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Abstract

This paper presents a comprehensive framework that integrates quantum grav-
itational corrections derived from string theory, loop quantum gravity (LQG), and
non-commutative geometry into the Einstein-Hilbert action. By combining these
three approaches, we derive modified field equations that encapsulate quantum ef-
fects in spacetime curvature. The unified corrections are formulated as higher-order
curvature terms and modifications arising from the discrete structure of spacetime
and non-commutative coordinates. Our results demonstrate that these corrections
can resolve classical singularities, leading to a finite Ricci scalar even at small radii,
thus providing a non-singular description of black hole interiors. Additionally, the
framework predicts alterations in the effective potential near black holes, which
could manifest as observable deviations in gravitational wave signals and other
astrophysical phenomena. This work not only bridges the gap between general rel-
ativity and quantum mechanics but also opens new avenues for both theoretical
exploration and observational verification of quantum gravitational effects.

1 Introduction

In the quest to unify general relativity and quantum mechanics, various approaches have
introduced quantum corrections to classical gravitational field equations. This paper
synthesizes contributions from string theory, loop quantum gravity (LQG), and non-
commutative geometry to formulate a unified quantum correction term, aiming to pro-
vide a comprehensive understanding of quantum gravitational effects, particularly near
singularities.

The Einstein-Hilbert action, fundamental to general relativity, is:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter + Lquantum

)
, (1)

where κ = 8πG. The quantum correction term Lquantum combines contributions from
string theory, LQG, and non-commutative geometry.

String theory predicts higher-order curvature corrections:

Lstring = α′ (RµνρσR
µνρσ + βRµνR

µν) , (2)

where α′ is the string tension parameter, and β is a dimensionless constant.
LQG introduces modifications due to the discrete nature of spacetime:

LLQG =
R

2κ

(
1 + γ

R

R2
Planck

)
+ δ

(
R2

R2
Planck

)
, (3)
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where γ and δ are dimensionless constants, and RPlanck is the Planck curvature scale.
Non-commutative geometry introduces corrections via modified spacetime coordi-

nates:

LNCG =
1

2κ
R + λ (θµν∂µR∂νR) , (4)

where θµν are non-commutative parameters, and λ is a coupling constant.
Combining these, the unified quantum correction term is proposed as:

Lquantum = α′ (RµνρσR
µνρσ + βRµνR

µν) + γ
R2

R2
Planck

+ λ (θµν∂µR∂νR) . (5)

The modified field equations are:

Gµν + Λgµν = κ
(
Tmatter
µν + T quantum

µν

)
, (6)

where the quantum stress-energy tensor T quantum
µν is:

T quantum
µν = − 2√

−g
δ (

√
−gLquantum)

δgµν
. (7)

This framework captures essential quantum gravitational effects while remaining con-
sistent with classical general relativity.

2 Astrophysical Implications

The modified field equations derived from the unified quantum correction term have pro-
found implications for astrophysical phenomena, particularly in the vicinity of compact
objects such as black holes and neutron stars. These dense objects provide unique lab-
oratories for testing the effects of quantum gravity, as their extreme gravitational fields
can probe the underlying structure of spacetime.

One significant consequence of the modified field equations is the presence of quantum
corrections in the gravitational collapse of massive stars. Traditional models of stellar
collapse, based solely on classical general relativity, predict the formation of singularities
within black holes. However, the inclusion of quantum corrections modifies the dynamics
of collapse and may lead to the resolution of singularities, thereby altering our under-
standing of black hole formation and evolution.

Another important implication is the modification of black hole thermodynamics due
to quantum effects. Quantum corrections to the Einstein-Hilbert action affect the entropy
and temperature of black holes, leading to deviations from classical predictions. Under-
standing these modifications is crucial for reconciling gravitational thermodynamics with
quantum principles and may provide insights into the nature of black hole entropy.

Furthermore, the presence of quantum corrections influences the emission of gravi-
tational waves from astrophysical sources. Gravitational wave signals carry information
about the dynamics of spacetime curvature, and quantum effects can imprint character-
istic signatures on these signals. Detecting and analyzing these signatures can provide
direct observational evidence for quantum gravitational phenomena and contribute to the
development of a unified theory of gravity.

In summary, the inclusion of quantum corrections in the field equations has far-
reaching implications for astrophysical phenomena, offering new avenues for theoretical
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and observational investigations. By studying the effects of quantum gravity in extreme
environments, such as black holes and neutron stars, we can deepen our understanding
of the fundamental nature of spacetime and advance our quest for a complete theory of
gravity.

3 Mathematical Modelling

In this section, we present the mathematical formulation of our unified theory of quantum
gravity, incorporating contributions from string theory, loop quantum gravity (LQG), and
non-commutative geometry.

3.1 Unified Action with Quantum Corrections

The starting point is the Einstein-Hilbert action with quantum corrections:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter + Lquantum

)
,

where κ = 8πG.

3.2 String Theory Corrections

String theory corrections are typically incorporated as higher-order curvature terms. The
corrections to the Lagrangian density are:

Lstring = α′ (RµνρσR
µνρσ + βRµνR

µν) ,

where α′ is the string tension parameter and β is a dimensionless constant.
To derive the field equations, we start with the action:

Sstring =
1

2κ

∫
d4x

√
−g (R + α′ (RµνρσR

µνρσ + βRµνR
µν)) .

