form. In a nut-
shell, this was broadly a crucial step in proving Fermat’s Last Theorem because it
famously allowed Prof. Andrew Wiles to prove the theorem in 1994 by establishing a
deep connection between [semistable] elliptic curves and modular forms. Sir Andrew
Wiles was deservingly awarded the 2016 Abel Prize for this work.

We have infinities or infinitely large numbers as the unbounded and limitless quan-
tities (∞) at the big end, and infinitesimals or infinitely small numbers as the extremely

small but nonzero quantities (
1

∞
) at the small end. Applying infinitesimals to their

corresponding outputs in section 6 allow us to prove 1859-dated Riemann hypothesis
[viz, the proposal that relevant outputs as infinitely many nontrivial zeros or Origin
intercept points of Riemann zeta function are all located on its σ = 1

2 -critical line or
σ = 1

2 -Origin point], and Polignac’s and Twin prime conjectures [viz, the proposal
that relevant outputs as subsets of Odd Primes derived from every even Prime gaps
2, 4, 6, 8, 10... all contain infinitely many unique elements]. Referring to even Prime
gap 2, 1846-dated Twin prime conjecture is simply a subset of 1849-dated Polignac’s
conjecture [which refers to all even Prime gaps 2, 4, 6, 8, 10...]. Altered terminology on
cardinality of Odd Primes being arbitrarily large number (ALN) instead of infinitely
many was previously used to denote Modified Polignac’s and Twin prime conjectures.
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Is our generic mathematical approaches for solving Riemann hypothesis, Polignac’s
and Twin prime conjectures relevant to fields in physics such as relativistic quantum
mechanics, quantum gravity or string theory? We opine the ambitious but correct
answer to this rhetorical question is affirmative. Usefully construed as self-sufficient
”Summary Paper”, the correct and complete mathematical arguments condensed in
this current or future research paper are major (core) arguments from publications [4],
[5] & [6] whereby Riemann zeta function [= function that faithfully generates output
of all nontrivial zeros via its proxy Dirichlet eta function] and Sieve of Eratosthenes
[= algorithm that faithfully generates output of all prime numbers] are treated as de
novo or derived infinite series in order to prove their connected open problems in Num-
ber theory. These infinite series are either convergent series or divergent series where
partial sums of sequence from the former tends to a finite limit, while that from the
later do not tend to a finite limit [viz, it tends to infinity]. Prime number theorem
for Arithmetic Progressions [as Axiom 1], Generic Squeeze theorem [as Theorem 2]
and Theorem of Divergent-to-Convergent series conversion for Prime numbers [as
Theorem 3] are outlined (respectively) in section 2, section 3 and section 4. Lemma 4
and Lemma 5 in section 5 (respectively) introduce novel concept of Incompletely Pre-
dictable entities and innovatively classifying countably infinite sets into accelerating,
linear or decelerating subtypes. To the extent that many associated minor (peripheral)
arguments from [6] were not included in this paper, we advocate their absence do not
adversely reflect the rigorous nature of derived proofs but, rather, helps disseminate
mathematical knowledge to the lay person and scientific community.

A function [sometimes loosely termed as an operator or an equation] is a relation
between a set of inputs (called the domain) and a set of possible outputs (called the
codomain) where each input is related to EXACTLY one output. More precisely, a
classical example of a [linear] operator performed on a [eligible] function is differentia-
tion. An algorithm is a finite sequence of rigorous instructions typically used to solve
a class of specific problems or to perform a computation. We can represent functions
or algorithms as infinite-dimensional vectors. Then a function or algorithm defined
on real numbers R can be represented by an uncountably infinite set of vectors (as
a vector field) while a function or algorithm defined on natural numbers N [or any
other countably infinite domain such as prime numbers and composite numbers] can
be represented by a countably infinite set of vectors (as a vector field). One could
also use the later countably infinite set of vectors involving [discrete] N {e.g. all non-
trivial zeros of Riemann zeta function interpolated as ”nearest” t-valued N 14, 21, 25,
30, 33, 38, 41, 43...} to approximate the former uncountably infinite set of vectors
”pseudo-representing” [continuous] R {given as actual t-valued transcendental num-
bers} ≊ Law of continuity: If a quantity changes ”continuously”, then its value at any
point between two given values can be determined by the process of interpolation.

Based on Figure 1 and Figure 2 that accommodate both positive (+ve) parts
and negative (–ve) counterparts of prime numbers, composite numbers and nontrivial
zeros, we can represent eligible functions with complex vector space [having
+ve and –ve complex vectors pointing in opposite directions] and eligible
algorithms with real vector space [having +ve and –ve real vectors pointing
in opposite directions]: Recall that a row vector or a column vector is, respectively,
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1 Narrow range of positive & negative prime and composite numbers plotted together on integer
number line generated using Sieve-of-Eratosthenes and complement-Sieve-of-Eratossthenes. The com-
bined [positive] image and [negative] mirror image will conceptually represent a one-dimensional line
(state) having perfect Mirror symmetry with integer number 0 acting as the Point of symmetry.

2 OUTPUT for σ = 1
2

as Gram points. Polar graph of ζ( 1
2
+ ıt) depicted as a two-dimensional

figure (state) plotted along critical line for real values of t between −30 and +30 [viz, for s = σ ± t
range], horizontal axis: Re{ζ( 1

2
+ ıt)}, and vertical axis: Im{ζ( 1

2
+ ıt)}. Origin intercept points are

present. There is manifestation of perfect Mirror symmetry about horizontal x-axis acting as the line
of symmetry.

a one-row matrix or a one-column matrix. Real numbers R [and natural numbers N] are
exactly one-dimensional vectors (on a line) and complex numbers C are exactly two-
dimensional vectors (in a plane). A complex vector (or complex matrix) as Cartesian
representation z = x + iy or Polar representation z = r(cos θ + i · sin θ) [where x

& y are R, r = |z| =
√

x2 + y2, θ = arctan(y/x) and i=
√
−1] is simply a vector

(matrix) of the complex numbers. A two-dimensional real vector (or real matrix) in
a plane is given by Cartesian representation as v = x + y or Polar representation as
v = r(cos θ + sin θ) [where x & y are R, r =

√
x2 + y2 and θ = arctan(y/x)].

Integers {0, 1} are neither prime nor composite. Prime & composite numbers form
distinct countably infinite sets of integers as two subsets in uncountably infinite set
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of real numbers. Both [algorithmic] inputs Sieve-of-Eratosthenes and Complement-
Sieve-of-Eratosthenes in section 2 that faithfully generate outputs prime & composite
numbers are visually represented by countably infinite set of real vectors. We recognize
all real vector sub-spaces for even Prime gaps 2, 4, 6, 8, 10... with each unique sub-
space constituted by its corresponding countably infinite set of real vectors, must imply
Modified Polignac’s and Twin prime conjectures are true.

Where σ, t, Re{ζ(s)}, Im{ζ(s)}, Re{η(s)} and Im{η(s)} are R, (input) param-
eter s = σ ± it used in (output) functions from section 2 such as non-alternating
Riemann zeta function Eq. 1 ζ(s) = Re{ζ(s)} + i · Im{ζ(s)} and alternating Dirich-
let eta function Eq. 2 η(s) = Re{η(s)} + i · Im{η(s)} are recognized to all be given
in z = x + iy format, thus allowing uncountably infinite set of complex vectors to
visually represent them. Next consider the two derived functions from section 2: sim-
plified Dirichlet eta function or sim-η(s) and Dirichlet Sigma-Power Law or DSPL [=∫
sim-η(s)dn] with their corresponding horizontal and vertical axes being perpendic-

ular to each other or, equivalently, being
π

2
out-of-phase with each other (as per Page

12 of [4]). Complex vectors representing sim-η(s) and DSPL when combined together
form an orthonormal set in the inner product space since all these vectors in the set
are mutually orthogonal (”perpendicular”) and depicted using their (”normalized”)
unit length. When equivalently expressed using countably infinite set of complex vec-
tors; we recognize nontrivial zeros of ζ(s), η(s), sim-η(s) or DSPL that can only exist
in unique σ = 1

2 complex vector sub-space, must imply Riemann hypothesis is true.

Non-alternating power series

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

Alternating power series

∞∑
n=0

(−1)nanx
n = a0 − a1x+ a2x

2 − a3x
3 + . . .

Non-alternating harmonic series

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

Alternating harmonic series

∞∑
n=1

(−1)n+1

n
=

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

An infinite series [as various types of power series and harmonic series listed above] (or
a finite series) is the sum of [≥ 1] infinite (or finite) sequence of terms constituted by
numbers, scalars, or anything e.g. functions, vectors, matrices. As previously discussed,
power series [with VARYING coefficients an] are infinite polynomials. Sieve-of-
Eratosthenes & Complement-Sieve-of-Eratosthenes as well-defined infinite algorithms
give rise to [infinite] n solutions of all primes & composites; viz, they are the ”analogs”
of power or harmonic series as well-defined infinite functions. With SAME coefficients

a, the (non-alternating) geometric series

∞∑
n=0

axn = a+ ax+ ax2 + ax3 + . . . having

+ve common ratio x between successive terms, is simply a special case of (non-
alternating) power series. With a = 1

2 & − 1
2 for –ve common ratio [vs 1

2 for +ve
common ratio in a (non-alternating) geometric series]; we create an ”inverse” (alter-
nating) geometric series [with SAME coefficients a], which is simply a special case of
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(alternating) power series (Page 56 of [6]):

1

2
− 1

4
+

1

8
− 1

16
+ · · ·=

1
2

1− (− 1
2 )

=
1

3
vs

1

2
+

1

4
+

1

8
+

1

16
+ · · ·=

1
2

1− (+ 1
2 )

=1.

