on the possible zero value of the spatial
curvature constant

Fernando Salmon Iza *

Abstracts

The value of curvature k that appears in the Friedman's equation of the FLRW metric is the subject
of controversy. Of its three possible values (+1, -1, 0), determining whether it is zero or not is an
important problem in physics. The experimental results existing today do not allow us to resolve it.
In this report we have studied this problem by carrying out a theoretical calculation of the
parameters, curvature density Qx and matter density Qm. To do this we have obtained an equation
that relates the spatial curvature constant to the energy density and through it and the Friedman's
equation we have calculated Qk and Qm. The ratio between the two will determine whether the
curvature k is zero or non-zero. The result obtained in this report leads us to think that the curvature
constant that appears in the Friedman's equation is zero.
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1. - The cosmic spacetime

We are going to study a uniform and isotropic spacetime from a physical point of view, this
is equivalent from a geometric point of view to being invariant under translations and
rotations.

According to Professor Fulvio Meli4 in reference [1], we define “cosmic spacetime” as the
set of points (t, r, @ @) that satisfy the FLRW metric, that is, that satisfy the equation:

2

ds? = c2dt? - a(t)?(

L+ 12d0?)

kr?
We define each of the "3D hypersurfaces" of cosmic spacetime as the set of points that have
the same temporal coordinate. Thus, cosmic spacetime will have a different hypersurface
for each time t. As we have defined them, these hypersurfaces do not intersect, that is, they
have no common points and the set of all of them constitutes cosmic spacetime.

It is in these 3D hypersurfaces where we are going to calculate the spatial curvature
constant that constitute the object of this report

2. - Calculating the spatial curvature constant in the 3D hypersurfaces of cosmic
spacetime

First we are going to calculate the curvature scalar of a 3D hypersurface of our
homogeneous and isotropic cosmic spacetime with an matter density pm .

2.1- Birkhoff-Jebsen theorem
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We make a brief comment on this theorem of mathematics applied to the theory of
generalized relativity. First, we summarize Professor Fulvio Melia in reference [2] to explain
it.

“If we have a spherical universe of mass-energy density p and radius r and within it a
concentric sphere of radius rs smaller than r, it is true that the acceleration due to gravity at
any point on the surface of the sphere of relative radius rs to an observer at its origin,
depends solely on the mass-energy relation contained within this sphere”.

Thus, according to this, to calculate the curvature of the gravitational field of a point located
at a distance "rs" from the geometric center that we are considering in our continuous
universe, it is only necessary to consider its interaction with the points that are at a radius
smaller than "rs", therefore, the mass "m" to be considered will only be that contained in the
sphere of radius "rs".

In general relativity, Birkhoff's theorem states that any spherically symmetric solution of
the vacuum field equations must be statically and asymptotically flat. This means that the
outer solution (that is, the spacetime outside a gravitational, non-rotating, spherical body)
must be given by the Schwarzschild metric.

2.2- Calculating the spatial curvature constant

Let's consider our 3D hypersurface and a sphere of radius r inside, the Birkhoff-Jebsen
theorem assures us that if we want to calculate the curvature at a point on its surface, we
must consider only the interaction with the gravitational mass found inside, the
gravitational mass inside for the sphere external point that we are considering behaves as
a point mass of equal magnitude to that of the mass of the sphere and located at its central
point. In this case we are already in the Schwarzschild model, and we can use its equations
to calculate the corresponding curvature.

For all this, we can treat the problem of calculating the curvature scalar in each of the 3D
hypersurfaces of our cosmic spacetime as a problem to be solved by the Schwarzschild
model and calculate the curvature scalar from that model. In this model, spacetime is
reduced to a 2D surface and so Gaussian curvatures are easily calculated; the scalar
curvature in this case is twice the Gaussian curvature.

According to Annex I, we have found an equation that relates the Gaussian curvature K of
the spacetime of the Schwarzschild model, with the cosmological parameters mass M and
universal gravitation constant G. We are going to use this equation to solve our problem.
This equation is the following:

K=-GM/c?r3
Since in our case it is a sphere, its mass will be given by
M = 4mr3pm/3
K =-4nG pm/3c?

The curvature scalar R in bidimensional spaces, 2D surfaces, will be given by twice the
Gaussian curvature K, thus:

R/pm = -81G/3c2



R curvature scalar, spatial curvature constant (m-2) and pm is the matter density (Kg/m3)
The curvature scalar in our case is the spatial curvature constant we are looking for.

