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Abstract

We are following [1] and [5]. Nevertheless, we are interested only in
the clarification of proofs.
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1. Structure of finite commutative rings

Our object of interest is an associative-commutative ring with a multi-
plicative identity element. In this text, the term ring will mean exactly
such a ring, i.e., an associative-commutative ring with a multiplicative
identity element. We will denote rings R commutative group by R*. In
this section, we will consider only finite rings and we are following [1].

1.1. Definition. Subset H of ring R, is called a subring if
o H is a subgroup of the additive group,

o H is a subsemigroup of the multiplicative semigroup.
1.2. Definition. Subring Z of ring R is called an ideal if
RICT.

1.3. Proposition. If Z;,Zs,...,Z, are ideals of ring R, then map-
ping
®:R—R/IiXR/Ty x - X R/Ty:r— (r+Ti,r+1s,...,7r+I,)
is a ring homomorphism.

O We will use notation [z]; = = + Z;.
Let z,y € R, then

Pz+y) = (z+ylulz+ylz....[z+yl)
= ([ + [y, 22 + [Yl2s - 2] + [y]n)
= ([=]1, [@l2s .- [yln) + (] [W]2, - - - [Y]n)
= O(z) + 2(y)
e(1) = ([1]x, [z, [1n),



P(ry) = ([zyh, [zyle, ..., [2y]n)
= ([=hyl, [@]2[y]2; - -, [2]n[y]n)
= ([z]1, [#]2s .-, [W]n) Q] Y2, - - - [Yln)
= O(z)P(y). W

1.4. Definition. {0} and R are called trivial ideals of ring R.

All other ideals of ring R are called nontrivial ideals. Ideal Z are called
proper ideal if 7 # R.
Let 74,75, ...,Z, be proper ideals of ring R.

1.5. Definition. Proper ideals I, un L, 1 < k < m <mn, are called
coprime if I, + L, = R.

Here Zp+Zm = {a+bla€Zx N bE Ty}

1.6. Example. Z; = {0,2,4}, Zo = {0, 3} are coprime ideals of ring
Ze.

T:Ze = {0,2,4}{0,1,2,3,4,5} = {0,2,4}
2-3=6=0 2:4=8=2 2-5=10=4
4.-3=12=0 4.-4=16=14 4.5=20=2

I2Z6 - {0» 3}{07 17 27 37 47 5} = {07 3}

3:3=9=3 3-4=12=0 3-5=15=3

Ti+T, = {0,2,4}+{0,3} = {040, 0+3,240, 2+3,4+0,4+3} = {0,3,2,5,4,7 = 1} = Zg

Notice that
Ve € I)Vy € Io 2y = 0.

1.7. Proposition. If7Z:1,Zs,...,Z, are coprime ideals of ring R, then
NZe=]]Z
k=1 k=1
Notice that
HIk = {Zl’klmkg e Tkn |Vj Tk € Ij}.
k=1 k

Here, >, Tx1Tk2 - . . Thn denotes all possible finite sums of such form. In
sum ), @y there is a possibility for 1 = x2, but if so then y1 # ya.
O As Z; un Zy are ideals, then

IlﬁIQ:{heRHzeL /\hGIQ}

is a proper ideal since 0 € Z; N Z,. Notice that

2
HIk =TI, = {Zwkyk |z € T1 A yi 612}-
k=1 k



Each member of sum Zk zryr belongs to ideal A Z; and also to Z,
therefore Y, xryr € Zr N Zz. Hence 71Ty C 71 N Za.