The variations of the action with respect to the metric gµν give us the modified Einstein
field equations:

1. Ricci Scalar R Term:

δSR =
1

2κ

∫
d4x

√
−gδgµν

(
Rµν −

1

2
Rgµν

)
.

2. Higher-Order Correction Terms:

• RµνρσR
µνρσ Term:

δSRµνρσRµνρσ =
α′

2κ

∫
d4x

√
−g

(
δgµνRµρσλR

ρσλ
ν +∇ρ

(
δΓρσνR

µνσλ
)
−∇σ

(
δΓρλνR

µνσλ
))
.

• RµνR
µν Term:

δSRµνRµν =
α′β

2κ

∫
d4x

√
−g

(
δgµνRµσR

σ
ν +∇σ

(
δΓρµνR

µν
)
−∇σ

(
δΓρµνR

µν
))
.

Combining these variations, the modified Einstein field equations incorporating string
theory corrections are:

Rµν −
1

2
Rgµν + α′ (RµρσλR

ρσλ
ν + βRµσR

σ
ν

)
= κTµν .
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3.3 Loop Quantum Gravity Corrections

In loop quantum gravity, the corrections arise due to the discrete nature of spacetime.
The modified Lagrangian density is:

LLQG =
R

2κ

(
1 + γ

R

R2
Planck

)
+ δ

(
R2

R2
Planck

)
,

where γ and δaredimensionlessconstants, andRPlanck is the Planck curvature scale.
The effective LQG action is:

SLQG =
1

2κ

∫
d4x

√
−g

(
R + γ

l2p
ℏ
R2

)
,

where γ is the Barbero-Immirzi parameter, lp is the Planck length, and ℏ is the reduced
Planck constant.

To derive the field equations, we consider:
1. Ricci Scalar R Term:

δSR =
1

2κ

∫
d4x

√
−gδgµν

(
Rµν −

1

2
Rgµν

)
.

2. R2 Term:

δSR2 =
γl2p
2κℏ

∫
d4x

√
−gδgµν

(
2RRµν −

1

2
R2gµν

)
.

Combining these variations, the modified Einstein field equations incorporating LQG
corrections are:

Rµν −
1

2
Rgµν + γ

l2p
ℏ

(
2RRµν −

1

2
R2gµν

)
= κTµν .

3.4 Non-Commutative Geometry Corrections

Non-commutative geometry introduces corrections through modified spacetime coordi-
nates. The Lagrangian density with non-commutative corrections is:

LNCG =
1

2κ
R + λ (θµν∂µR∂νR) ,

where θµν are the non-commutative parameters, and λ is a coupling constant.
The action is:

SNCG =
1

2κ

∫
d4x

√
−g (R + λθµνθρσRµνρσ) ,

where λ is a constant parameter related to the non-commutative scale.
To derive the field equations, we consider:
1. Ricci Scalar R Term:

δSR =
1

2κ

∫
d4x

√
−gδgµν

(
Rµν −

1

2
Rgµν

)
.

2. Non-Commutative Term:

δSθµνθρσRµνρσ =
λ

2κ

∫
d4x

√
−g (θµνθρσδRµνρσ + surface terms) .

Combining these variations, the modified Einstein field equations incorporating non-
commutative geometry corrections are:

Rµν −
1

2
Rgµν + λθµνθρσRµνρσ = κTµν .
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3.5 Unified Quantum Correction Term

Combining the corrections from string theory, loop quantum gravity, and non-commutative
geometry, we propose:

Lquantum = Lstring + LLQG + LNCG.

3.6 Modified Field Equations

The field equations are obtained by varying the action with respect to the metric tensor
gµν :

Gµν + Λgµν = κ (Tmatter µν + Tquantum µν) ,

where Gµν is the Einstein tensor, Λ is the cosmological constant, and Tquantum µν is the
quantum stress-energy tensor given by:

Tquantum µν = −2
δ

δgµν
(
−
√
−gLquantum

)
.

This completes the mathematical modeling of our unified theory of quantum gravity.

4 Unified Action with Quantum Corrections

The starting point is the Einstein-Hilbert action augmented with quantum corrections.
We begin with the Einstein-Hilbert action:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter

)
,

where κ = 8πG. We introduce a new term Lquantum to account for quantum corrections.
Hence, our unified action becomes:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter + Lquantum

)
.

4.1 String Theory Corrections

We incorporate string theory corrections into the Lagrangian density. The corrections
are given by:

Lstring = α′ (RµνρσR
µνρσ + βRµνR

µν) ,

where α′ is the string tension parameter and β is a dimensionless constant.

4.2 Loop Quantum Gravity Corrections

Loop quantum gravity introduces corrections due to the discrete nature of spacetime. We
modify the Lagrangian density as follows:

LLQG =
R

2κ

(
1 + γ

R

R2
Planck

)
+ δ

(
R2

R2
Planck

)
,

where γ and δ are dimensionless constants, and RPlanck is the Planck curvature scale.
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4.3 Non-Commutative Geometry Corrections

Non-commutative geometry introduces corrections through modified spacetime coordi-
nates. The Lagrangian density with non-commutative corrections is given by:

LNCG =
1

2κ
R + λ (θµν∂µR∂νR) ,

where θµν are the non-commutative parameters, and λ is a coupling constant.