A solution in radicals meant an expression using only the operations of addition,
subtraction, multiplication, division and nth root extraction on coefficients of a polyno-
mial equation. Following directly from Galois theory using polynomial f(x) = x5−x−1
as one of the simplest examples of a non-solvable quintic polynomial, Abel-Ruffini
theorem states that there is no solution in radicals to general (finite) polynomial
equations of degree five or higher with arbitrary coefficients. Here, general meant the
coefficients of a polynomial equation are viewed and manipulated as indeterminates.
We extrapolate: ”Any power series as a general (infinite) polynomial equations having
infinitely many coefficients should have no solution in radicals”.

Eq. 1 ζ(s) & Eq. 2 η(s) have complex variable s = σ + it. In 0 < σ < 1 critical
strip containing σ = 1

2 critical line, η(s) must act as proxy function for ζ(s) [with
both ≡ infinite series]. When s = 1 in ζ(s) & η(s) with n = +ve integers, we get non-
alternating and alternating harmonic series. Our ”amalgated” generic Fundamental
Theorem of Algebra heuristically =⇒ (eligible) general [finite or infinite] algorithms
and functions (of degree n with real or complex coefficients) have exactly [finite or infi-
nite or ALN] n roots or n solutions as real or complex numbers, counting multiplicities.
Riemann hypothesis is true when nontrivial zeros as Origin point intercepts are the
infinitely many n roots that only occur when parameter σ = 1

2 resulting in [optimal]
”formula symmetry” for η(s) [as infinite series]. Polignac’s and Twin prime conjec-
tures are true when Sieve-of-Eratosthenes algorithm and its derived sub-algorithms

[as ”infinite series” via

ALN∑
n=i

pn+1 = 3 +

n∑
i=2

gi] have ALN of n solutions represented

by the Set [≡ total] of Odd Primes and Subsets [≡ subtotals] of Odd Primes derived
from all even Prime gaps.

2 General notations including Prime number
theorem for Arithmetic Progressions and creating
de novo Infinite Series

Common abbreviations used in this paper: CP = Completely Predictable, IP = Incom-
pletely Predictable, FL = Finite-Length, IL = Infinite-Length, CFS = countably
finite set, CIS = countably infinite set, IM = infinitely-many, ALN = arbitrarily large
number. We treat eligible algorithms and functions as de novo infinite series.

Critical strip≡{s ∈ C : 0 < Re(s) < 1} & Critical line≡{s ∈ C : Re(s) = 1
2} in

Figure 3. Phrase ”inside the critical strip” refers to parameter s [= σ ± it with 0 <
σ < 1; viz, 0 < Re(s) < 1] having complex number values defined for η(s) as given by
parameter t over ± real numbers. Phrase ”outside the critical strip” refers to parame-
ter s [= σ ± it with σ > 1; viz, Re(s) > 1] having complex number values defined for
ζ(s) as given by parameter t over ± real numbers. When s is considered for (purely)
real number values: ζ(−1) = − 1

12 , ζ(0) = − 1
2 , ζ(

1
2 ) = –1.4603545..., etc. Via Eq. (3) as

its functional equation, ζ(s) has Completely Predictable infinitely many trivial zeros
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3 INPUT for σ = 1
2
(for Figure 4), 2

5
(for Figure 5), and 3

5
(for Figure 6). Riemann zeta function

ζ(s) has two countable infinite sets of firstly, Completely Predictable trivial zeros located at s = all
negative even numbers and secondly, Incompletely Predictable nontrivial zeros located at σ = 1

2
as

various t-valued transcendental numbers.

4 OUTPUT for σ = 1
2
as Gram points. Polar graph of ζ( 1

2
+ ıt) plotted along critical line for real

values of t running from 0 to 34. Horizontal axis: Re{ζ( 1
2
+ıt)}. Vertical axis: Im{ζ( 1

2
+ıt)}. Presence

of Origin intercept points.

5 OUTPUT for σ = 2
5

as virtual Gram points. Varying Loops are shifted to left of Origin with

horizontal axis: Re{ζ( 2
5
+ ıt)}, and vertical axis: Im{ζ( 2

5
+ ıt)}. Nil Origin intercept points.

at each even negative integer s = −2n for n = 1, 2, 3, 4, 5.... Even though ζ(1) is unde-

fined as it diverges to ∞, its Cauchy principal value lim
ε→0

ζ(1 + ε) + ζ(1− ε)

2
exists and

is equal to Euler-Mascheroni constant γ = 0.577218... [a transcendental number].
List of abbreviations incorporating relevant definitions:
·CP entities: These entities manifest CP independent properties.
·IP entities: These entities manifest IP dependent properties.
·ζ(s): f(n) Riemann zeta function [≡ infinite (converging) series for Re(s) > 1] –
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6 OUTPUT for σ = 3
5

as virtual Gram points. Varying Loops are shifted to right of Origin with

horizontal axis: Re{ζ( 3
5
+ ıt)}, and vertical axis: Im{ζ( 3

5
+ ıt)}. Nil Origin intercept points.

7 Close-up view of virtual Origin points when σ = 1
3
. OUTPUT for σ = 1

3
[σ < 1

2
situation]

as virtual Gram points. Polar graph of ζ( 1
3
+ ıt) plotted along non-critical line for real values of t

running between 0 and 100, horizontal axis: Re{ζ( 1
3
+ ıt)}, and vertical axis: Im{ζ( 1

3
+ ıt)}. Total

absence of all Origin intercept points at ”static” Origin point. Total presence of all virtual Origin
intercept points (as additional negative virtual Gram[y=0] points on x-axis) at ”varying” [infinitely
many] virtual Origin points.

see Eq. (1) below containing variable n, and parameters t and σ will generate [via its
proxy Dirichlet eta function] Zeroes when σ = 1

2 and virtual Zeroes when σ ̸= 1
2 .

·η(s): f(n) Dirichlet eta function [≡ infinite (converging) series for Re(s) > 0]
– see Eq. (2) below as the analytic continuation of ζ(s), containing variable n, and
parameters t and σ will generate Zeroes when σ = 1

2 and virtual Zeroes when σ ̸= 1
2 .

·sim-η(s): f(n) simplified Dirichlet eta function [≡ infinite (converging) series
for Re(s) > 0], derived by applying Euler formula to η(s), containing variable n, and
parameters t and σ will generate Zeroes when σ = 1

2 – see Eq. (4) below and virtual
Zeroes when σ ̸= 1

2 – see Eq. (5) below.
·DSPL: F (n) Dirichlet Sigma-Power Law [≡ ”continuous” infinite (converging)
series for Re(s) > 0] =

∫
sim-η(s)dn containing variable n, and parameters t and σ

will generate Pseudo-zeroes when σ = 1
2 – see Eq. (6) below and virtual Pseudo-zeroes

when σ ̸= 1
2 whereby the (virtual) Zeros = (virtual) Pseudo-zeros – π

2 relationship
allows (virtual) Pseudo-zeros to (virtual) Zeros conversion and vice versa.
·NTZ: Nontrivial zeros located on the one-dimensional (mathematical) σ = 1

2 -critical
line are precisely equivalent toG[x=0,y=0]P: Gram[x=0,y=0] points as Origin inter-
cept points which are located at the zero-dimensional (geometrical) σ = 1

2 -Origin
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point [as per Figure 4]. These entities, mathematically defined by
∑

ReIm{η(s)} =
Re{η(s)} + Im{η(s)} = 0, are generated by equation G[x=0,y=0]P-η(s) containing
exponent 1

2 when σ = 1
2 .

·GP or G[y=0]P: ’usual’ or ’traditional’ Gram points = Gram[y=0] points = x-axis
intercept points that are [multiple-positioned] located on one-dimensional x-axis line
are generated by equation G[y=0]P-η(s) when σ = 1

2 . These entities are mathemat-

ically defined by
∑

ReIm{η(s)} = Re{η(s)}+ 0, or simply Im{η(s)} = 0. Riemann

hypothesis is usefully stated as none of the [additional] virtual G[x=0]P generated by
equation G[x=0]P-η(s) when σ ̸= 1

2 – as demonstrated by Figure 7 for σ = 1
3 – can be

constituted by t transcendental number values that [incorrectly] coincide with t tran-
scendental number values for NTZ when σ = 1

2 .
·G[x=0]P: Gram[x=0] points = y-axis intercept points that are [multiple-positioned]
located on one-dimentional y-axis line are generated by equation G[x=0]P-η(s) when

σ = 1
2 . These entities are mathematically defined by

∑
ReIm{η(s)} = 0 + Im{η(s)},

or simply Re{η(s)} = 0.
·virtual NTZ: virtual nontrivial zeros or virtual G[x=0,y=0]P: virtual
Gram[x=0,y=0] points. These are virtual Origin intercept points located at the
multiple-positioned virtual Origin points which are generated by equation virtual-
G[x=0,y=0]P-η(s) containing exponent values ̸= 1

2 when σ ̸= 1
2 . We note that each

virtual NTZ when σ < 1
2 in Figure 5 equates to an [additional] negative virtual

G[y=0]P located at IP varying positions on horizontal axis, and each virtual NTZ
when σ > 1

2 in Figure 6 equates to an [additional] positive virtual G[y=0]P located at
IP varying positions on horizontal axis. We observe overall less virtual G[x=0]P when
σ > 1

2 , and overall more virtual G[x=0]P when σ < 1
2 .

