A simple Approximation of Pi

Wolfgang Sturm ${ }^{\text {a }}$

To approximate pi, the area of a circle segment is extrapolated to the full circle area and divided by the square radius.

1. Introduction

A paper ${ }^{\text {Oben } 24}$ claimed by mathematics and an experiment that $\boldsymbol{\pi}$ (used to calculate the area) has a value of $\boldsymbol{\pi}=\mathbf{3}$. So it deviates ca. 5% from the known value of $\boldsymbol{\pi}=\mathbf{3 . 1 4}$.

Own experiments and manual integrations with graph paper resulted in 1% errors and were rejected as too imprecise

Shy attempts to criticize the mathematics of the paper were rejected.

Classical derivations of $\boldsymbol{\pi}$ are accurate. But not simple enough to really convince.

A rough but convincing derivation of $\boldsymbol{\pi}$ is required

[^0]
2. Simple approximation of π

The area \mathbf{A} of a triangle with the ancathete \mathbf{r} and the orthogonal anticathete \mathbf{h} is:
$A=h \mathbf{r} / 2$
The tangent is $\boldsymbol{\operatorname { t a n }}(\varphi)=\mathbf{h} / \mathbf{r}$ or:
$h=\boldsymbol{\operatorname { t a n }}(\varphi) \mathbf{r}$
Substitution of (2) into (1) results in:

$$
\begin{equation*}
A=\tan (\varphi) r^{2} / 2 \tag{3}
\end{equation*}
$$

If $\boldsymbol{\varphi}=\mathbf{0 . 1}{ }^{\circ}, 3600$ triangular areas approximate the area Ao of the full circle:

$$
\begin{equation*}
A 0=3600 \tan (0.1) \mathbf{r}^{2} / 2 \tag{4}
\end{equation*}
$$

To calculate $\boldsymbol{\pi}$ it applies $\mathbf{A o}=\boldsymbol{\pi} \mathbf{r}^{\mathbf{2}}$ or:
$\pi=\mathrm{Ao} / \mathbf{r}^{2}$
The square radius \mathbf{r}^{2} is eliminated by the substitution of (4) into (5) and results in:
$\pi=1800 \tan (0.1)=3.14159 . .$.

[^1]
[^0]: I would like to thank Dr. Sigrid Obenland for the very friendly discussion and inspiration.

[^1]: ${ }^{\text {a }}$ foghunter@web.de
 Oben24 Sigrid Obenland, 2024, "Quadrature of the Circle with Compass and Straightedge and a Surprising Result for the Value of π in $\pi \mathrm{R}^{\wedge} 2^{\prime \prime}$, https://vixra.org/abs/2405.0068