4.4 Unified Quantum Correction Term

Combining the corrections from string theory, loop quantum gravity, and non-commutative
geometry, we propose the unified quantum correction term:

Lquantum = Lstring + LLQG + LNCG.

5 Modified Field Equations

The modified field equations are obtained by varying the action with respect to the metric
tensor gµν . The field equations take the form:

Gµν + Λgµν = κ (Tmatter µν + Tquantum µν) ,

where Gµν is the Einstein tensor, Λ is the cosmological constant, and Tquantum µν is the
quantum stress-energy tensor given by:

Tquantum µν = −2
δ

δgµν
(
−
√
−gLquantum

)
.

This completes the mathematical modeling of our unified theory of quantum gravity.
article amsmath

6 Unified Action with Quantum Corrections

The starting point is the Einstein-Hilbert action augmented with quantum corrections.
We begin with the Einstein-Hilbert action:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter

)
where κ = 8πG. We introduce a new term Lquantum to account for quantum corrections.
Hence, our unified action becomes:

S =

∫
d4x

√
−g

(
1

2κ
R + Lmatter + Lquantum

)
6.1 String Theory Corrections

We incorporate string theory corrections into the Lagrangian density. The corrections
are given by:

Lstring = α′(RµνρσR
µνρσ + βRµνR

µν)

where α′ is the string tension parameter and β is a dimensionless constant.
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6.2 Loop Quantum Gravity Corrections

Loop quantum gravity introduces corrections due to the discrete nature of spacetime. We
modify the Lagrangian density as follows:

LLQG =
R

2κ

(
1 + γ

R

R2
Planck

)
+ δ

(
R2

R2
Planck

)
where γ and δ are dimensionless constants, and RPlanck is the Planck curvature scale.

6.3 Non-Commutative Geometry Corrections

Non-commutative geometry introduces corrections through modified spacetime coordi-
nates. The Lagrangian density with non-commutative corrections is given by:

LNCG =
1

2κ
R + λ (θµν∂µR∂νR)

where θµν are the non-commutative parameters, and λ is a coupling constant.

6.4 Unified Quantum Correction Term

Combining the corrections from string theory, loop quantum gravity, and non-commutative
geometry, we propose the unified quantum correction term:

Lquantum = Lstring + LLQG + LNCG

7 Modified Field Equations

The modified field equations are obtained by varying the action with respect to the metric
tensor gµν . The field equations take the form:

Gµν + Λgµν = κ(Tmatter
µν + T quantum

µν )

where Gµν is the Einstein tensor, Λ is the cosmological constant, and T quantum
µν is the

quantum stress-energy tensor.

8 Mathematical Formulation

The action is typically expressed as the integral of the Lagrangian density L over space-
time:

S =

∫
d4x

√
−gL,

where:
- d4x represents the volume element of spacetime. -

√
−g is the determinant of the

metric tensor gµν , which ensures the action is invariant under general coordinate trans-
formations. - L is the Lagrangian density, which encapsulates the dynamics of the fields
and their interactions.
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The Lagrangian density can be decomposed into contributions from different sectors of
the theory, including the gravitational sector, matter sector, and any additional quantum
corrections:

L = Lgravity + Lmatter + Lquantum.

Each term in the Lagrangian density describes specific aspects of the unified model:
1. Gravitational Sector (Lgravity):
This term captures the dynamics of the gravitational field, including the curvature of

spacetime and its interactions with matter. It typically involves terms constructed from
the metric tensor gµν and its derivatives, such as the Ricci scalar R, Ricci tensor Rµν ,
and Riemann curvature tensor Rµνρσ.

2. Matter Sector (Lmatter):
This term describes the dynamics of matter fields present in the theory, such as scalar

fields, vector fields, and fermionic fields. It includes terms that govern the propagation
and interactions of matter fields, such as kinetic terms, potential terms, and interaction
terms.

3. Quantum Corrections (Lquantum):
This term incorporates corrections arising from quantum gravity effects, which modify

the classical dynamics of the theory near singularities and at Planck scales. It may involve
higher-order curvature terms, non-local operators, or corrections to the Einstein-Hilbert
action that capture the quantum behavior of spacetime.

By appropriately defining the Lagrangian density L and integrating it over spacetime,
we obtain the action functional S for the unified model. This action governs the dynamics
of the fields and provides the foundation for studying the behavior of the unified theory.

For string theory, we introduce the string coordinates Xµ(τ, σ), where τ and σ param-
eterize the worldsheet of the string. The action for the string is given by the Polyakov
action:

Sstring = − 1

4πα′

∫
d2σ

√
−hhab∂aXµ∂bX

νηµν ,

where hab is the worldsheet metric, ηµν is the Minkowski metric, and α′ is the string
tension parameter.

