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Abstract : The aim of this paper is to give an elementary proof to a well-known
explicit formula of Bernoulli numbers.
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1 Introduction

The numbers :

1 1 1
bO == 1, bz =g, b4_ = _%; b6 =E)
1 1
b8=_% ey b1=_§, b3=b5=b7=b9="'=0

are called Bernoulli numbers, they can be defined by the following exponential
generating function:

et —1 n!
n=0

where |t]| < 2.

It was shown in the 19th century that an explicit formula for b,, is[1]:

b, = ;ﬁi(’f) - (1)

Many proofs have been given to formula (1), but we will present here the most
simplest of them [2, 3].

2 Stirling numbers of the second kind

Let Y be a function of x, and set :
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Y = x(.x(x(x YD) .

n

If we expand DY forn =1, 2, 3,4, we find :
IY = xY’

V%Y = xY' + x%Y"

93Y = xY' + 3x2Y" + x3Y®

DY = xYV' + 7x2Y" + 6x3Y 3 4 x4ty @

We see that :
9"y = ST?Y + S%XY' + ngZYH + 4 Srfllxny(n) (2)

In fact, the numbers S¥ are called Stirling numbers of the second kind. Formula (2) is
called Grunert’s formula.

3 The explicit formula of Stirling numbers of the second kind

If we put Y = e* in the formula (2) we obtain :

n n
9e* = exz Sflxk = e X.9"%" = Z Sflxk
k=0 k=0
(—1Y« 9 o
= — | = S, x
! i
j=0 i=0 k=0

One can easily prove that 9"x! = i"x!, so :

[ee} PR o . n
(=1)/x’ i"xt
! zi|=zﬁﬂ

=0

If we expand the left-hand side we obtain :



00
k=0

k : n
(—1)k-l(’f)in> .
: xk =) Skxk
P )

Comparing coefficients in both summations we conclude that :

=2 Y ()r @

i=0

4 Relation between Stirling numbers of the second kind and Bernoulli
numbers

Putting Y = x¥ in the formula (2), we get :
n
InxY = Z Sk xk(x¥)tO
k=0
We know that (x¥)® = y(y — 1) ...(y — k + Dx¥ % and 9™"x¥ = y™"xYso we get :

yr= Y Sy =D —k+1) (&)
k=0

The polynomial y(y — 1) ...(y — k + 1) is called the falling factorial of order k of y.
Pochhammer used the symbol (y), to denote it, so the formula (4) becomes using
Pochhammer symbol :

One interesting property of the falling factorial function is the following :

Proposition 1

Let n and y be non-negative integers, then :

O+ Dntr = s = (+ DH(3)x




G+t Dpy1 = Oner = @+Dy-D..(y—n+D)—-y@y-1D..(0 —n+1)(y —n)

(+D-@-nlyy-1D..(v—n+1)
= m+ 1),

We are going to use this property in the proof of the following proposition.

Proposition 2

Letn € Nand m € N*. We have:

yn = ZS (m )k+1 (5)

y=0 k=0

m-—1

Proof

If we sum for y in the formula (4’) we find :

m—1 m—1 n m—1 n m—1
k k
=0 y=0 k=0 y=0 k=0 y=0
m—1 n m—1
o+, —O
— yn — z Sfl Z k+1 k+1
k+1
y=0 k=0 y=0
m—1 n
(m),., — (0)
: yn — z Sfl ( k+1 k+1)
k+1
y=0 k=0
Therefore :
m-—1 n ( )
m)g+1
n _ Sk
Y Z "k+1
y=0 k=0
Definition
Letn € N

Bernoulli’s polynomials B, (x) are defined by the following exponential generating
function :

te

tx ot tn
et —1 :an(x)E

n=0




One interesting observation to make about Bernoulli’s polynomials is that if we put
x = 0 weget:

t = tn
et—1 ZB"(O)H
n=0

This generating function corresponds to the generating function of Bernoulli numbers
b,. Hence foralln € N, we have :

B,(0) = b,
Another interesting property of the Bernoulli polynomials is the following :

Proposition 3

Letn €N
B,(x+1) — B,(x) = nx™!