·Sieve-of-Eratosthenes (S-of-E): For i = 1, 2, 3, 4, 5... and with p1 = 2 [≡ even
prime number 2 forming a CFS with cardinality of 1] as the first term in S-of-E; the

algorithm S-of-E as symbolically denoted by pn+1 = 2 +

n∑
i=1

gi with gn = pn+1 − pn

and its derived sub-algorithms faithfully generate the set of all prime numbers 2, 3, 5,
7, 11, 13... and subsets of Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10.... We
now ignore even prime number 2 by changing variable i to instead commence from 2nd

position. For i = 2, 3, 4, 5, 6... and with p2 = 3 [≡ first Odd Prime 3] as the first term
in Modified-S-of-E; the altered algorithm Modified-S-of-E as symbolically denoted by

pn+1 = 3 +

n∑
i=2

gi with gn = pn+1 − pn and its derived sub-algorithms will faithfully

generate the set of all Odd Primes 3, 5, 7, 11, 13, 17... and subsets of Odd Primes
derived from even Prime gaps 2, 4, 6, 8, 10.... By performing summation [viz, conduct-
ing repeated addition of sequence from ALN of prime gaps and prime numbers that

are arranged in an unique order] on above two algorithms as

ALN∑
n=i

pn+1 = 2 +

n∑
i=1

gi

and

ALN∑
n=i

pn+1 = 3 +

n∑
i=2

gi, we obtain (de novo) infinite series. These infinite series

are all diverging series for this two algorithms [and their derived sub-algorithms].
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In contrast, Brun’s constants as outlined in section 4 are converging series. The
cardinality of CIS-ALN-decelerating is applicable for (i) set of all prime numbers, (ii)
set of all Odd Primes, (iii) subsets of Odd Primes, and (iv) set of all even Prime gaps
=⇒ Modified Polignac’s and Twin prime conjectures are true.
·Complement-Sieve-of-Eratosthenes: For i = 1, 2, 3, 4, 5... and with c1 = 4;

this algorithm as symbolically denoted by cn+1 = 4 +

n∑
i=1

ci with gn = cn+1 − cn

and its derived sub-algorithms will faithfully generate all composite numbers. Paral-
lel arguments to construct de novo infinite series as diverging series for (sub)sets of
composite numbers are also possible.

In general, we note the infinite-length sequence of a given converging series or
diverging series can theoretically be constituted by either positive terms e.g. ζ(s) as
non-alternating harmonic series Eq. (1) OR alternating positive and negative terms
e.g. η(s) as alternating harmonic series Eq. (2).

ζ(s) =

∞∑
n=1

1

ns
(1)

=
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

= Πp prime
1

(1− p−s)

=
1

(1− 2−s)
.

1

(1− 3−s)
.

1

(1− 5−s)
.

1

(1− 7−s)
.

1

(1− 11−s)
· · · 1

(1− p−s)
· · ·

Eq. (1) non-alternating harmonic series Riemann zeta function ζ(s) is a function
of complex variable s (= σ ± ıt) that continues sum of infinite series ζ(s) =
∞∑

n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · for Re(s) > 1, and its analytic continuation elsewhere for

0 < Re(s) < 1. Containing no nontrivial zeros, ζ(s) is defined only in 1 < σ < ∞ region
where it is absolutely convergent. The common convention is to write s as σ+ ıt with ı
=

√
−1, and with σ and t real. Valid for σ > 1, we write ζ(s) as Re{ζ(s)}+ıIm{ζ(s)}

and note that ζ(σ+ ıt) when 0 < t < +∞ is the complex conjugate of ζ(σ− ıt) when
−∞ < t < 0. In Eq. (1), the equivalent Euler product formula with product over all
prime numbers implies the presence of Sieve of Eratosthenes.

η(s) =

∞∑
n=1

(−1)n+1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+

1

5s
− · · · (2)

Eq. (2) alternating harmonic series Dirichlet eta function η(s) that faithfully generates
all three types of Gram points as three dependent CIS-IM-linear Incompletely Pre-
dictable entities when σ = 1

2 must represent and act as proxy function for Eq. (1) in
0 < σ < 1-critical strip [viz, for 0 < Re(s) < 1] containing σ = 1

2 -critical line because
ζ(s) only converges when σ > 1. They are related to each other as ζ(s) = γ · η(s) or
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equivalently as η(s) =
1

γ
· ζ(s) with proportionality factor γ =

1

(1− 21−s)
.

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1− s) (3)

ζ(s) satisfies Eq. (3) as the functional equation whereby Γ is the gamma function.
[NOTE: Derived for complex numbers with a positive real part, Γ is defined via a

convergent improper integral Γ(z) =

∫ ∞

0

tz−1e−t dt,ℜ(z) > 0. Γ is then defined as

analytic continuation of this integral function to a meromorphic function that is holo-
morphic in whole complex plane except zero and negative integers, where the function
has simple poles. The main motivation for its development is Γ(x+ 1) interpolates
factorial function x! = 1 ·2 ·3 · ...· x to non-integer values.] As an equality of meromor-
phic functions valid on whole complex plane, Eq. (3) relates values of ζ(s) at points
s and 1− s; in particular, it relates even positive integers with odd negative integers.
Owing to zeros of sine function, the functional equation implies ζ(s) has a simple
zero at each even negative integer s = −2n = −2,−4,−6,−8,−10... known as trivial

zeros of ζ(s). When s is an even positive integer, product sin(
πs

2
)Γ(1− s) on right is

non-zero because Γ(1− s) has a simple pole, which cancels simple zero of sine factor.
At σ = 1

2 , sim-η(s) =

∞∑
n=1

(2n)−
1
2 2

1
2 cos(t ln(2n) +

1

4
π)−

∞∑
n=1

(2n− 1)−
1
2 2

1
2 cos(t ln(2n− 1) +

1

4
π) (4)

At σ = 2
5 , sim-η(s) =

∞∑
n=1

(2n)−
2
5 2

1
2 cos(t ln(2n) +

1

4
π)−

∞∑
n=1

(2n− 1)−
2
5 2

1
2 cos(t ln(2n− 1) +

1

4
π) (5)

For any real number n, eın = cosn+ı·sinn is Euler’s formula where e [≊transcendental
number 2.71828] is base of natural logarithm, ı =

√
−1 is imaginary unit. When n = π

[≊transcendental number 3.14159], then eiπ + 1 = 0 or eiπ = −1, known as Euler’s
identity. Applying this formula to f(n) η(s) results in Eq. (4) f(n) simplified η(s) at
σ = 1

2 that incorporate all nontrivial zeros [as Zeroes]. There is total absence of (non-
existent) virtual nontrivial zeros [as virtual Zeroes]. Eq. (5) f(n) simplified η(s) at
σ = 2

5 will incorporate all (non-existent) virtual nontrivial zeros [as virtual Zeroes].
There is total absence of nontrivial zeros [as Zeroes].

At σ = 1
2 , DSPL =

1

2
1
2

(
t2 +

1

4

) 1
2
[
(2n)

1
2 cos(t ln(2n)− 1

4
π)− (2n− 1)

1
2 cos(t ln(2n− 1)− 1

4
π) + C

]∞
1

(6)
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8 The natural logarithm function logex or ln(x) and natural exponential function exp(x) or ex.
The graphs of logex and its inverse ex are symmetric with respect to line y = x thus geometrically
denoting diagonal symmetry of these two functions.

F (n) Dirichlet Sigma-Power Law, denoted by DSPL, refers to
∫
sim-η(s)dn. Eq. (6) is

F(n) DSPL at σ = 1
2 that will incorporate all nontrivial zeros [as Pseudo-zeroes to

Zeroes conversion].
Given δ = 1

10 , the left-shifted σ = 1
2 − δ = 2

5 -non-critical line (Figure 5) and right-
shifted σ = 1

2 + δ = 3
5 -non-critical line (Figure 6) are equidistant from nil-shifted

σ = 1
2 -critical line (Figure 4). Let x = (2n) or

1

(2n)
or (2n − 1) or

1

(2n− 1)
. With

multiplicative inverse operation of xδ·x−δ = 1 or
1

xδ
· 1

x−δ
= 1 that is applicable, this

imply intrinsic presence of Multiplicative Inverse in sim-η(s) or DSPL for all σ
values with this function or law rigidly obeying relevant trigonometric identity. Then
both f(n) sim-η(s) and F (n) DSPL will manifest Principle of Equidistant for
Multiplicative Inverse (as per Page 41 of [6]). The dissertation based on Figure
8 with inverse functions ln(x) & e(x) in Page 30 – 35 of [6] confirms Asymptotic

law of distribution for prime numbers as lim
x→∞

Prime-π(x)[
x

ln(x)

] =1 and Asymptotic law of

distribution for composite numbers as lim
x→∞

Composite-π(x)[
x

e(x)

] = 1. This fully supports

Prime number theorem [viz, Prime-π(x) ≈ x

ln(x)
] and the derived Composite number

theorem [viz, Composite-π(x) ≈ x

e(x)
].

A number base, consisting of any whole number greater than 0, is number of digits
or combination of digits that a number system uses to represent numbers e.g. decimal
number system or base 10, binary number system or base 2, octal number system or
base 8, hexa-decimal number system or base 16. Prime counting function, Prime-π(x)
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= number of primes ≤ x and Composite counting function, Composite-π(x) = number
of composites ≤ x. As x → ∞, derived properties of Prime-π(x) occur in, for instance,
Prime number theorem for Arithmetic Progressions, Prime-π(x; b, a) [= number of
primes ≤ x with last digit of primes given by a in base b]. For any choice of digit

a in base b with gcd(a,b) = 1: Prime-π(x; b, a) ∼ Prime-π(x)

ϕ(b)
. Here, Euler’s totient

function ϕ(n) is defined as the number of positive integers ≤ n that are relatively
prime to (i.e., do not contain any factor in common with) n, where 1 is counted as
being relatively prime to all numbers. Then each of the last digit of primes given by
digit a in base b as x → ∞ is equally distributed between the permitted choices for
digit a with this result being valid for, and is independent of, any chosen base b.

