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Abstract
Teaching proofs of theorems and encouraging students to both comprehend written proofs and originate their
own can at times be a difficult undertaking. This is due in part to the lack of a single unifying process by which
one can approach mathematical proofs. In this paper a method using set theory as a foundation is presented.

1 Introduction

Mathematical theorems can be stated as rules describing proper-
ties and relations between classes of mathematical objects such
as numbers ,sets, matricies, topologies and others from various
branches. For example, the theorem that integers greater than 2
can be factored as finitely many primes is a rule describing the
relation between integers and their factorizations. It seems natu-
ral that we should turn to set theory to provide a formalization
of this process , since it provides a logical method of describing
various interrelations between sets of objects. To this end we
need to define a few things:

2 Definitions

Set builder notation is simply the mathematical notation used to
define sets. It is written as such: A={ x | statement about x }, as
an example we have A={x ∈ R|x2 > 4}, (∈ read as element of,
R read as the Reals) which reads set A is equal to the set of all x,
an element of the Reals such that the square of x is greater than
four.

Applicability Space: This is the set of all entities to which the
theorem applies. For example in the prime factorization theorem
mentioned above, the applicability space contains all integers
greater than two. In the case of the theorem that says all nXn
matricies with nonzero determinant are invertible, the applica-
bility space would contain all nXn matricies. The theorem then
acts as an operator on the applicability space, which leads us to
the next definition.

Condition Operator: An operator can be described as a process
which maps one thing to another. A condition operator is a
mapping described by a set of rules. An example of a condition
operator would be "the set of all blue cars driven by 25 year
olds." When applied to the set of all cars, it isolates those cars
satisfying the condition. A theorem can be viewed as a condition
operator because it isolates the set of all mathematical entities
for which the theorem is satisfied.

Theorem Space: This is the set of all mathematical entities for
which the theorem is satisfied.

With this in mind we can state that the action of proving a theo-
rem is equivalent to establishing an equality between Applicabil-
ity Space and Theorem Space. If every element of Applicability
Space is also mirrored in Theorem Space, than this is equivalent
to saying that the theorem is true.

3 Examples applying this methodology

Theorem: Every integer greater than 2 can be factored as
finitely many primes.

In this case the applicability space A is the set of all integers
greater than two, the theorem space is the set of all integers
greater than two which can be factored as finitely many primes,
and the condition operator is all those members of the applica-
bility space A which can be factored as finitely many primes.
In all cases the theorem space will be a subset of applicability
space. The condition operator is the selection of all members of
A which can be factored as finitely many primes.

In this particular case, every member of the applicability space
is also a member of the theorem space. Therefore we can say
that the theorem is true.

Theorem: Every nXn matrix with nonzero determinant is invert-
ible.

Like the prime factorization example, the applicability space can
be read right from the statement of the theorem. It is the space of
all nXn matricies with nonzero determinants. The theorem space
is the subset of the applicability space for which the matricies
are invertible. To prove this theorem requires we find equality
between the two spaces. The condition operator is the process
of selecting all members of the applicability space which are
invertible.

Theorem: For a given power series
∑n

i=1 an(x−c) there are only
3 possibilities.

(a) The series converges only when x=c

(b) The series converges for all x

(c) There is a positive number R such that the series con-
verges when |x-c|<R and diverges when |x-c|>R

Here the applicability space A is not as clear as in the two
previous examples, nonetheless it can be read from the statement
of the theorem. It is the set of all power series in the above form.
The theorem space is the space for which all the bottom three
statements are true, and the condition operator is the selection of
all the members of A for which the statements are true. Again,
proving this theorem will involve finding an equality between
the two spaces.
Diagrammed here:

A=Applicability Space—Set of all power series of the form∑n
i=1 an(x − c)
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CO=Condition Operator—The selection of members of A for
which a, b, and c are true.

T=Theorem Space—The set of all power series for which all a,
b, and c are true.

While veiwing theorems in this manner does not give a general
method of proof, it does provide an approach which may yield
insights not ordinarily realized. An insight may come by prov-
ing a similar but easier to prove theorem and showing that the
theorem operator combination is isomorphic to the original one.

As an example of this, let us examine the simple trigonometric
equality. The theorem is:

Cos2(α) = 1
2 +

Cos(2α)
2

The applicability space is A = {α ∈ R|0 < α < 2π, the selection
operator is the above equality, and the theorem space is the space
for which the equality is true. Now it can be shown that the set
of all angles α is isomorphic to the set of all complex numbers
of absolute value equal to one. Knowing this, and knowing the
connection between trigonometric and complex numbers we can
pvove the above.

The connection is the standard euler formula

eiθ = Cos(α) + i ∗ S in(β) and Re(z)= z+z̄
2

We know Cos(α) = eiα+e−iα

2 So Cos2(α) = (eiα+e−iα)2

2

= eiα2
+e−iα2

+2eiαe−iα

4

= e2iα+e−2iα+2e0

4

= e2iα+e−2iα

4 + 1
2 from the connection condition this equals Cos(2α)

2 + 1
2

The relation is therefore proven in the space of complex numbers
and therefore proven by an isomorphism between exponentials
and the standard trig functions. It is these features that make this
approach both interesting and useful.
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