For loop quantum gravity, we introduce the Ashtekar variables Aia and Ei
a, which

represent the connection and densitized triad fields, respectively. The action for loop
quantum gravity can be written in terms of these variables and the Hamiltonian con-
straint:

SLQG =

∫
dt

∫
Σ

d3x
(
Ei
aȦ

a
i −NH −NaHa

)
,

where N and Na are the lapse and shift functions, H is the Hamiltonian constraint,
and Ha are the diffeomorphism constraints.

To incorporate these aspects into our unified model, we add contributions from string
excitations to the matter sector and modify the gravitational sector to include terms that
capture the discrete nature of spacetime.

Incorporating Aspects from String Theory:
From string theory, we introduce the string coordinates Xµ(τ, σ), where τ and σ

parameterize the worldsheet of the string. The action for the string is given by the
Polyakov action:
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Sstring = − 1

4πα′

∫
d2σ

√
−hhab∂aXµ∂bX

νηµν ,

where:
- hab is the worldsheet metric. - ηµν is the Minkowski metric. - α′ is the string tension

parameter.
We introduce the string coordinates Xµ(τ, σ) as additional matter fields in our La-

grangian density:

Lstring = − 1

4πα′

√
−hhab∂aXµ∂bX

νηµν .

This term describes the dynamics of the string excitations on the worldsheet.
Incorporating Aspects from Loop Quantum Gravity:
From loop quantum gravity, we introduce the Ashtekar variables Aia and Ei

a, which
represent the connection and densitized triad fields, respectively. The action for loop
quantum gravity can be written in terms of these variables and the Hamiltonian con-
straint:

SLQG =

∫
dt

∫
Σ

d3x
(
Ei
aȦ

i
a −NH −NaHa

)
,

where:
- N and Na are the lapse and shift functions. - H is the Hamiltonian constraint. -

Ha are the diffeomorphism constraints.
We modify the gravitational sector of our Lagrangian density to include contributions

from loop quantum gravity:

LLQG = Ei
aȦ

i
a −NH −NaHa.

This term captures the dynamics of the Ashtekar variables and enforces the constraints
of loop quantum gravity.

By incorporating these aspects into our unified model, we aim to develop a compre-
hensive framework that combines the strengths of string theory and loop quantum gravity
to study the formation and properties of naked singularities.

Incorporating Higher-Order Curvature Terms:
We add terms involving higher powers of the curvature tensor to the gravitational

sector of the Lagrangian density. For example, we can include the Riemann squared term
R2 and the Gauss-Bonnet term R2 − 4RµνR

µν +RµνρσR
µνρσ. The modified gravitational

sector now becomes:

Lgravity = f(R,RµνR
µν , RµνρσR

µνρσ,∇R, . . .),

where f represents a function incorporating the higher-order curvature terms.
Incorporating Non-Local Operators:
We introduce non-local operators in the Lagrangian density to capture quantum grav-

itational effects. These operators may involve integrals over spacetime or non-local func-
tions of fields. The modified Lagrangian density now includes terms of the form:

Lquantum = g(ϕ,∇ϕ,
∫
spacetime

O(ϕ,∇ϕ, . . .), . . .),
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where g represents a function accounting for the non-local operators and O represents
the non-local operator itself.

Quantum Corrections to the Classical Geometry:
We include quantum corrections to the classical geometry by modifying the Einstein-

Hilbert action or adding additional terms to the Lagrangian density. These corrections
can involve terms that capture quantum fluctuations of the metric tensor or modifications
to the gravitational field equations. The modified Lagrangian density now incorporates
terms such as:

Lgravity = R + αR2 + βRµνR
µν + γRµνρσR

µνρσ + . . . ,

where α, β, γ, etc., are coupling constants representing the strength of the quantum
corrections.

Coupling Between Gravitational and Matter Sectors:
We ensure the coupling between matter fields and the geometry of spacetime by

introducing interaction terms in the Lagrangian density. These terms couple matter
fields to the metric tensor and its derivatives, allowing matter to influence the curvature
of spacetime. The modified Lagrangian density includes terms such as:

Lmatter = −1

2
gµν∂

µϕ∂νϕ− V (ϕ) + Lint(ϕ, gµν),

where Lint represents the interaction Lagrangian capturing the coupling between mat-
ter fields ϕ and the metric tensor gµν .

By incorporating these modifications into the Lagrangian density, we develop a more
comprehensive and accurate description of the unified model that captures the effects of
quantum gravity near singularities.

Let’s begin by applying the Euler-Lagrange equations to the modified Lagrangian
density Lgravity with respect to the metric tensor gµν .

The Euler-Lagrange equations for the metric tensor gµν are given by:

∂Lgravity

∂gµν
− ∂ρ

(
∂Lgravity

∂(∂ρgµν)

)
= 0.

Let’s denote the modified Lagrangian density as Lgravity = LEH+Lhigher-order+Lquantum,
where LEH represents the Einstein-Hilbert term, Lhigher-order represents the higher-order
curvature terms, and Lquantum represents the quantum corrections.

We’ll first consider the contribution from the Einstein-Hilbert term, given by:

LEH = R,

where R is the Ricci scalar.
Applying the Euler-Lagrange equations to LEH, we have:

∂LEH

∂gµν
− ∂ρ

(
∂LEH

∂(∂ρgµν)

)
= 0.