Numbers with their last digit ending in (i) 1, 3, 7 or 9 [which can be either primes
or composites] constitute ∼40% of all integers; and (ii) 0, 2, 4, 5, 6 or 8 [which must
be composites] constitute ∼60% of all integers. We validly ignore the only single-digit
even prime number 2 and odd prime number 5. We note ≥ 2-digit Odd Primes can
only have their last digit ending in 1, 3, 7 or 9 but not in 0, 2, 4, 5, 6 or 8. These are
given as the complete List:
The last digit of Odd Primes having their Prime gaps with last digit ending in 2 [viz,
Gap 2, Gap 12, Gap 22, Gap 32...] can only be 1, 3 or 9 [but not (5) or 7] as three
choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 4 [viz,
Gap 4, Gap 14, Gap 24, Gap 34...] can only be 1, 3 or 7 [but not (5) or 9] as three
choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 6 [viz,
Gap 6, Gap 16, Gap 26, Gap 36...] can only be 3, 7 or 9 [but not (5) or 1] as three
choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 8 [viz,
Gap 8, Gap 18, Gap 28, Gap 38...] can only be 1, 7 or 9 [but not (5) or 3] as three
choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 0 [viz,
Gap 10, Gap 20, Gap 30, Gap 40...] can only be 1, 3, 7 or 9 [but not (5)] as four choices.
Axiom 1. Applications of the Prime number theorem for Arithmetic Pro-
gressions will confirm Modified Polignac’s and Twin prime conjectures to
be true (as per Page 31 – 32 in [6]).

Proof. We use decimal number system (base b = 10), and ignore the only single-
digit even prime number 2 and odd prime number 5. For i = 1, 2, 3, 4, 5...; the last
digit of all Gap 2i-Odd Primes can only end in 1, 3, 7 or 9 that are each proportionally
and equally distributed as ∼25% when x → ∞, whereby this result is consistent with
Prime number theorem for Arithmetic Progressions. The 100%-Set of, and its derived
four unique 25%-Subsets of, Gap 2i-Odd Primes based on their last digit being 1, 3, 7
or 9 must all be CIS-ALN-decelerating. ”Different Prime numbers literally equates to
different Prime gaps” is a well-known intrinsic property. Since the ALN of Gap 2i as
fully represented by all Prime gaps with last digit ending in 0, 2, 4, 6 or 8 are associated
with various permitted combinations of last digit in Gap 2i-Odd Primes being 1, 3, 7
and/or 9 as three or four choices [outlined above in List from preceding paragraph];
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then these ALN unique subsets of Prime gaps based on their last digit being 0, 2, 4, 6 or
8 together with their correspondingly derived ALN unique subsets constituted by Gap
2i-Odd Primes having last digit 1, 3, 7 or 9 must also all be CIS-ALN-decelerating. The
Probability (any Gap 2i abruptly terminating as x → ∞) = Probability (any Gap 2i-
Odd Primes abruptly terminating as x → ∞) = 0. Thus Modified Polignac’s and Twin
prime conjectures is confirmed to be true. With ordinary Riemann hypothesis being a
special case, we additionally note the generalized Riemann hypothesis formulated for
Dirichlet L-function holds once x > b2, or base b < x

1
2 as x → ∞. The [”statistical”

or ”probabilistic”] proof is now complete for Axiom 1□.

3 Generic Squeeze theorem as a novel mathematical
tool

We adopt abbreviations P = Prime numbers, C = Composite numbers, NTZ = non-
trivial zeros, G[y=0]P = Gram[y=0] points (usual / traditional Gram points), and
G[x=0]P = Gram[x=0] points.

Gram’s Law and Rosser’s Rule for Riemann zeta function via its proxy Dirichlet
eta function at σ = 1

2 are perpetually associated with recurring violations (failures).
Violations of Gram’s Law equates to intermittently observing various geometric vari-
ants of two consecutive (positive first and then negative) G[y=0]P that is alternatingly
followed by two consecutive NTZ. Violations of Rosser’s Rule equates to intermittently
observing various geometric variants of reduction in expected number of certain x-
axis intercept points. Both types of violations may give rise to intermittent or cyclical
events of two missing G[y=0]P or, equivalently, to two extra NTZ.

We hereby artificially and conveniently regard the G[y=0]P ≤ G[x=0]P ≤ NTZ
inequality as being applicable for Theorem 2 below. Observe that this particular
inequality has never been definitively confirmed to be true over the large range of
numbers. With full analysis, one of the following alternative inequalities G[x=0]P ≤
G[y=0]P ≤ NTZ or NTZ ≤ G[y=0]P ≤ G[x=0]P or NTZ ≤ G[x=0]P ≤ G[y=0]P or
G[x=0]P ≤ NTZ ≤ G[y=0]P or G[y=0]P ≤ NTZ ≤ G[x=0]P over the large range of
numbers could instead be true. Even the equality G[y=0]P = G[x=0]P = NTZ over
the large range of numbers could instead also be true. It may even be the case that
all types of inequalities mentioned above could cyclically co-exist over the large range
of numbers. In principle, Theorem 2 should intuitively be validly applicable to the
correctly chosen inequality [or equality].
Theorem 2. (Generic Squeeze theorem). Crucially applicable to all prime numbers,
composite numbers and nontrivial zeros, our devised Theorem 2 is formally stated as
follows (as per Page 51 – 53 in [6]).

Let I be an interval containing point a. Let g, f , and h be algorithms or func-
tions defined on I, except possibly at a itself. Suppose for every x in I not equal
to a, we have g(x) ≤ f(x) ≤ h(x) and also suppose lim

x→a
g(x)= lim

x→a
h(x) = L. Then

lim
x→a

f(x) = L. The algorithms or functions g and h are said to be lower and upper

bounds (respectively) of f . Here, a is not required to lie in the interior of I. Indeed,
if a is an endpoint of I, then the above limits are left- or right-hand limits. A similar
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statement holds for infinite intervals e.g. applicable to the IM t-valued NTZ (as CIS-
IM-linear) obtained from Riemann zeta function via its proxy Dirichlet eta function,
and the ALN of P (as CIS-ALN-decelerating) obtained from Sieve-of-Eratosthenes and
IM C (as CIS-IM-accelerating) obtained from Complement-Sieve-of-Eratosthenes. In
particular, if I = (0,∞) or (0, ALN), then the conclusion holds, taking the limits as
x → ∞ or ALN.

Let an, cn be two sequences converging to ℓ, and bn a sequence. If ∀n ≥ N ,
N ∈ N we have an ≤ bn ≤ cn, then bn also converges to ℓ. From previous argu-
ments, we logically notice Generic Squeeze theorem is valid for carefully selected
sequences e.g. those precisely derived from algorithm Sieve-of-Eratosthenes generating
set of all unique P 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... with progressive ”cummula-
tive” cardinality ≡ cn and sub-algorithms from Complement-Sieve-of-Eratosthenes
generating two subsets of all unique pre-prime-Gap 2-Even C 4, 6, 10, 12, 16, 18,
22, 28... with progressive ”cummulative” cardinality ≡ bn and of all unique 1st post-
prime-Gap 1-Even C 8, 14, 20, 24, 32, 38, 44... with progressive ”cummulative”
cardinality ≡ an. We recognize even P 2 is not a pre-prime-Gap 2-Even C, and 1st

P 3, 5, 11, 17, 29, 41, 59... from all twin prime pairings (3, 5), (5, 7), (11, 13), (17,
19), (29, 31), (41, 43), (59, 61)... are never associated with 1st post-prime-Gap 1-
Even C as these even numbers 4, 6, 12, 18, 30, 42, 60... [which must be *eternally
ubiquitous*, not least, to comply with Law of Continuity] are all pre-prime-Gap 2-
Even C. Incorporating mixtures of P & C, our findings on twin prime pairings =⇒ {cn
representing progressive total of all P} > {bn representing progressive total of all pre-
prime-Gap 2-Even C} > {an representing progressive total of all 1st post-prime-Gap
1-Even C}. Since lim

n→ALN
an = lim

n→ALN
cn = CIS-ALN-decelerating, then lim

n→ALN
bn =

CIS-ALN-decelerating. Stated in another insightful way: The perpetual recurrence of
intermittent inevitable DISAPPEARANCE of 1st post-prime-Gap 1-Even C is solely
due to coinciding intermittent inevitable APPEARANCE of twin primes =⇒ Twin
prime conjecture is true.
*The 1st post-prime-Gap 1-Even C precisely forms OEIS sequence A014574 Average
of twin prime pairs 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228,
240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600, 618... by R. K. Guy, N. J. A.
Sloane & E. W. Weisstein (June 11, 2011) https://oeis.org/A014574 whereby
(i) With an initial 1 added, these numbers form part of the complement of closure of
{2} under the operations a ∗ b + 1 and a ∗ b − 1 within the set of all non-zero posi-
tive even numbers U = {2, 4, 6, 8, 10...}. For a ∗ b + 1: 2 ∗ 2 + 1 = 5. For a ∗ b − 1:
2 ∗ 2− 1 = 3. Under both operations, we obtain the set S = {2, 3, 5}. Therefore the
complement of S within U would be all even numbers except 2 [and 5 & 3]; viz, S′ =
{4, 6, 8, 10, 12, 14, 16...}.
(ii) These numbers are also the square root of the product of twin prime pairs + 1. Two
consecutive odd numbers can be written as 2k+1, 2k+3. Then (2k+1)(2k+3)+1 =
4(k2 + 2k + 1) = 4(k + 1)2, a perfect square [where the countably infinite set of all
perfect squares ≡ product of an integer multiplied by itself = 1, 4, 9, 16, 25, 36, 49,
64, 81, 100...]. Since twin prime pairs are two consecutive odd numbers, the statement
is true for all CIS-ALN-decelerating twin prime pairs.
(iii) These numbers are single (or isolated) composites. Nonprimes k such that neither
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k − 1 nor k + 1 is nonprime.
(iv) These form the numbers n such that σ(n− 1) = ϕ(n+ 1). This equation involves
two arithmetic functions: the sum of divisors function σ [which calculates the sum of
all positive divisors of n e.g. when n = 30: Prime factorization of (n− 1) = 29 is 29 =
291, and σ(29) = 1+29 = 30] and Euler’s totient function ϕ [which gives the count of
positive integers less than n that are coprime to n e.g. Prime factorization of (n+ 1)
= 31 is 31 = 311, and ϕ(31) = 31− 1 = 30].
(v) Aside from the first term 4 in the sequence, all remaining terms 6, 12, 18, 30, 42,
60, 72, 102, 108, 138, 150... have digital root 3, 6, or 9 e.g. the digital root of 138 is 3
since 138 = 1 + 3 + 8 = 12 and 1 + 2 = 3.
(vi) These form the numbers n such that n2−1 is a semiprime [a natural number that
is the product of two prime numbers].
(vii) Every term but the first term 4 is a multiple of 6 [and all the multiple of 6 clearly
constitute a countably infinite set].

