
1 
 

An Elementary Proof of the Explicit Formula of 
Bernoulli Numbers 

 

Abdelhay Benmoussa 
 

bibo93035@gmail.com 
 
 
 

Abstract : The aim of this paper is to give an elementary proof to a well-known 
explicit formula of Bernoulli numbers. 
 
Keywords : Stirling numbers of the second kind, Bernoulli numbers, Bernoulli 
polynomials. 
 

1 Introduction 
 
The numbers : 

𝑏0 = 1,               𝑏2 =
1

6
,               𝑏4 = −

1

30
,               𝑏6 =

1

42
, 

𝑏8 = −
1

30
              …,              𝑏1 = −

1

2
,              𝑏3 = 𝑏5 = 𝑏7 = 𝑏9 = ⋯ = 0 

 

are called Bernoulli numbers, they can be defined by the following exponential 
generating function: 
 

𝑡

𝑒𝑡 − 1
=∑𝑏𝑛

𝑡𝑛

𝑛!

∞

𝑛=0

 

where |𝑡| < 2𝜋. 
 

 

It was shown in the 19th century that an explicit formula for 𝑏𝑛 is[1]: 
 

𝑏𝑛 =∑
1

𝑘 + 1

𝑛

𝑘=0

∑(
𝑘

𝑖
) (−1)𝑖𝑖𝑛

𝑘

𝑖=0

(1) 

 
Many proofs have been given to formula (1), but we will present here the most 
simplest of them [2, 3]. 
 

2 Stirling numbers of the second kind 
 
Let 𝑌  be a function of 𝑥, and set : 
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𝜗𝑛𝑌 = 𝑥(…𝑥(𝑥(𝑥⏟      
𝑛 

𝑌 ′)′)′ … )′⏞    
𝑛 

 

 

If we expand 𝐷𝑛𝑌 for 𝑛 = 1, 2, 3, 4, we find : 
 
𝜗𝑌 = 𝑥𝑌′ 
 

𝜗2𝑌 = 𝑥𝑌′ + 𝑥2𝑌′′ 
 

𝜗3𝑌 = 𝑥𝑌′ + 3𝑥2𝑌′′ + 𝑥3𝑌(3) 
 

𝜗4𝑌 = 𝑥𝑌′ + 7𝑥2𝑌′′ + 6𝑥3𝑌(3) + 𝑥4𝑌(4) 
… 
 

We see that : 
 

𝜗𝑛𝑌 = 𝑆𝑛
0𝑌 + 𝑆𝑛

1𝑥𝑌′ + 𝑆𝑛
2𝑥2𝑌′′ +⋯+ 𝑆𝑛

𝑛𝑥𝑛𝑌(𝑛) (2) 
 

In fact, the numbers 𝑆𝑛
𝑘  are called Stirling numbers of the second kind.  Formula (2) is 

called Grunert’s formula.  
 

3 The explicit formula of Stirling numbers of the second kind 
 
If we put 𝑌 = 𝑒𝑥  in the formula (2) we obtain : 
 

𝜗
𝑛
𝑒
𝑥
= 𝑒

𝑥∑ 𝑆𝑛
𝑘
𝑥
𝑘

𝑛

𝑘=0

⟹ 𝑒
−𝑥
. 𝜗

𝑛
𝑒
𝑥
=∑ 𝑆𝑛

𝑘
𝑥
𝑘

𝑛

𝑘=0

⟹ (∑
(−1)

𝑗
𝑥
𝑗

𝑗!

∞

𝑗=0

)(∑
𝜗
𝑛
𝑥
𝑖

𝑖!

∞

𝑖=0

) =∑ 𝑆𝑛
𝑘
𝑥
𝑘

𝑛

𝑘=0

 

 

One can easily prove that 𝜗𝑛𝑥𝑖 = 𝑖𝑛𝑥𝑖 , so :  
 

(∑
(−1)𝑗𝑥𝑗

𝑗!

∞

𝑗=0

)(∑
𝑖𝑛𝑥𝑖

𝑖!

∞

𝑖=0

) =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘 

 

If we expand the left-hand side we obtain : 
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∑(∑
(−1)𝑘−𝑖(𝑘

𝑖
)𝑖𝑛

𝑘!