Thus, the spatial curvature constant each point of the hypersurface is the same and is
proportional to the density of matter.

2.3- Studying the spatial curvature constant

Applying the Friedmann equation and our equation that relates spatial curvature constant
to energy density in 3D hypersurfaces, we study the ratio between the parameter Qx and
the matter density parameter Qn, will give us a value that can allow us to solve the question
of whether the universe (spatially) is flat or not. We study this question here.

Qi = pm/pe
R/pm =-81G/3c?
Dividing the two terms of the fraction by p, we get:
(R/pc) /Qm =81G/3c?
Defining:
Q= (R/pc))
Result:
Qk/Qm = 8nG/3c2 = 6.10-27
Friedmann'’s equation:

Hz=(a"/a)2=8nGp/3 - kcz/a2
being H the Hubble constant, “a” the scale factor and “p” the energy density.
In a universe dominated by matter, such as ours:

P =Pm+Pa
Pm is the matter density,
pa is the vacuum energy density.
Friedmann's equation can be written like this:
1=0Qm+ Qa+ Qx
Qm = 8nGpm/3H?
Qa = 8nGpa/3H2
Qi =6.1027Qp,
According to these calculations, the Friedmann equation can be written as:
1=0Qn+Qa

Therefore, according to our calculations, the value of the curvature parameter k
appearing in the Friedman equation is zero, k=0.



2.4- Experimental data Q
According to the reference [3]
Qx=0,001£0,002

Our value for the parameter Q is within the possible experimental data. Our result is
consistent with the experimental data.

3. - Conclusions

By studying the relationship of the cosmological parameters Qr and Q. we can know
whether the spatial curvature constant is zero or not. If the result of our calculation is very
close to zero, it is expected that this constant will take a value of zero, if the result of our
calculation is greater, it is expected that this constant will not be zero. The current
experimental results are not precise enough to determine this.

Performing a calculation as detailed in this report we have obtained a value very close to
zero for the relationship between these two parameters Qx and Qm. Applying this result to
the Friedman equation we have obtained a zero value for k, the curvature constant that
appears in the equation without any doubt regarding another possible value. Thus, we
consider that the problem we proposed at the beginning of this report has been resolved.

Opinion among current astrophysicists is divided, with those who think that this curvature
is zero being very relevant. Our calculations also seem to indicate this.

Annex I

In this annex we obtain an equation that relates the Gaussian curvature of the Schwarzschild
spacetime with several physical parameters.

The Flamm paraboloid, J. Droste's spacetime solution to the problem studied by
Schwarzschild, [4], is a 2D surface inserted in an R3 space. Its geometry allows us to
parameterize the paraboloid as a function of the observer's distance from the point mass
“r” and the azimuth angle “@”. The problem admits a mathematical treatment of differential
geometry of surfaces [5], and with it we are going to calculate the Gaussian Curvature. (Rs
= Schwarzschild radius)

Surface parameters (r, ¢)
0<r<ow, 05 p<2m

which has this parametric equation:
X =T COSQ

y =T sen@

z = 2(Rs (r- Rs))1/2

Vector Equation of the Surface

f (x,y,2) = (r cos@, rsenq, 2(Rs(r- Rs))1/2)



Determination of velocity, acceleration, and normal vectors to the surface
0f/0@ = (-r sene, rcos, 0) 02f/0@2 = (-r cos, -r sene, 0)
0f/0r= (cos, seng, (r/Rs -1)1/2) 02f/orz = (0, 0, (-1/2Rs). (r/Rs -1)-3/2)
of/d@or = (-senq, cosy, 0)
(0f/d x 0f/0r)
n= of _of
56 ™or]

(of/0¢ x 0f/0r) = (rcosq/(r/Rs -1)1/2, rsene/(r/Rs -1)1/2, -r)

of of
[%xa] =r ((1/(r/Rs -1)) +1)1/2

Curvature and curvature parameters

Gauss curvature K= LN-M2/EG-F2
L =082f/8¢2 n = -r(r/Rs)1/2
N =02f/0r2. n = (1/2Rs) (r/Rs)1/2 (r/Rs - 1)1
M =(6f/0¢@0r).n=0 G=of/or.of/or=1+ (1/ (r/Rs- 1))
E = 0f/0¢. 6f/0¢ =12 F =0f/0¢. 0f/or=0

K =-Rs/2r3 =- GM/c?r3

for Schwarzschild radius, Rs = 2GM/c2
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