Let a € ZyNZ>. As 7Z; and 75 are coprime ideals, then there exist such
x €71 and y € I, that £ + y = 1. Therefore

a=a-l=alz+y)=ax+ay =za+ay € Thi .
Hence Il N IQ = 111-2.
n
Notice that [] Zr = {Zk TE1Tk2 - - - Thn | V] Trj € Ij}. As the ring
k=1
is commutative, it follows that each member of >, Tr1Tr2... Trn IS a
member of an arbitrary ideal Zy, k € 1, n, therefore [] Zr C () Zk.
k=1 k=1

Further proof is inductive, assuming that ideals il,Ig, veis T4 are
pairwise coprime.

m+41

N Ze= (N Ze) " Zonrr = ([ [ Te) N Tonta
k=1 k=1 k=1

As all the pairs Zn41,Zk, k € 1,m are coprime ideals, then there exist
such ay € Zy, bx € L+, that ar + by = 1. Therefore

1= (a1 +b1)(az+b2) - (am +bm) = ara2---am + B,

where B is a sum. Here each member of B contains some by as a multiplier,
therefore B € T, 1.

m—+1
Let a € () Zk, then
k=1

a=a-1=al(a1+b1)(az +b2) - (am + bm) = a1a2---ama+ aB

m—+1 m
Asa€ () Z, it follows that a € [ Zk.
k=1 k=1

m m
From the inductive assumption (| Zx = [] Zx. Therefore a can be
k=1 k=1
written as a sum Zk Tr1Zk2 - - - Thim, Where Vay; € Z;. Thus

m—+1
aB = E Tr1Tk2 - .. Lem B € H Tk,
k k=1
and therefore
a = aiaz---ama-+aB
m+1
= qaia2---ama -+ E TE1Tk2 - .. TemB € HIk. [ |
k k=1

1.8. Proposition. IfZ, 7 are coprime ideals, then ™, J™ also are
coprime for allm € Z.

Notice that Z"" =ZZ---T.
[ —
O As 7, J are coprime ideals, then there exist such a € Z,b € 7, that

a+b=1. Hence
1= (a+0b)°=a’+2ab+ b



e If ab =0, then a® + b> € I?> + J%;
o If ab # 0, then 2ab = 1 - 2ab = 2(a + b)ab = 2a*b + 2ab*> € T* + J>.

Further proof is inductive. If 7%, 7% are coprime ideals, then there
exist such a € Z% b € J*, that a + b = 1. Hence

1= (a+0b)*=da®+2ab+b>.

o If ab =0, then a® + b* € TF 4+ FFH1,
e Ifab # 0, then 2ab = 1-2ab = 2(a+b)ab = 2a*b+2ab> € T+ F+ 1.

We are using the property of ideals: if a € Z™%!, then a € T™. This
arises from

A=Y TuTiTis... Timy1 = P _(Ti1Ti2)Tis .. Timy1 € L™,
i i
because xi1xi2 € Z. By further use of induction, it’s provable that: if
a€Z™™ thenaecZ™. N

1.9. Proposition. Ring homomorphism f : G — G’ is monomor-
phism if and only if Kerf = 0.

O=1If f(z) =0 and x # 0, then f(0) =0 = f(z). Therefore f is not
an injection.

< Let f(x) = f(y), then f(z —y) =0. As Kerf =0, then z —y = 0,
ie,z=y. N

1.10. Proposition. Assume that 71,22, ...,Z, are ideals of ring R.
Mapping

®:R— R/ITy X R/Iy X -+ X R/T, :r = (r+ Ty, r+Lo,...,1 + 1)

is ring monomorphism if and only if (| Zr = 0.
k=1

O Let ®(r) = ([0]1,[0]2, .-, [0]n). Therefore r € () Zx. It shows that
k=1

Ker® = () Z. From previous proposition follows that @ is injective only
k=1

when Ker® =0, i.e., 0 = Ker® = (| Z,. B
k=1

1.11. Lemma. If7,,Z>,...,Z, are coprime ideals of ring R, then I,
n

and [ Zx are coprime ideals of ring R.
k=2

n

O We have (1.7. Proposition) [[ Zr = () Zk , therefore [] Zj is
k=2 k=2 k=2
an ideal. As all pairs 71,7y, k € 2,n are coprime, then there exist such
ax € I1,br, € Iy, that ar, + by = 1. Hence

1= (a2 +b2)(az+b3) - (an +bn) = A+ babs-- by,

where A is a sum. Here each term of sum A contains some ap as a
multipler, therefore A € Z;.

n

Thus 1 = A+ bobs - - by, where A € 7y and babs -+ by € [[ Zx. B
k=2



1.12. Proposition. Assume that Z1,Z2,...,Z, are ideals of ring R.
Mapping

®:R—R/IIXR/Iy x -+ XR/Ty:r— (r+TLi,r+1o,...,r+ 1)

is a ring epimorphism if and only if for all different indezes k,j € 1,n
ideals Iy, Z; are coprime.