𝑘

𝑖=0

)𝑥𝑘
∞

𝑘=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘 

 

Comparing coefficients in both summations we conclude that : 
 

𝑆𝑛
𝑘 =

1

𝑘!
∑(−1)𝑘−𝑖 (

𝑘

𝑖
)

𝑘

𝑖=0

𝑖𝑛 (3) 

 

4 Relation between Stirling numbers of the second kind and Bernoulli 
numbers 
 
Putting 𝑌 = 𝑥𝑦  in the formula (2), we get : 
 

𝜗𝑛𝑥𝑦 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘(𝑥𝑦)(𝑘) 

 

We know that (𝑥𝑦)(𝑘) = 𝑦(𝑦 − 1)… (𝑦 − 𝑘 + 1)𝑥𝑦−𝑘 and 𝜗𝑛𝑥𝑦 = 𝑦𝑛𝑥𝑦so we get : 
 

𝑦𝑛 =∑𝑆𝑛
𝑘𝑦(𝑦 − 1)… (𝑦 − 𝑘 + 1)

𝑛

𝑘=0

(4) 

 

The polynomial 𝑦(𝑦 − 1)… (𝑦 − 𝑘 + 1) is called the falling factorial of order 𝑘 of 𝑦. 
Pochhammer used the symbol (𝑦)𝑘 to denote it, so the formula (4) becomes using 
Pochhammer symbol : 
 

𝑦𝑛 =∑𝑆𝑛
𝑘(𝑦)𝑘

𝑛

𝑘=0

(4′) 

 

One interesting property of the falling factorial function is the following : 
 
Proposition 1 
 
Let 𝑛 and 𝑦 be non-negative integers, then : 
 

(𝑦 + 1)𝑛+1 − (𝑦)𝑛+1 = (𝑛 + 1)(𝑦)𝑛 
 

Proof 
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(𝑦 + 1)𝑛+1 − (𝑦)𝑛+1 = (𝑦 + 1)𝑦(𝑦 − 1)… (𝑦 − 𝑛 + 1) − 𝑦(𝑦 − 1)… (𝑦 − 𝑛 + 1)(𝑦 − 𝑛)

= [(𝑦 + 1) − (𝑦 − 𝑛)]𝑦(𝑦 − 1)… (𝑦 − 𝑛 + 1)

= (𝑛 + 1)(𝑦)𝑛

 

 

We are going to use this property in the proof of the following proposition. 
 
Proposition 2 
 
Let 𝑛 ∈ ℕ and 𝑚 ∈ ℕ∗. We have : 
 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1
𝑘 + 1

(5) 

 

Proof 
 
If we sum for 𝑦 in the formula (4’) we find : 
 

∑ 𝑦
𝑛

𝑚−1

𝑦=0

=∑(∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑦)
𝑘
)

𝑚−1

𝑦=0

⟹ ∑ 𝑦
𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(∑(𝑦)
𝑘

𝑚−1

𝑦=0

)

⟹ ∑ 𝑦
𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(∑
(𝑦 + 1)

𝑘+1
− (𝑦)

𝑘+1

𝑘 + 1

𝑚−1

𝑦=0

)

⟹ ∑ 𝑦
𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(
(𝑚)

𝑘+1
− (0)

𝑘+1

𝑘 + 1
)

 

Therefore : 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1
𝑘 + 1

 

 
Definition 
 
Let 𝑛 ∈ ℕ 
Bernoulli’s polynomials 𝐵𝑛(𝑥) are defined by the following exponential generating 
function : 
 

𝑡𝑒𝑡𝑥

𝑒𝑡 − 1
=∑𝐵𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0
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One interesting observation to make about Bernoulli’s polynomials is that if we put 
𝑥 = 0 we get : 
 

𝑡

𝑒𝑡 − 1
=∑𝐵𝑛(0)

𝑡𝑛

𝑛!

∞

𝑛=0

 

 
This generating function corresponds to the generating function of Bernoulli numbers 
𝑏𝑛. Hence for all 𝑛 ∈ ℕ, we have : 

𝐵𝑛(0) = 𝑏𝑛 
 
Another interesting property of the Bernoulli polynomials is the following : 
 
Proposition 3 
 
Let 𝑛 ∈ ℕ 

𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥
𝑛−1 

 

Proof 
 
On the one hand : 
 

∑{𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥)}
𝑡𝑛

𝑛!

