A simple Approximation of Pi

Wolfgang Sturm^a

To approximate pi, the area of a circle segment is extrapolated to the full circle area and divided by the square radius.

1. Introduction

A paper ^{Oben24} claimed by mathematics and an experiment that π (used to calculate the area) has a value of $\pi = 3$. So it deviates ca. 5% from the known value of $\pi = 3.14$.

Own experiments and manual integrations with graph paper resulted in 1% errors and were rejected as too imprecise.

Shy attempts to criticize the mathematics of the paper were rejected.

Classical derivations of π are accurate. But not simple enough to really convince.

A rough but convincing derivation of π is required.

I would like to thank Dr. Sigrid Obenland for the very friendly discussion and inspiration.

2. Simple approximation of π

The area **A** of a triangle with the ancathete **r** and the orthogonal anticathete **h** is:

$$\mathbf{A} = \mathbf{h} \mathbf{r} / \mathbf{2} \tag{1}$$

The tangent is $tan(\varphi) = \mathbf{h} / \mathbf{r}$ or:

$$\mathbf{h} = \mathbf{tan}(\boldsymbol{\varphi}) \mathbf{r} \tag{2}$$

Substitution of (2) into (1) results in:

$$\mathbf{A} = \tan(\varphi) \mathbf{r}^2 / \mathbf{2} \tag{3}$$

If $\phi = 0.1^{\circ}$, 3600 triangular areas approximate the area **Ao** of the full circle:

 $Ao = 3600 \tan(0.1) r^2 / 2$ (4)

To calculate π it applies $Ao = \pi r^2$ or:

$$\pi = \mathbf{A}\mathbf{0} / \mathbf{r}^2 \tag{5}$$

The square radius \mathbf{r}^2 is eliminated by the substitution of (4) into (5) and results in:

 $\pi = 1800 \tan(0.1) = 3.14159...$ (6)

^a <u>foghunter@web.de</u>

^{Oben24} Sigrid Obenland, 2024, "Quadrature of the Circle with Compass and Straightedge and a Surprising Result for the Value of π in π R²", https://vixra.org/abs/2405.0068