To simplify the notation, let’s denote ∂LEH

∂gµν
as ∂R

∂gµν
and ∂LEH

∂(∂ρgµν)
as ∂R

∂(∂ρgµν)
.

The expression for ∂R
∂gµν

can be derived using the definition of the Ricci scalar:

R = gµνRµν ,
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where Rµν is the Ricci tensor. Taking the derivative with respect to gµν , we have:

∂R

∂gµν
= gµν

∂Rµν

∂gµν
+Rµν

∂gµν
∂gµν

.

Using the relationship gµνgµν = δµµ = 4, we find ∂gµν

∂gµν
= −gµνgµν = −4.

Now, let’s compute ∂R
∂(∂σgαβ)

, which involves the derivatives of the Christoffel symbols

Γµνρ. We have:

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + ΓσρνΓ

ρ
µσ − ΓσνρΓ

ρ
µσ.

Taking the derivative with respect to (∂σgαβ), we get:

∂Rµν

∂(∂σgαβ)
= ∂ρ

(
∂Γρµν

∂(∂σgαβ)

)
− ∂ν

(
∂Γρµρ

∂(∂σgαβ)

)
+ Γσρν

∂Γρµσ
∂(∂σgαβ)

− Γσνρ
∂Γρµσ

∂(∂σgαβ)
.

These expressions will allow us to compute the derivatives needed to apply the Euler-
Lagrange equations to the Einstein-Hilbert term.

First, we’ll compute ∂R
∂gµν

∂gµν
∂R

using the definition of the Ricci scalar R:

R = gµνRµν .

Taking the derivative with respect to gµν , we have:

∂R

∂gµν
= gµν

∂Rµν

∂gµν
+Rµν

∂gµν
∂gµν

.

We’ll start by computing ∂Rµν

∂gµν

∂gµν

∂R
, which involves the derivatives of the Christoffel

symbols Γµνρ. Then, we’ll compute ∂gµν

∂gµν

∂gµν
∂gµν

and use it to complete the expression for
∂R
∂gµν

∂gµν
∂R

.

Let’s begin with computing ∂Rµν

∂gµν

∂gµν
∂R

.

To compute ∂Rµν

∂gµν

∂gµν
∂R

, we need the expression for the Ricci tensor Rµν in terms of the

Christoffel symbols Γµνρ. The Ricci tensor is given by:

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + ΓσρνΓ

ρ
µσ − ΓσνρΓ

ρ
µσ.

Now, let’s compute ∂Rµν

∂gµν

∂gµν
∂R

by taking the derivative of Rµν with respect to gµν .

This will involve derivatives of the Christoffel symbols with respect to the metric tensor
components gµν .

To compute ∂Rµν

∂gµν

∂gµν
∂R

, we need to take the derivative of Rµν with respect to the metric
tensor components gµν .

Given the expression for the Ricci tensor:

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + ΓσρνΓ

ρ
µσ − ΓσνρΓ

ρ
µσ,

we’ll first compute the derivatives of the Christoffel symbols Γµνρ with respect to the
metric tensor components gµν .

The Christoffel symbols are defined in terms of the metric tensor and its derivatives
as:
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Γµνρ =
1

2
gµσ (∂µgσν + ∂νgµσ − ∂σgµν) .

Taking the derivative with respect to gµν , we have:

∂Γµνρ
∂gµν

=
1

2
gµσ

(
∂

∂gµν
∂µgσν +

∂

∂gµν
∂νgµσ −

∂

∂gµν
∂σgµν

)
.

∂gµν
∂Γρµν

=
2

1
gρσ

(
∂gµν
∂∂µgσν

+
∂gµν
∂∂νgµσ

− ∂gµν
∂∂σgµν

)
.

Let’s compute these derivatives and then proceed with the calculation of ∂Rµν

∂gµν

∂gµν

∂R
.

To compute
∂Γµ

νρ

∂gµν

∂gµν
∂Γρ

µν
, we’ll differentiate the expression for Γµνρ with respect to gµν .

Starting with the definition of Γµνρ:

Γµνρ =
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) .

Taking the derivative with respect to gµν , we’ll differentiate each term separately:
For the term ∂µgσν :

∂

∂gµν
∂µgσν = δµµδ

ν
νδ

σ
σ = 4δσσ .

For the term ∂νgµσ:
∂

∂gµν
∂νgµσ = δννδ

µ
µδ

σ
σ = 4δσσ .

For the term −∂σgµν :

∂

∂gµν
(−∂σgµν) = −δµµδννδσσ = −4δσσ .

Combining these results, we have:

∂Γµνρ
∂gµν

=
1

2
gρσ(4 + 4− 4) = 2gρσ.

Now that we have
∂Γµ

νρ

∂gµν
, we can proceed with computing ∂Rµν

∂gµν

∂gµν

∂R
.

Now that we have
∂Γµ

νρ

∂gµν
= 2gρσ, let’s proceed with computing ∂Rµν

∂gµν

∂gµν
∂R

.

Recall that the Ricci tensor Rµν is given by:

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + ΓσρνΓ

ρ
µσ − ΓσνρΓ

ρ
µσ.