∞

𝑛=0

= (∑𝐵𝑛(𝑥 + 1)
𝑡𝑛

𝑛!

∞

𝑛=0

) − (∑𝐵𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

)

=
𝑡𝑒𝑡(𝑥+1)

𝑒𝑡 − 1
−
𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡𝑒𝑡𝑥 . 𝑒𝑡 − 𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡𝑒𝑡𝑥(𝑒𝑡 − 1)

𝑒𝑡 − 1
= 𝑡𝑒𝑡𝑥

 

 

On the other hand : 
 

∑𝑛𝑥𝑛−1
𝑡𝑛

𝑛!

∞

𝑛=0

= ∑𝑡
(𝑥𝑡)𝑛−1

(𝑛 − 1)!

∞

𝑛=1

= 𝑡∑
(𝑥𝑡)𝑛

𝑛!

∞

𝑛=0

= 𝑡𝑒𝑥𝑡

 

 

Comparing coefficients of both summations we conclude that for all 𝑛 ∈ ℕ: 
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𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥
𝑛−1 

 

Proposition 4 
 
Let 𝑛 ∈ ℕ 

𝐵𝑛(𝑥) = ∑(
𝑛

𝑘
) 𝑏𝑛−𝑘𝑥

𝑘

𝑛

𝑘=0

 

Proof  
 

∑𝐵𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

=
𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡

𝑒𝑡 − 1
. 𝑒𝑡𝑥

= (∑𝑏𝑛
𝑡𝑛

𝑛!

∞

𝑛=0

)(∑
(𝑥𝑡)𝑛

𝑛!

∞

𝑛=0

)

= ∑(∑𝑏𝑛−𝑘
𝑡𝑛−𝑘

(𝑛 − 𝑘)!

𝑛

𝑘=0

.
(𝑥𝑡)𝑘

𝑘!
)

∞

𝑛=0

= ∑(∑𝑏𝑛−𝑘

𝑛

𝑘=0

(
𝑛

𝑘
) 𝑥𝑘)

𝑡𝑛

𝑛!

∞

𝑛=0

 

Therefore : 
 

𝐵𝑛(𝑥) = ∑𝑏𝑛−𝑘

𝑛

𝑘=0

(
𝑛

𝑘
) 𝑥𝑘 

 

Summing for 𝑦 in the relation 𝐵𝑛+1(𝑦 + 1) − 𝐵𝑛+1(𝑦) = (𝑛 + 1)𝑦
𝑛 we obtain : 

 

(𝑛 + 1)∑ 𝑦
𝑛

𝑚−1

𝑦=0

= ∑{𝐵𝑛+1(𝑦 + 1) − 𝐵𝑛+1(𝑦)}

𝑚−1

𝑦=0

= 𝐵𝑛+1(𝑚) − 𝐵𝑛+1(0)

= 𝐵𝑛+1(𝑚) − 𝑏𝑛+1

 

Thus : 
 

(𝑛 + 1) ∑ 𝑦𝑛
𝑚−1

𝑦=0

= 𝐵𝑛+1(𝑚) − 𝑏𝑛+1 (6) 

 

Comparing formula (5) with formula (6) we conclude that : 
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𝐵𝑛+1(𝑚) − 𝑏𝑛+1 = (𝑛 + 1)∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1
𝑘 + 1

(7) 

 
If we develop the expression of (𝑋)𝑘+1 in terms of the powers of 𝑋 we find : 
 

(𝑋)𝑘+1 = 𝑋(𝑋 − 1)… (𝑋 − 𝑘)

= 𝑋 (𝑋𝑘 −
𝑘(𝑘 + 1)

2
𝑋𝑘−1 +⋯+ (−1)𝑘𝑘!)