Proof

On the one hand :

> (B, + 1) — B (O} =
n:
n=0

(i B,(x + 1) g) — (i B, (x) :l—nl>

tet(x+1) tetx
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et —1
te*(et — 1)
et —1
= tet*

On the other hand :
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Comparing coefficients of both summations we conclude that for alln € N:



B,(x +1) — B,(x) = nx™!

Proposition 4

Letn €N
n
n
Bn(x) = Z (k) bn—kx
k=0
Proof
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n=0
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o n
_ ny )t
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n=0 \k=0
Therefore :

Bn(x) = Z by (Z) x*
k=0

Summing for y in the relation B,.;(y + 1) — B,;.1(y) = (n + 1)y™ we obtain :

m—1 m—1
(n+1) Z ytoo= Z{Bn+1(y +1) - Bn+1(3’)}
y=0 y=0

Bn+1 (m) - Bn+1 (0)

Bn+1 (m) - bn+1
Thus:

(4 1) ) Y™ = Buaa(m) = by (6)
y=0

Comparing formula (5) with formula (6) we conclude that :
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n
(m)
Bpi1(m) — by = (n+ 1) Z Sx X _:11
k=0

(7)

If we develop the expression of (X),,, in terms of the powers of X we find :

X1 = XX -1D..(X—k)
— X(Xk—w

2
k
= XZ ¢ X/
j=0
k
= ZE:(&)(]+1

j=0

Xkl (—1)"k!)

Therefore :
k

(X411 = Z Cj X+t

j=0

If we apply the above formula for (m),,; in the formula (7) we find:

k
n+1

k+14
j=0

Cirnj+1

n
Bpi1(m) — byyq = Z S,]f
k=0
Substituting also B,,,;(m) by its explicit expression, we finally get :

= n+1 k11+—1 i1 n+1 k71+-1 1
Z( k )b”“"‘m b1 = ank+1 Cfm] = Z( k )b"“ e ZS"kH,_ Gm

k=0 k=1 ]—o
n
n+1 n+1
= 2(1+1) ney /= ZS’}‘ck+1 chJ“
j=0
n n n
D (RIMER )T
=7 = .
j+1 ™= S+ 19 ™
j=0 Jj=0 \k=j

We have equality between two polynomials in m, both of degree n, so the
coefficients of the terms of the same degree are equal. In particular for j = 0 we
have :

<n+1)b _Zn:skn+1 ~ b zsk( 1*k! o
1 )T L1 "1l O

k=0



To get the explicit expression of b,, we substitute S¥ in the above identity by its
explicit expression, and after simplification we obtain the remarkable formula (1) for
the Bernoullian numbers.

5 Comments

From formula (6) we can deduce Faulhaber’s formula, we have :

m-1 1
Z yr o= n—_l_l{Bn+1(m) — by}
y=0

We can deduce identity (8) directly from the explicit formula of Stirling numbers of
the second kind. We know from formula (3) that forall 0 < k < n:

k
Ik
ki Sk = Z(—l)"“(i)i"
i=0

If we invert the above formula using the binomial inversion theorem we find that :

k
k=) sik);
i=0

This formula is similar to formula (4’) with the exception that the sum is taken here
from 0 to k, this is valid only for k € {0, 1, ..., n}, while in formula (4’) the sum was
taken from 0 to n, and that was valid for every real number y.

Now summing for k in the last formula we obtain :



kr = zn: (i S:;(k)i>
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_ is’i (<n - 1);-111— (i)i+1)

— Zsi(n+1)i+1
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n

=0
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— Si 1 1 i+1
= ni-l-—]_. OCj (n+ )
]:

i=0

n n
= Y[ D sie | m+1yn
L\ L+

Thus we have :

(n+ 1)/

I
1=
INgb

_3"3.
<
(U

n
S ke =
k=0

Using Faulhaber’s formula we conclude that :
(n+1 n n

J'+1) . j+1:Z 2 i G j+1
Z b, |+ 1) si—l= |+ 1)

n
j=0 j=0 \i=j

The coefficients of (n + 1) in both representations are equal so :

n+1) n n i:

( c (=Dl

1 _ i 0 — i

n+1b”_ZS"i+1 = bn Z;S” i+ 1
=

=0
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