Taking the derivative of Rµν with respect to gµν , we have:

∂Rµν

∂gµν
=

∂

∂gµν

(
∂ρΓ

ρ
µν − ∂νΓ

ρ
µρ + ΓσρνΓ

ρ
µσ − ΓσνρΓ

ρ
µσ

)
.

We’ll differentiate each term in the expression for Rµν with respect to gµν and then
combine the results. Let’s start with differentiating ∂ρΓ

ρ
µν .

To compute ∂
∂gµν

(
∂ρΓ

ρ
µν

)
, we’ll differentiate ∂ρΓ

ρ
µν with respect to gµν .

Recall that Γµνρ is defined in terms of the metric tensor and its derivatives as:

12



Γµνρ =
1

2
gµσ (∂µgσν + ∂νgµσ − ∂σgµν) .

Differentiating Γµνρ with respect to gµν yields:

∂Γµνρ
∂gµν

=
1

2

(
δσρ (∂µgσν + ∂νgµσ − ∂σgµν) + gρσ

(
∂

∂gµν
(∂µgσν + ∂νgµσ − ∂σgµν)

))
.

Now, let’s differentiate ∂ρ with respect to gµν .
To differentiate ∂ρ with respect to gµν , we need to use the chain rule. Since ∂ρ acts on

the components of the metric tensor gµν , the derivative ∂
∂gµν

∂ρ will be zero unless ρ = µ
or ρ = ν.

Therefore, we have:

∂

∂gµν
∂ρ =

{
0 if ρ ̸= µ, ν

some value if ρ = µ or ρ = ν

For ρ = µ or ρ = ν, the derivative will depend on the specific expression being
differentiated, which involves the components of the metric tensor gµν .

∂

∂gµν

(
∂Γµνρ
∂xρ

)
=

∂

∂gµν

(
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν)

)
=
∂gσν

∂gµν
(∂µgσν + ∂νgµσ − ∂σgµν)

+
∂gµσ

∂gµν
(∂µgσν + ∂νgµσ − ∂σgµν)

− ∂gσν

∂gµν
(∂σgµν)

= gσµδρσδ
ν
ν + gνσδρµδ

µ
σ − gµνδρµδ

ν
ν − gµνδρσδ

ν
µ

= gσρδσµ + gνρδσµ − gµνδρµ − gµνδρσ

= gσρδσµ + gνρδσµ − gµνδρµ − gµνδρσ

article amsmath
First, recall the expression for the Christoffel symbol:

Γρµν =
1

2
gρσ(∂µgσν + ∂νgµσ − ∂σgµν).

We’ll differentiate each term with respect to gµν using the chain rule. Let’s start by
differentiating the first term ∂µgσν :

∂(∂µgσν)

∂gµν
=
∂(∂µgσν)

∂gσν
= δσµ .

Similarly, for ∂νgµσ, we have:

∂(∂νgµσ)

∂gµν
=
∂(∂νgµσ)

∂gµσ
= δνσ.

And for −∂σgµν , we have:

13



∂(−∂σgµν)
∂gµν

= −∂(∂σgµν)
∂gµν

= −δσσ .

Now, let’s differentiate ∂ρΓ
ρ
µν with respect to gµν . We have:

∂∂ρΓ
ρ
µν

∂gµν
=

∂

∂gµν

(
1

2
gρσ(∂µgσν + ∂νgµσ − ∂σgµν)

)
.

Using the results from the previous differentiation, we obtain:

∂

∂gµν

(
∂ρΓ

ρ
µν

)
=

1

2

(
δσρ δ

σ
µ + δνρδ

µ
σ − δµρ δ

ν
σ − δµρ δ

σ
ν

)
.

Simplifying this expression step by step, we get:

∂

∂gµν

(
∂ρΓ

ρ
µν

)
=

1

2

(
δσρ δ

σ
µ + δνρδ

µ
σ − δµρ δ

ν
σ − δµρ δ

σ
ν

)
.

Let’s simplify this expression:
For the term δσρ δ

σ
µ : If ρ = µ and σ = σ, then δσρ δ

σ
µ = 1. Otherwise, the term is zero.

For the term δνρδ
µ
σ : If ρ = ν and σ = µ, then δνρδ

µ
σ = 1. Otherwise, the term is zero.

For the term −δµρ δνσ: If ρ = µ and σ = ν, then −δµρ δνσ = −1. Otherwise, the term is
zero.

For the term −δµρ δσν : If ρ = µ and ν = σ, then −δµρ δσν = −1. Otherwise, the term is
zero.

Combining these results, we obtain the simplified expression for ∂
∂gµν

(
∂ρΓ

ρ
µν

)
:

∂

∂gµν

(
∂ρΓ

ρ
µν

)
=

1

2
(1 + 1− 1− 1) = 0.

∂

∂gµν

(
∂ρΓ

ρ
µν

)
= 0.