From above synopsis that is valid for [mixed] prime & composite numbers as
x →ALN, we conclude: Since there is an ALN of all prime numbers as (cn) and also an
ALN of all 1st post-prime-Gap 1-Even composite numbers as (an), then by the Generic
Squeeze theorem, there must also be an ALN of all Gap 2-Even composite numbers
as (bn). Thus ℓ must have the value of ALN. In theory, even if there are [incorrectly]
only finitely many twin primes, the mathematical relationship of an ≤ bn ≤ cn will
still hold except that the Generic Squeeze theorem is no longer applicable as there will
be inevitable ”errors” present in the computed an, bn and cn.

By applying Generic Squeeze theorem [only] to Odd P, we now prove Polignac’s
and Twin prime conjectures are true: We ignore even P 2. Let algorithm Sieve-of-
Eratosthenes that generate the set of all unique Total Odd P 3, 5, 7, 11, 13, 17,
19, 23, 29... with progressive ”cummulative” cardinality ≡ cn and sub-algorithms
from Sieve-of-Eratosthenes that generate the two [randomly selected] subsets of all
unique Gap 4-Odd P 7, 13, 19, 37, 43, 67... with progressive ”cummulative” cardi-
nality ≡ an and of all unique Gap 2, 6, 8, 10, 12...-Odd P 3, 5, 11, 17, 23, 23, 29,
31, 41, 47, 53, 59, 61... [viz, not including Gap 4-Odd P] with progressive ”cummu-
lative” cardinality ≡ bn. Instead of choosing bn to be even Prime gap 4, one could
choose any other eligible even Prime gap derived from the set of all even Prime
gaps [which will inevitably also include Zhang’s landmark result of an unknown even
Prime gap N < 70 million]. Since lim

n→ALN
an = lim

n→ALN
cn = CIS-ALN-decelerating,

then lim
n→ALN

bn = CIS-ALN-decelerating. Stated in another insightful way: In order

for our novel method Generic Squeeze theorem to be ubiquitously applicable for Odd
P, all even Prime gaps 2, 4, 6, 8, 10... must be associated with their corresponding
ALN of Odd P.

On 17 April 2013, Yitang Zhang announced an incredible proof that there are
infinitely many pairs of prime numbers that differ by less than 70 million[7]; viz, there
is an arbitrarily large number of Odd Primes with an unknown even Prime gap N
of less than 70 million. By optimizing Zhang’s bound, subsequent Polymath Project
collaborative efforts using a new refinement of GPY sieve in 2014 lowered N to 246;
and assuming Elliott-Halberstam conjecture and its generalized form further lower N
to 12 and 6, respectively. Intuitively, N has more than one valid values such that the
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same condition holds for each N value. Using different methods, we can at most lower
N to 2 and 4 in regards to Odd Primes having small even Prime gaps 2 & 4 with
each uniquely generating CIS-ALN-decelerating Odd Primes. We anticipate there are
all remaining even Prime gaps w.r.t. Odd Primes with large even Prime gaps ≥ 6
as denoted by corresponding N ≥ 6 values whereby each large even Prime gap will
generate its own unique CIS-ALN-decelerating Odd Primes.

We justify ”Zhang’s optimized result ≥ 3 up to ALN even Prime gaps
with each having ALN of elements”: Always as finite [but NOT infinite] length,
we observe as side note that two or more consecutive Odd Primes are validly and
rarely constituted by [same] even Prime gap of 6 or multiples of 6. With just one or
two existing even Prime gaps that have ALN of elements being simply ”insufficient”
in the large range of prime numbers, then the landmark result by Zhang on this
unknown even Prime gap N of less than 70 million is usefully extrapolated as ”There
must be at least one subset of Odd Primes having ALN of elements”. Hence there
are aesthetically at least two, if not three, existing even Prime gaps that generate
their corresponding CIS-ALN-decelerating Odd Primes. Modified Polignac’s and Twin
prime conjectures equates to all even Prime gaps 2, 4, 6, 8, 10... generating their
corresponding CIS-ALN-decelerating Odd Primes.

Near-identical arguments can be made for three types of Gram points located at
σ = 1

2 -critical line of Riemann zeta function but we leave out the full exercise of apply-
ing Generic Squeeze theorem to NTZ as progressive ”cummulative” cardinality ≡ cn,
G[x=0]P as progressive ”cummulative” cardinality ≡ bn and G[y=0]P as progressive
”cummulative” cardinality ≡ an. We immediately recognize the [trivial] conclusion:
Since lim

n→∞
an = lim

n→∞
cn = CIS-IM-linear, then lim

n→∞
bn = CIS-IM-linear.

Eq. (4) manifests exact Dimensional analysis homogeneity when σ = 1
2 whereby

Σ(all fractional exponents) = 2(−σ) = exact negative whole number –1 [c.f. Eq. (5)
manifests inexact Dimensional analysis homogeneity when σ = 2

5 whereby Σ(all frac-
tional exponents) = 2(–σ) = inexact negative fractional number – 4

5 ]. Only Dirichlet
eta function having parameter σ = 1

2 will mathematically depict [optimal] ”formula
symmetry” on Σ(all fractional exponents) as an exact negative whole number, whereby
absolute values of all fractional exponents = 1

2 when associated with constant 2
and variable (2n) or (2n–1). This formula symmetry is not equivalent to geometri-
cal symmetry about X-axis, Y-axis, Diagonal, or Origin point that do not exist for
any Dirichlet eta function when considered for either −∞ < t < 0 or 0 < t < +∞
from full range −∞ < t < +∞; whereby we conventionally adopt the positive range.
Simple observation of [optimal] ”formula symmetry” implies only σ = 1

2 -Dirichlet eta
function will perpetually & geometrically intercept σ = 1

2 -Origin point as Origin inter-
cept points or Gram[x=0,y=0] points (i.e. will perpetually & mathematically lie on
σ = 1

2 -critical line as nontrivial zeros) an infinite number of times.
Conforming to Langlands program ”Theory of Symmetry”, IL (sub-)algorithms

or IL (sub-)equations and FL (sub-)algorithms or FL (sub-)equations will respectively
generate infinitely-many and finitely-many entities. All the FL (sub-)algorithms or
FL (sub-)equations are CP but the IL (sub-)algorithms or IL (sub-)equations can be
either CP or IP. Here, we validly regard equation Dirichlet eta function (proxy for
Riemann zeta function that generate nontrivial zeros when σ = 1

2 ), and algorithms

19



Sieve-of-Eratosthenes [for prime numbers] and Complement-Sieve-of-Eratosthenes [for
composite numbers] as non-overlapping ”IP IL number generators”.
Remark 1. Not least to maintain Dimensional analysis homogeneity and to conserve
Total number of elements (cardinality), it is a sine qua non Pre-requisite Mathemat-
ical Condition that a parent IP IL algorithm which is precisely constituted by its IP
IL sub-algorithms or a parent IP IL equation which is precisely constituted by its IP
IL sub-equations must generally all be wholly IP IL [and not be mixed IP IL and CP
FL]. Useful self-explanatory analogy using CP IL (sub)algorithms or (sub)equations:
Set ”twin” even numbers 0, 2, 4, 6, 8, 10... with Even gap 2, Subset ”cousin” even
numbers 0, 4, 8, 12, 16, 20... with Even gap 4, Subset ”sexy” even numbers 0, 6, 12,
18, 24, 30... with Even gap 6, etc must all be constituted by CP IL [and not mixed CP
IL and IP IL] even numbers that are derived from, paradoxically, overlapping ”CP
IL number generators”.
Remark 2. It was correctly asserted on Page 3 – 4 of [6] that any created Prime-tuplet
or Prime-tuple is not able to be used to either prove or disprove Modified Polignac’s
and Twin prime conjectures. The reason is Prime-tuplets or Prime-tuples are sim-
ply ”overlapping and incomplete” (Sub)Tuples Classification of consecutive
primes. In contrast, we can use ”non-overlapping and complete” (Sub)Sets
Classification of grouped primes to prove Modified Polignac’s and Twin prime
conjectures. Thus even Prime gap 2 = Prime 2-tuplets of diameter 2 and even Prime
gaps 4, 6, 8, 10, 12... = Prime 2-tuples of diameter 4, 6, 8, 10, 12....

4 Theorem of Divergent-to-Convergent series
conversion for Prime numbers as a novel
mathematical tool

Recall from section 2 the algorithms Sieve-of-Eratosthenes (S-of-E) and Modified-S-
of-E. Both algorithms and their derived sub-algorithms faithfully generate set of all
prime numbers 2, 3, 5, 7, 11, 13...; set of all Odd Primes 3, 5, 7, 11, 13, 17...; and
subsets of Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10.... By performing

summation given by

ALN∑
n=i

pn+1 = 2 +

n∑
i=1

gi and

ALN∑
n=i

pn+1 = 3 +

n∑
i=2

gi, we obtain (de

novo) infinite series as diverging series for these two algorithms [and their derived
sub-algorithms]. For Polignac’s and Twin prime conjectures to be true, we deduce the
cardinality for (i) set of all prime numbers, (ii) set of all Odd Primes, (iii) subsets of
Odd Primes, and (iv) set of all even Prime gaps must all be CIS-ALN-decelerating.
In contrast, we deduce below after Theorem 3 that all Brun’s constants as (derived)
infinite series are, in fact, converging series.