= 𝑋∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗

= ∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗+1

 

Therefore : 

(𝑋)𝑘+1 =∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗+1 

 

If we apply the above formula for (𝑚)𝑘+1 in the formula (7) we find: 
 

𝐵𝑛+1(𝑚) − 𝑏𝑛+1 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1 

 

Substituting also 𝐵𝑛+1(𝑚) by its explicit expression, we finally get : 
 

(∑(
𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=0

) − 𝑏𝑛+1 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1 ⟹ ∑(
𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=1

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1

⟹ ∑(
𝑛 + 1

𝑗 + 1
) 𝑏𝑛−𝑗𝑚

𝑗+1

𝑛

𝑗=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1

⟹ ∑((
𝑛 + 1

𝑗 + 1
) 𝑏𝑛−𝑗)𝑚

𝑗

𝑛

𝑗=0

=∑(∑𝑆𝑛
𝑘
𝑛 + 1

𝑘 + 1
𝑐𝑗

𝑛

𝑘=𝑗

)

𝑛

𝑗=0

𝑚𝑗

 

 
We have equality between two polynomials in 𝑚, both of degree 𝑛, so the 
coefficients of the terms of the same degree are equal. In particular for 𝑗 = 0 we 
have : 
 

(
𝑛 + 1

1
) 𝑏𝑛 =∑𝑆𝑛

𝑘
𝑛 + 1

𝑘 + 1
𝑐0

𝑛

𝑘=0

⟹ 𝑏𝑛 =∑𝑆𝑛
𝑘
(−1)𝑘𝑘!

𝑘 + 1

𝑛

𝑘=0

(8)
 



8 
 

To get the explicit expression of 𝑏𝑛, we substitute 𝑆𝑛
𝑘  in the above identity by its 

explicit expression, and after simplification we obtain the remarkable formula (1) for 
the Bernoullian numbers. 
 

5 Comments 
 
From formula (6) we can deduce Faulhaber’s formula, we have : 
 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=
1

𝑛 + 1
{𝐵𝑛+1(𝑚) − 𝑏𝑛+1}

=
1

𝑛 + 1
{(∑(

𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=0

) − 𝑏𝑛+1}

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=1

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑗 + 1
) 𝑏𝑛−𝑗𝑚

𝑗+1

𝑛

𝑗=0

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑗
) 𝑏𝑗𝑚

𝑛−𝑗+1

𝑛

𝑗=0

 

 
We can deduce identity (8) directly from the explicit formula of Stirling numbers of 
the second kind. We know from formula (3) that for all 0 ≤ 𝑘 ≤ 𝑛: 
 

𝑘! 𝑆𝑛
𝑘 =∑(−1)𝑘−𝑖 (

𝑘

𝑖
)

𝑘

𝑖=0

𝑖𝑛 

 
If we invert the above formula using the binomial inversion theorem we find that : 
 

𝑘𝑛 =∑𝑆𝑛
𝑖 (𝑘)𝑖

𝑘

𝑖=0

 

 

This formula is similar to formula (4’) with the exception that the sum is taken here 
from 0 to 𝑘, this is valid only for 𝑘 ∈ {0, 1, … , 𝑛}, while in formula (4’) the sum was 
taken from 0 to 𝑛, and that was valid for every real number 𝑦. 
 

Now summing for 𝑘 in the last formula we obtain : 
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∑𝑘𝑛
𝑛

𝑘=0

= ∑(∑𝑆𝑛
𝑖 (𝑘)𝑖

𝑘

𝑖=0

)

𝑛

𝑘=0

= ∑𝑆𝑛
𝑖 ∑(𝑘)𝑖

𝑛

𝑘=𝑖

𝑛

𝑖=0

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

(
(𝑛 + 1)𝑖+1 − (𝑖)𝑖+1

𝑖 + 1
)

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

(𝑛 + 1)𝑖+1
𝑖 + 1

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

1

𝑖 + 1
∑𝑐𝑗

𝑖

𝑗=0

(𝑛 + 1)𝑖+1

= ∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1

 

Thus we have : 
 

∑𝑘𝑛
𝑛

𝑘=0

=∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1 

 
Using Faulhaber’s formula we conclude that : 
 

∑(
(𝑛+1
𝑗+1
)

𝑛 + 1
𝑏𝑛−𝑗)(𝑛 + 1)

𝑗+1

𝑛

𝑗=0

=∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1 

 

The coefficients of (𝑛 + 1) in both representations are equal so : 
 

(𝑛+1
1
)

𝑛 + 1
𝑏𝑛 =∑𝑆𝑛

𝑖
𝑐0
𝑖 + 1

𝑛

𝑖=0

⟹ 𝑏𝑛 =∑𝑆𝑛
𝑖
(−1)𝑖𝑖!

𝑖 + 1

𝑛

𝑖=0
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