9 Modified Field Equations

Einstein-Hilbert Action with Quantum Corrections

S =

∫ (
R

16πG
+ Lm + Lq

)√
−g d4x (8)

Variation of Action

δS =

∫ [(
δR

16πG
+
δLm
δgµν

+
δLq
δgµν

)√
−g +

(
R

16πG
+ Lm + Lq

)
δ
√
−g

]
d4x (9)
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Field Equations

Gµν + Λgµν = 8πG (Tµν + τµν) (10)

where

τµν = − 2√
−g

δ (
√
−gLq)
δgµν

(11)

article amsmath

Quantum Correction Term

The quantum correction term Lq is given by:

Lq = Lq1 + Lq2 + Lq3 (12)

Higher-Order Curvature Terms:

Lq1 = α1R
2 + α2R

µνRµν + α3R
µνρσRµνρσ (13)

Non-Local Operators:

Lq2 = β

∫
d4x

(
−gRe□/M2

R
)

(14)

Loop Quantum Gravity Corrections:

Lq3 = γ
∑
i,j,k

ϵijkR
ijRkl (15)

Variation of Lq:
Variation of R2:

τµν(1) = α1 (2RR
µν − 2∇µ∇νR + 2gµν□R) (16)

Variation of RµνRµν:

τµν(2) = α2

(
2RµανβRαβ −□Rµν −∇µ∇νR + gµν∇α∇βRαβ

)
(17)

Variation of RµνρσRµνρσ:

τµν(3) = α3

(
2RµανβRαβ −

1

2
gµνRαβρσRαβρσ

)
(18)

Variation of Non-Local Term:

τµν(4) = β(Non-local variation terms) (19)

Variation of Loop Quantum Gravity Term:

τµν(5) = γ(Discretization-induced terms) (20)

Total Quantum Correction Term τµν:

τµν = τµν(1) + τµν(2) + τµν(3) + τµν(4) + τµν(5) (21)
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10 Quantum-Corrected Connection Coefficients

To incorporate quantum corrections into the connection coefficients, we use:

∂

∂gµν
(
∂ρΓ

ρ
µν

)
= F (gµν , ∂gµν) (22)

Christoffel Symbols

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) (23)

Derivative with respect to gµν

∂Γρµν
∂gαβ

=
1

2

(
δµαδ

ν
β + δναδ

µ
β − gµνgαβ

)
(24)

Quantum Correction Function F (gµν, ∂gµν)

F (gµν , ∂gµν) =
∑
i

κi (gµν∂α∂
αgµν)

i (25)

article amsmath

11 Equations of Motion for Singularities

The scalar field equation governing the behavior of singularities:

∂2ψ

∂t2
= ∇2ψ + V (ψ) (26)

Lagrangian for Scalar Field

Lψ =
1

2
∂µψ∂µψ − V (ψ) (27)

Euler-Lagrange Equation

∂Lψ
∂ψ

− ∂µ

(
∂Lψ

∂(∂µψ)

)
= 0 (28)

Field Equation

∂2ψ

∂t2
−∇2ψ +

dV

dψ
= 0 (29)
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12 Singularity Resolution Mechanisms

12.1 The wave equation describing resolution mechanisms:

∇2ϕ+
m2c2

ℏ2
ϕ = 0 (30)

12.2 Klein-Gordon Equation:(
□− m2c2

ℏ2

)
ϕ = 0 (31)

where □ is the d’Alembertian operator.

12.3 Static, Spherically Symmetric Case:(
∇2 − m2c2

ℏ2

)
ϕ = 0 (32)

article amsmath

13 Quantum Gravitational Collapse Dynamics

13.1 The dynamics of scalar fields in collapsing scenarios:

∂

∂t

(
−ggab ∂ψ

∂xb

)
− ∂

∂xa

(
−ggab ∂ψ

∂xb

)
= 0 (33)

13.2 Conservation of Stress-Energy Tensor:

∇aT
ab = 0 (34)

13.3 Stress-Energy Tensor for Scalar Field:

T ab =
∂aψ

∂bψ
− gab

(
1

2
gcd

∂cψ

∂dψ
+ V (ψ)

)
(35)

13.4 Equation of Motion:

∂

∂t

(
−ggab ∂ψ

∂xb

)
− ∂

∂xa

(
−ggab ∂ψ

∂xb

)
= 0 (36)

14 Discussion

14.1 Implications of Resolved Singularities

The resolution of singularities has profound implications for my understanding of black
hole interiors and the initial state of the universe. Classically, singularities represent
points where the curvature of spacetime becomes infinite, leading to a breakdown of
physical laws. By incorporating quantum corrections, my results demonstrate that the
Ricci scalar remains finite even at small radii, indicating a non-singular, smooth geometry.
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This suggests that black holes might possess a finite core rather than a singularity, which
could drastically alter our understanding of their interiors and the information paradox.

In the context of cosmology, resolving the singularity at the Big Bang implies that
the universe’s initial state may have been a highly dense but finite region. This opens up
possibilities for new models of the early universe that avoid the classical singularity and
provide a more coherent description of the universe’s birth.

14.2 Comparison with Other Quantum Gravity Theories

My results show similarities with other approaches in quantum gravity, such as Loop
Quantum Gravity (LQG) and String Theory, which also aim to resolve singularities. In
LQG, the discrete nature of spacetime at the Planck scale leads to a natural cutoff, pre-
venting singularities. Similarly, in String Theory, the extended nature of strings smooths
out point-like singularities. My unified framework, which combines elements from string
theory, LQG, and non-commutative geometry, aligns with these theories in predicting a
finite core instead of a singularity.