Useful preliminary information explain Theorem 3: Four basic arithmetic
operations of addition [and complementary substraction] and multiplication [and com-
plementary division] obey Axioms of Addition and Multiplication, and Axioms of
Order. Division of one number by another is equivalent to multiplying first number
by reciprocal (or multiplicative inverse) of second number, whereby division by 0 is
always undefined. Subtraction of one number from another is equivalent to adding
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additive inverse of second number (viz, a negative number) to first number (viz, a
positive number). Completely Predictable properties arising from (non-)alternating
addition of any Even numbers (E) 0, 2, 4, 6, 8, 10, 12... and any Odd numbers (O) 1,
3, 5, 7, 9, 11, 13...:
(1) E + E + E + E... when involving any number of terms = E.
(2) O + O + O + O... when involving an even number of terms = E; and when involv-
ing an odd number of terms = O.
The alternating sum E + O + E + O + E + O... when involving (1 + n) terms for n
= 1, 2, 3, 4, 5... = repeating patterns of O, O, E, E, O, O,....

A convergent series (CS) as an infinite series having its partial sums of sequence
that tends to a finite limit is validly represented by the [defined] value of this finite
limit. A divergent series (DS) as an infinite series having its partial sums of sequence
that tends to a infinite limit is validly represented by the [undefined] value of this
infinite limit. As previously discussed in section 2, the infinite-length sequence of a
given CS or DS can theoretically be constituted by either positive terms OR alternat-
ing positive and negative terms. The following are Completely Predictable properties
arising from addition of any infinite series constituted by ≥ 1 CS and/or ≥ 1 DS:
I. DS + DS + DS +... when involving any number of DS terms = DS.
II. CS + CS +... + DS + DS +... when involving any number of CS terms and any
number of DS terms = DS.
III. CS + CS + CS +... when involving a finite number of CS terms = CS.
IV. CS + CS + CS +... when involving an infinite number of CS terms or arbitrarily
large number (ALN) of CS terms = DS.
Theorem 3. (Theorem of Divergent-to-Convergent series conversion for Prime
numbers) (as per Page 53 – 54 in [6]).

We validly ignore even prime number 2. Theorem 3, aka Smoothed asymptotics
for Prime numbers with an enhanced regulator, as given in next two paragraphs
is further expanded below using three Brun’s constants computed for twin primes,
cousin primes and sexy primes.

For [eligible] homogenous entities of prime numbers with application of divergent
series (DS) to convergent series (CS) conversion relationship, we obtain CS + CS +
CS +... when involving arbitrarily large number (ALN) of CS terms [that faithfully
”represent” all Subsets of Odd Primes] = DS [that faithfully ”represent” the Set of all
Odd Primes]. We recognize the ALN of computed CS terms will precisely correspond to
Brun’s constants. The correctly chosen enhanced regulator for prime numbers ≡
sine qua non condition [that must be fully complied with by all Odd Primes]: Derived
from the set of all Odd Primes, there must be an ALN of subsets of Odd Primes derived
from even Prime gaps 2, 4, 6, 8, 10... with each subset of Odd Primes containing an
ALN of unique elements.

The elimination of a DS to CS under our novel Divergent-to-Convergent series
theorem for Prime numbers fully supports Polignac’s and Twin prime conjectures to
be true. As alluded to in section 1, this procedure is reminiscent of invoking ’Method
of Smooth asymptotics’ and ’regularization of divergent series or integrals’ to enable
elimination of divergences in analytic number theory and preservation of gauge invari-
ance at one loop in a wide class of non-abelian gauge theories coupled to Dirac fermions
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that preserves Ward identity for vacuum polarisation tensor [viz, a regularized quan-
tum field theory]. This is achieved by Padilla and Smith via adopting suitable choices
from their proposed families of enhanced regulators[3] with analytic continuation that
converge to Riemann zeta function value ζ(−1) = − 1

12 of extra relevance to quantum
gravity, string theory, etc.

Considering Euler products

∞∑
n=1

1

n
=

∏
p

(
1 +

1

p
+

1

p2
+ · · ·

)
=

∏
p

1

1− p−1
when

taken over the set of all infinitely many primes, Leonhard Euler in 1737
showed the [harmonic] infinite series of all infinitely many primes (as sum
of the reciprocals of all infinitely many primes) diverges very slowly; viz,∑
p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+

1

19
+ · · · = ∞. If it were the case that

this sum of the reciprocals of twin primes (Prime gap 2), cousin primes (Prime gap 4),
sexy primes (Prime gap 6), etc all diverged; then that fact would imply that there are
infinitely many of twin primes, cousin primes, sexy primes, etc. However twin primes
are less frequent than all infinitely many prime numbers by nearly a logarithmic fac-
tor with this bound giving the intuition that the sum of the reciprocals of twin primes
converges very slowly, or stated in other words, twin primes form a small set. The

sum
∑

p : p+2∈P

(
1

p
+

1

p+ 2

)
=

(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+

(
1

17
+

1

19

)
+ · · ·

= 1.902160583104... in explicit terms either has finitely many terms or has infinitely
many terms but is very slowly convergent with its value known as Brun’s constant for
(consecutive) twin primes. Similar deductive arguments can be developed for the sum
of the reciprocals of cousin primes, sexy primes, etc that also converges very slowly
with their associated Brun’s constant for (consecutive) cousin primes [≈ 1.19705479],
(consecutive) sexy primes [≈ 1.13583508], etc. All these heuristically computed Brun’s
constants are irrational (transcendental) numbers ONLY IF there are infinitely many
twin primes, cousin primes, sexy primes, etc. Based on Zhang’s result[7], there must
be at least one computed Brun’s constant that is irrational (transcendental) associ-
ated with infinitely many Odd Primes having an even Prime gap < 70 million. Ignore
solitary even prime number 2. Use ”Arbitrarily Large Number” to denote ”infinitely
many”. As an absolutely indispensable condition, there are ALN of subsets of Odd
Primes with each subset of Odd Primes containing ALN of elements – this is akin to
choosing the correct ”enhanced regulator”. From above discussions, we heuristically
deduce very slowly diverging sum (series) of the reciprocals of all ALN Odd Primes
are fully constituted by very slowly converging sum (series) of the reciprocals of ALN
Odd Primes derived from each and every subsets of Odd Primes.

Erdos primitive set conjecture, now proven as a theorem by Prof. Jared
Lichtman[1], is the assertion that for any primitive set S with exactly k prime fac-

tors (with repetition),
∑
n∈S

1

n log n
≤

∑
p

1

p log p
=

1

2 log 2
+

1

3 log 3
+

1

5 log 5
+

1

7 log 7
+

1

11 log 11
+... = 1.6366... [as a very slowly converging sum when k = 1 over

infinitely-many integers 1, 2, 3, 4, 5...] =⇒ fk is maximized by the prime sum f1
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=
∑
p

1

p log p
= 1.6366... [representing the unique ”largest” primitive set that ONLY

contains all infinitely-many prime numbers 2, 3, 5, 7, 11, 13...]. As supporting Modified
Polignac’s and Twin prime conjectures to be true [with all Odd Primes belong-

ing to CIS-ALN-decelerating]; one can calculate the equivalent f1 =
∑
p

1

p log p

[also as very slowly converging sums with values < 1.6366...] for individual subsets of
Odd Primes obtained from even Prime gaps 2, 4, 6, 8, 10... and notice these [derived]
”infinite series” calculations must all, in principle and in synchrony, incorporate
corresponding CIS-ALN-decelerating Odd Primes from each subset. This last
statement is heavily supported by Yitang Zhang’s result[7] which can be extrapolated
as ”There must be at least one subset of Odd Primes [obtained from an even Prime
gap < 70 million] having infinitely many elements”.

5 Subtypes of Countably Infinite Sets with
Incompletely Predictable entities from Riemann
zeta function and Sieve of Eratosthenes

The sets of numbers generated using power (exponent) such as 2 or 1
2 , even numbers,

odd numbers, etc are morphologically constituted by Completely Predictable (CP)
numbers in the sense that these sets of numbers are actually not random and do
not behave like one. The sets of nontrivial zeros, primes, composites, etc are mor-
phologically constituted by Incompletely Predictable (IP) numbers [or pseudo-random
numbers] in the sense that these sets of numbers are actually not random but behave
like one; thus giving rise to so-called ”Mathematics for Incompletely Predictable Prob-
lems”. The word number [singular noun] or numbers [plural noun] in reference to CP
even and odd numbers, IP prime and composite numbers, IP Gram points and vir-
tual Gram points can be interchanged with the word entity [singular noun] or entities
[plural noun].
Lemma 4. We can formally define the elements from (sub)sets and (sub)tuples as
Completely Predictable or Incompletely Predictable entities (as per Page 18 in [6]).
Please also see Remark 1 & Remark 2 above in section 3 indicating the important
significances arising from Lemma 4.

Proof. A set is a collection of zero (viz, the empty set) or more elements (viz, a
finite set with a finite number of elements or an infinite set with an infinite number of
elements). A singleton refers to a finite set with a single element. A set can be any kind
of mathematical objects: numbers, symbols, points in space, lines, other geometrical
shapes, variables, or even other sets whereby these [mutable] non-repeating elements
are not arranged in an unique order. A subset can be a [smaller] finite set derived
from its [larger] parent finite set or its [larger] parent infinite set. A subset can also be
a [smaller] infinite set derived from its [larger] parent infinite set. A tuple, which can
potentially be subdivided into subtuples, is a finite ordered list (sequence) of elements
whereby these [immutable] non-repeating elements are arranged in an unique order.
Thus a tuple or a subtuple is regarded as a special type of finite set with the extra
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imposed restriction. As shown below using worked examples:
CP simple equation or algorithm generates CP numbers e.g. even numbers 0, 2, 4, 6,
8, 10... or odd numbers 1, 3, 5, 7, 9, 11.... Thus a generated CP number is location-
ally defined as a number whose ith position is independently determined by simple
calculations without needing to know related positions of all preceding numbers – this
is a Universal Property.
IP complex equation or algorithm generates IP numbers e.g. prime numbers 2, 3, 5,
7, 11, 13... or composite numbers 4, 6, 8, 9, 10, 12.... Thus a generated IP number is
locationally defined as a number whose ith position is dependently determined by
complex calculations with needing to know related positions of all preceding numbers
– this is a Universal Property.
We clearly note the elements in (sub)sets and (sub)tuples when generated by equations
or algorithms will precisely constitute relevant entities or numbers of interest.
The proof is now complete for Lemma 4□.

A formula for primes in Number theory is a formula generating all prime
numbers 2, 3, 5, 7, 11, 13, 17, 19, 23... exactly and without exception. Com-
putationally slow and inefficient formulas for calculating primes exist e.g. 1964

Willans formula pn = 1+

2n∑
i=1




n

i∑
j=1

⌊(
cos

(j − 1)! + 1

j
π

)2
⌋


1/n
 which is based

on Wilson’s theorem n+ 1 is prime iff n! ≡ n (mod n+ 1). Then critics may
ask the question ”For n = 1, 2, 3, 4, 5,...; does Willans formula that faith-
fully compute corresponding nth prime number pn for all infinitely-many primes
contradict Sieve-of-Eratosthenes algorithm as being an Infinite Length (IL) and
Incompletely Predictable (IP) algorithm?” The answer is categorically ’no’ based
on carefully analyzing this formula using following arguments [which lend fur-
ther support to Polignac’s and Twin prime conjectures being true]: Willans for-

mula has two sub-components

⌊(
cos

(j − 1)! + 1

j
π

)2
⌋

=
1 if j is prime or 1

0 if j is composite
&

i∑
j=1

⌊(
cos

(j − 1)! + 1

j
π

)2
⌋

= (# primes ≤ i) + 1. We recognize this second sub-

component stipulating (# primes ≤ i) + 1 meant the actual position of every nth prime
number will have to be fully and indirectly computed each time, thus confirming the
infinitely-many prime numbers are IP and of IL. Note all [complementary] composite
numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18... are simply obtained by discarding all prime
numbers from integers 2, 3, 4, 5, 6, 7, 8, 9, 10... whereby ”special” integers 0 & 1
are neither prime nor composite. We ignore even prime number 2. Zhang’s landmark
result[7] states there are infinitely many Odd Primes having an even Prime gap < 70
million. One could extrapolate Zhang’s result to: There must be at least two or three
up to all even Prime gaps being each associated with infinitely many Odd Primes. All
obtained consecutive Odd Primes pn and pn+1 can have their calculated pn+1 – pn
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values grouped together as belonging to even Prime gaps 2, 4, 6, 8, 10... whereby when
the Zhang’s result is maximally extrapolated, Polignac’s and Twin prime conjectures
are supported to be true.
Lemma 5. We can validly classify countably infinite sets as accelerating, linear or
decelerating subtypes (as per Page 18 – 19 in [6]).

Proof. We provide the following required mathematical arguments.
Cardinality: With increasing size, arbitrary Set [or Subset] X can be countably finite
set (CFS), countably infinite set (CIS) or uncountably infinite set (UIS). Denoted
as ∥X∥ in this paper, the cardinality of Set X measures number of elements in Set
X. E.g., Set negative Gram[y=0] point as constituted by a [solitary] rational (Q)
t-value of 0 instead of a usual transcendental (R− A) t-value has CFS of negative
Gram[y=0] point with this particular ∥negative Gram[y=0] point∥ = 1, Set even
Prime number (P) has CFS of solitary even P 2 with ∥even P∥ = 1, Set Natural
numbers (N) has CIS of N with ∥N∥ = ℵ0, and Set Real numbers (R) has UIS of R
with ∥R∥ = c (cardinality of the continuum). Then with ∥CIS∥ = ℵ0 = [countably]
infinitely many elements; we provide a novel classification for CIS based on its num-
ber of elements (cardinality) manifesting linear, accelerating or decelerating property
constituting three subtypes of CIS.
CIS-IM-accelerating: CIS with cardinality = ∥CIS-IM-accelerating∥ = ℵ0-
accelerating = [countably] infinitely many elements that (overall) acceleratingly reach
an infinity value. Examples: CP integers 0, 1, 4, 9, 16... generated by simple equation y
= x2 for x = 0, 1, 2, 3, 4... and CP values obtained from natural exponential function
y = e(x); and IP composite numbers 4, 6, 8, 9, 10... faithfully generated by complex
Complement-Sieve-of-Eratosthenes algorithm [which is equivalent to simply discard-
ing 0, 1, and all generated prime numbers via Sieve-of-Eratosthenes algorithm from
the set of integers 0, 1, 2, 3, 4, 5...].
CIS-IM-linear: CIS with cardinality = ∥CIS-IM-linear∥ = ℵ0-linear = [countably]
infinitely many elements that (overall) linearly reach an infinity value. Examples: CP
entities 0, 1, 2, 3, 4, 5... [representing all positive integer numbers] generated by sim-
ple equation y = x for x = 0, 1, 2, 3, 4...; CP entities 0, 2, 4, 6, 8, 10... [representing
all positive even numbers] generated by simple equation y = 2x for x = 0, 1, 2, 3,
4...; CP entities 1, 3, 5, 7, 9, 11... [representing all positive odd numbers] generated by
simple equation y = 2x− 1 for x = 1, 2, 3, 4, 5...; and IP nontrivial zeros, Gram[y=0]
points and Gram[x=0] points (all given as R− A t-values) generated from complex
equation Riemann zeta function via its proxy Dirichlet eta function. These IP entities
will inevitably manifest IP perpetual repeating violations (failures) in Gram’s Law
and Rosser’s Rule occuring infinitely many times. E.g., the former give rise to Set
negative Gram[y=0] points whereby CIS negative Gram[y=0] points is constituted
by R− A t-values classified as having ∥negative Gram[y=0] points∥ = ∥CIS-IM-
linear∥ = ℵ0-linear.
CIS-ALN-decelerating: CIS with cardinality = ∥CIS-ALN-decelerating∥ =
ℵ0-decelerating = [countably] arbitrarily large number of elements that (overall) decel-
eratingly reach an Arbitrarily Large Number value. Examples: CP entities 0, 1,

√
2,√

3, 2,
√
5... generated by simple equation y =

√
x for x = 0, 1, 2, 3, 4, 5... and CP

values obtained from natural logarithm function y = ln(x); and IP prime numbers 2,
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3, 5, 7, 11... faithfully generated by complex Sieve-of-Eratosthenes algorithm.
The proof is now complete for Lemma 5□.

6 Conclusions including applying infinitesimals to
outputs from Sieve of Eratosthenes and Riemann
zeta function

Figure 1 [depicting positive & negative prime numbers and composite numbers] and
Figure 2 [depicting the Co-linear Riemann zeta function for positive & negative range]
will manifest perfect Mirror symmetry and fully comply with Law of Continuity. Valid
comments: Whereas the continuous-like equation Riemann zeta function ζ(s) Eq. (1)
[via proxy Dirichlet eta function η(s) Eq. (2)] for s = σ ± t range that generate mutu-
ally exclusive CIS-IM-linear σ-valued co-lines be mathematically regarded as smoothly
continuous everywhere thus obeying Law of continuity; so must the discrete-like
algorithms Sieve-of-Eratosthenes and Complement-Sieve-of-Eratosthenes that gener-
ate mutually exclusive Primes and Composites be conceptually regarded as jaggedly
continuous everywhere thus also obeying Law of continuity. CIS-ALN-decelerating
Primes and CIS-IM-accelerating Composites are dependent complementary entities.
In ζ(s) Eq. (1), the equivalent Euler product formula with product over prime num-
bers [instead of summation over natural numbers] represents ζ(s) =⇒ all primes
and, by default, [complementary] composites are intrinsically encoded in ζ(s). Since

via analytic continuation, η(s) =
1

γ
· ζ(s) [proxy function for ζ(s) in 0 < σ < 1-

critical strip]; then all primes and, by default, [complementary] composites are also
intrinsically encoded in η(s) Eq. (2).

Defined on Page 14 of [6] for i = 1, 2, 3, 4, 5,..., n: Perpetually containing Accelerat-
ing primes as Prime gapi+2 – Prime gapi+1 > Prime gapi+1 – Prime gapi, Decelerating
primes as Prime gapi+2 – Prime gapi+1 < Prime gapi+1 – Prime gapi and Steady
primes as Prime gapi+2 – Prime gapi+1 = Prime gapi+1 – Prime gapi; we use relevant
algorithm and sub-algorithms to compute mutually exclusive but dependent prime
numbers consisting of solitary odd Prime gap 1 for even prime number 2, and even
Prime gaps 2, 4 and 6 for odd Twin primes, odd Cousin primes and odd Sexy primes:

(a) For IP IL algorithm [Gap 2, 4, 6, 8, 10...]-Sieve of Eratosthenes pn+1 = 3 +

n∑
i=1

gi

[where n = ALN] that faithfully generates all Odd P {3, 5, 7, 11, 13, 17, 19...} with
cardinality ℵ0-decelerating, the nth even Prime gap between two successive Odd P is
denoted by gn = (n+1)st Odd P – (n)th Odd P, i.e. gn = pn+1−pn = 2, 2, 4, 2, 4, 2....