However, differences arise in the specific mechanisms and the mathematical formula-
tions. For instance, while LQG relies on spin networks and a discrete spacetime structure,
my approach integrates non-commutative geometry to achieve a similar result. These
differences highlight the diversity of approaches in the quest for a consistent theory of
quantum gravity.

14.3 Physical Significance of the Modified Effective Potential

The modified effective potential, as shown in the numerical simulations, indicates a slight
weakening of gravitational attraction near the black hole when quantum effects are con-
sidered. This has several implications:

1. Gravitational Wave Signals: The change in the potential could alter the dy-
namics of binary black hole mergers, potentially leading to observable differences in the
emitted gravitational waves. This provides a possible avenue for testing quantum gravity
effects through astrophysical observations.

2. Dynamics of Accretion Disks: The modified potential might influence the
motion of particles in accretion disks around black holes. This could affect the rate of
matter accretion and the emission of X-rays, providing another observational signature
of quantum gravitational effects.

3. Stability of Orbits: The slight modification in the effective potential could
impact the stability of orbits near black holes, leading to new predictions for the behavior
of matter and light in strong gravitational fields.

14.4 Plot Descriptions and Interpretations

14.4.1 Resolution of Singularities with Quantum Corrections

Plot Description:

• X-axis: Radius (r) on a logarithmic scale.

• Y-axis: Ricci Scalar (R) on a logarithmic scale.

• Curves:
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[b]0.8

Figure 1: Resolution of Singularities with Quantum Corrections
[b]0.8

Figure 2: Modified Schwarzschild Metric with Quantum Corrections

Figure 3: Numerical Simulation Results

– Blue curve: Classical Ricci Scalar.
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– Orange curve: Quantum Corrected Ricci Scalar.

Interpretation:

• The blue curve shows how the Ricci scalar behaves classically as a function of radius,
highlighting the singularity at very small radii (where R increases dramatically).

• The orange curve indicates that with quantum corrections, the Ricci scalar remains
finite even at small radii, suggesting a resolution of the classical singularity problem.

• The quantum corrections significantly reduce the Ricci scalar at small radii, imply-
ing a smoother, non-singular geometry near what would classically be a singularity.

14.4.2 Modified Schwarzschild Metric with Quantum Corrections

Plot Description:

• X-axis: Radius (r) on a linear scale.

• Y-axis: Effective Potential (V).

• Curves:

– Blue curve: Classical Schwarzschild Potential.

– Orange curve: Quantum Corrected Potential.

Interpretation:

• The blue curve represents the classical effective potential of the Schwarzschild met-
ric, showing the typical behavior as a function of radius.

• The orange curve shows the modified potential when quantum corrections are in-
cluded. The potential changes slightly, becoming less negative at smaller radii.

• The difference between the classical and quantum-corrected potentials suggests that
the gravitational attraction near a black hole might be weaker when quantum effects
are considered. This could have implications for the stability of orbits and the
motion of particles in strong gravitational fields.

15 Conclusion

In this study, I have developed a unified framework that integrates quantum gravitational
corrections from string theory, loop quantum gravity (LQG), and non-commutative ge-
ometry into the Einstein-Hilbert action. By combining higher-order curvature terms
and modifications arising from the discrete structure of spacetime and non-commutative
coordinates, I have made several significant findings:

1. Resolution of Singularities: My inclusion of quantum corrections resolves clas-
sical singularities, leading to a finite Ricci scalar even at small radii. This provides
a non-singular description of black hole interiors, addressing a longstanding issue
in general relativity.
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2. Predicted Observables: This framework predicts alterations in the effective po-
tential near black holes, which could manifest as observable deviations in gravi-
tational wave signals. These predictions offer potential avenues for experimental
verification of quantum gravitational effects.

3. Theoretical Integration: By synthesizing corrections from multiple quantum
gravity theories, The approach bridges the gap between general relativity and quan-
tum mechanics, contributing to a more unified understanding of gravitational phe-
nomena at quantum scales.

16 Future Research Directions

My results open several avenues for future research:

1. Experimental Verification: I plan to further investigate specific observational
signatures of the predicted quantum gravitational corrections. This includes de-
tailed modeling of gravitational wave signals and other astrophysical phenomena
that could be tested with current or future observational data.

2. Extended Theoretical Models: I aim to expand my framework to include other
quantum gravity theories and to extend it to higher dimensions. This could provide
a more comprehensive understanding of quantum gravitational effects and their
implications for cosmology and high-energy astrophysics.

3. Numerical Simulations: Developing robust numerical simulations to model the
dynamics of black holes and other compact objects within my framework will be
crucial. These simulations can help visualize the effects of quantum corrections and
guide the interpretation of observational data.

4. Cross-Disciplinary Applications: I believe the techniques and findings from
my study could be applied to other areas of physics, such as condensed matter sys-
tems with analogous mathematical structures, providing a broader impact beyond
gravitational physics.

In summary, my work represents a significant step towards integrating quantum cor-
rections into classical gravitational theories, with promising implications for both theo-
retical and observational advancements in the field of quantum gravity.
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