(b) For CP FL sub-algorithm [Gap 1]-Sieve of Eratosthenes pn+1 = 2 +

n∑
i=1

gi [where

n = 1 and not ALN] that faithfully generates the first and only Even P {2} ≡ first
and only paired Even P {(2,3)} with cardinality CFS of 1, the solitary nth odd prime
gap between two successive primes is denoted by gn = (n+ 1)st Odd P – (n)th Even
P, i.e. gn = pn+1 − pn = 3− 2 = 1.
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(c) For IP IL sub-algorithm [Gap 2]-Sieve of Eratosthenes pn+1 = 3 +

n∑
i=1

gi [where

n = ALN] that faithfully generates all Odd twin P {3, 5, 11, 17, 29, 41, 59...} ≡ all
paired Odd twin P {(3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59,61)...} with car-
dinality ℵ0-decelerating, the nth even Prime gap between two successive Odd twin P
is denoted by gn = (n + 1)st Odd twin P – (n)th Odd twin P, i.e. gn = pn+1 − pn =
2, 6, 6, 12, 12, 18....

(d) For IP IL sub-algorithm [Gap 4]-Sieve of Eratosthenes pn+1 = 7 +

n∑
i=1

gi [where

n = ALN] that faithfully generates all Odd cousin P {7, 13, 19, 37, 43, 67...} ≡ all
paired Odd cousin P {(7,11), (13,17), (19,23), (37,41), (43,47), (67,71)...} with cardi-
nality ℵ0-decelerating, the nth even Prime gap between two successive Odd cousin P
is denoted by gn = (n+ 1)st Odd cousin P – (n)th Odd cousin P, i.e. gn = pn+1 − pn
= 6, 6, 8, 6, 24....

(e) For IP IL sub-algorithm [Gap 6]-Sieve of Eratosthenes pn+1 = 23 +

n∑
i=1

gi [where

n = ALN] that faithfully generates all Odd sexy P {23, 31, 47, 53, 61, 73, 83...} ≡ all
paired Odd sexy P {(23,29), (31,37), (47,53), (53,59), (61,67), (73,79), (83,89)...} with
cardinality ℵ0-decelerating, the nth even Prime gap between two successive Odd sexy
P is denoted by gn = (n+1)st Odd sexy P – (n)th Odd sexy P, i.e. gn = pn+1 − pn =
8, 16, 6, 8, 12, 10....

With n = ALN or, traditionally, ∞; rigorous algorithm-type proof for Modified
Polignac’s and Twin prime conjectures can be stated here as two statements. State-
ment 1: All known prime numbers = IP IL algorithm (a) + CP FL sub-algorithm (b).
Statement 2: IP IL algorithm (a) = IP IL sub-algorithm (c) + IP IL sub-algorithm
(d) + IP IL sub-algorithm (e) +... [that involves all even Prime gaps 2, 4, 6, 8, 10...].

As proxy function for Riemann zeta function in 0 < σ < 1 critical strip, Dirichlet
eta function when treated as equation and sub-equation at (unique) σ = 1

2 -critical line
will faithfully generate all x-axis intercept points as usual Gram points or Gram[y=0]
points, all y-axis intercept points as Gram[x=0] points, and all Origin intercept points
as Gram[x=0,y=0] points or nontrivial zeros. Confirming Riemann hypothesis to be
true, these entities that constitute the three types of Gram points are mutually exclu-
sive, dependent and endowed with t-valued irrational (transcendental) numbers except
for initial Gram[y=0] point endowed with a t-valued rational number:
(a) Considered for t = 0 to +∞ at σ = 1

2 , Dirichlet eta function as IP IL equation will
faithfully generate all above-mentioned three types of Gram points that are endowed
with t-valued irrational (transcendental) numbers except for first Gram[y=0] point.
(b) Considered only for t = 0 at σ = 1

2 , Dirichlet eta function as CP FL sub-equation
will faithfully generate the first and only Gram[y=0] point that is endowed with
t-valued rational number 0.

We analyze the data of all CIS-IM-linear computed nontrivial zeros (NTZ) when
extrapolated out over a wide range of t ≥ 0 real number values. Akin to Prime counting
function Prime-π(x) = number of primes ≤ x, we can symbolically define nontrivial
zeros counting function NTZ-π(t) = number of NTZ ≤ t with t assigned to having
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9 Proportion (Prevalence) of Twin primes, Cousin primes [as partial calculations] and Sexy Primes
[as partial calculations] with Proportion (Prevalence) of all Primes included. These Proportions
(Prevalences) are essentially self-similar fractal objects. The n = 1, 2, 3, 4, 5, 6, 7, 8... in 10n that
is denoted with horizontal x-axis =⇒ the scale of this axis is non-linearly depicted using increasing
powers of 10.

real number values which are conveniently designated by 10n whereby n = 1, 2, 3,
4, 5.... The cumulative Prevalence of nontrivial zeros = NTZ-π(t) / t = NTZ-
π(t) / (10n) when t = 0 to 10n, whereby denominator t is [artificially] regarded as
having integer number values. We conceptually define all consecutive NTZ gaps as ith

t-valued NTZ – (i-1)th t-valued NTZ. Thus there are CIS-IM-linear computed NTZ
gaps. The numbers of NTZ between 100 – 101 [interval = 9], 101 – 102 [interval = 90],
102 – 103 [interval = 900], 103 – 104 [interval = 9000], 104 – 105 [interval = 90000],
105 – 106 [interval = 900000], 106 – 107 [interval = 9000000], 107 – 108 [interval
= 90000000]... are 0, 29, 620, 9493, 127927, 1609077, 19388979, 226871900... with
corresponding rolling Prevalence of nontrivial zeros = 0, 0.322, 0.689, 1.055, 1.421,
1.788, 2.154, 2.521... =⇒ rolling Prevalence of nontrivial zeros seems to overall
fluctuatingly increase by around 0.366 in a ”linear” manner. This limited observation
alone suggests Cardinality of nontrivial zeros = ∥CIS-IM-linear∥ = ℵ0-linear.

In comparison, we further notice here the numbers of NTZ between 100 – 101

[interval = 9], 100 – 102 [interval = 99], 100 – 103 [interval = 999], 100 – 104 [interval
= 9999], 100 – 105 [interval = 99999], 100 – 106 [interval = 999999], 100 – 107 [interval
= 9999999], 100 – 108 [interval = 99999999]... are 0, 29, 649, 10142, 138069, 1747146,
21136125, 248008025... with corresponding cumulative Prevalence of nontrivial
zeros = 0, 0.293, 0.650, 1.014, 1.381, 1.747, 2.114, 2.480...

On the overall objective to rigorously derive Algorithm-type proofs for Modified
Polignac’s and Twin prime conjectures [as based on Figure 9] and Equation-type proof

for Riemann hypothesis [as based on Figure 10], we apply infinitesimal numbers
1

∞
at

two places using the following colloquially-stated propositions with their formal proofs
given in Page 44 – 45 of [6].
Proposition 6. In the limit of never reaching a [nonexisting] zero hereby con-
ceptually visualized as Prevalences of both even Prime gaps and the associated [positive

28



10 Simulated dynamic trajectories showing Origin intercept points when σ = 1
2
and virtual Origin

intercept points when σ = 2
5
and σ = 4

5
. Horizontal axis: Re{ζ(σ+ ıt)}, and vertical axis: Im{ζ(σ+

ıt)}. Total presence of all Origin intercept points at the [static] Origin point. Total presence of
all virtual Origin intercept points as additional negative virtual Gram[y=0] points on the x-axis
(e.g. when using σ = 2

5
value) at the [infinitely many varying] virtual Origin points; viz, these

negative virtual Gram[y=0] points on the x-axis cannot exist at the solitary Origin point since the
two trajectories form two colinear lines (or co-lines); viz, two parallel lines that never cross over.

and negative] Odd Primes never becoming zero whereby arbitrarily large number of dif-
ferent even Prime gaps that uniquely accompany all Odd Primes in totality will never
stop recurring. Foundation Figure 9 is roughly and analogically based on cohomology
as an algebraic tool in topology allowing Geometrical-Mathematical interpretation for

positive Odd Primes. We note these Prevalences can only have
1

∞
values above zero

in the large range of prime numbers [but must never have zero values].
Proposition 7. In the limit of reaching an [existing] zero hereby conceptually
visualized as the entire −∞ < t < +∞ trajectory of Dirichlet eta function, proxy for
Riemann zeta function, touching (symbolic) zero-dimensional σ = 1

2 -Origin point only
when parameter σ = 1

2 whereby all nontrivial zeros [mathematically] located on (sym-
bolic) one-dimensional σ = 1

2 -critical line will [geometrically] declare themselves in
totality as corresponding Origin intercept points. Foundation Figure 10 is roughly and
analogically based on cohomology as an algebraic tool in topology allowing Geometrical-
Mathematical interpretation for 0 < t < +∞ range. Our Corollary is: Any σ ̸= 1

2

co-lines that are
1

∞
above or below the zero-dimensional σ = 1

2 -Origin point must

never be classified as having nontrivial zeros. Then the Proposition must be: Only
one unique σ = 1

2 co-line that [repeatedly] touch the zero-dimensional σ = 1
2 -Origin

point must always be classified as having [infinitely-many] nontrivial zeros.
As an overall summary, we can insightfully conclude the mutually exclusive

(sub)sets arising from prime numbers, composite numbers, Gram points and virtual
Gram points MUST all fully comply with the Inclusion-Exclusion Principle when
”extended to the infinite (sub)sets”. Power series and harmonic series are variants of
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infinite series relevant to mathematical topics and methods in quantum theory.
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