O = If ® is a epimorphism, then there exists such z € R, that
@(z) = ([11,[0]2,...,[0n).
P(l—z) = P(1)—P(x)
= ([Hla[l}?w“a[l]n)_([1]1’[0]27"'7[0]")
= ([0]5, [t]2, -, [1]n)

It shows that 1 — x € Zi, and also z € Zj for all k € 2,n. Hence
1€Zy +1y forall k € 2,n.
Generally, m € 1,n reasoning is similar. If ¢ is an epimorphism,

then there exist such x,, € R, that ®(zm) = ([Tm1]1, [Tm2]2; - -, [Tmn]n),
where
0, if j #m;
Tmj = e
1, if j=m.
CI)(l - xm) = ([Z/ml}ly [ym2]27 ) [ymn]n)7 where
)L i Em
Ymi= N0, ifj=m.

It shows that 1—x,, € Z,,. Also x,, € Z, for all k # m. Hence 1 € Z,,+Zy,
for all k& # m.

< Assume that all pairs Zy,Z; of ideals are coprime.
If n = 2, then there exist such z € 71,y € Zo, that z +y = 1. As
z=1—yand y=1—z, then

[zl = [1—yl2=[1]2—[yl2 =[1]2 = [0] = [1]2,
i = [—-zh=[1)—[zh=[],
o(z) = ([z]1,[2]2) = ([0]1, [1]2),
2(y) = ([yh:yl2) = ([1]1,[0]2),
O(br +ay) = @(b)2(z)+ (a)P(y)
= ([o]1, [b2])([0]1, [1]2) + ([al1, [al2)([1]1, [0]2)

= ([0]1,[b]2) + ([a]1, [0]2) = ([al1, [b]2)-

Hence mapping ® is surjective. Further proof is inductive.
From (1.14. Lemma) follows, that Z1,Z>Z3 - - - Z,, are coprime, there-
fore homomorphism

v:R— R/Il X R/IQI3In LT (T‘+I1,T+Ing‘“In)
is surjective. From the inductions assumption, it follows that mapping

O:R—- R/Iox R/Isx - R/ :r— (r+Lo,r +Is,...,7+ L)



ir surjective. From the homomorphism theorem, there exists such homo-
morphism @3, that diagram
Po

R R/Zy x R/Z3 X -+- X R/T,

R/KerCI)g

is commutative. Additionally, homomorphism ®5 is a monomorphism.
Therefore R/Ker®, is isomorphic with ring R/Zy x R/Z3 x --- X R/Z,
(homomorphism @, is also surjective).

From proof of (1.10. Proposition) follows, that Ker®s = [ Zy, addi-
k=2

tionally (1.7. Proposition) () Zx = [] Zk. Therefore

k=2 k=2
R/I5Ts3-- -1, isisomorphic with R/Zs x R/I3 X --- X R/Z,.

Hence mapping ®5 : R/Z2Z3---Z, — R/I> X R/Z3 x --- X R/Z, is an
isomorphism.

Let ([r1]1,[r2]2,---, [rnln) € R/Z1 X R/Zo x R/Z3 X - - - X R/Z,. Notice
that

P:ir = ([T]l, [7‘]27-"7[r}")7
By:r = ([, [y [F]n).

From the inductions assumption, mapping ®2 is an epimorphism, there-
fore there exists such x € R, that

Dy i x> ([r2]z, [3]3,- - -5 [Tn]n),

ie., [z]2 = [r2]2, [z]s = [r3]s, .- ., [%]n = [rn]n. Let’s consider epimorphism
U:r— (r+Zi,r+127s...1,).

As mapping V¥ is an epimorphism, then there exists such y € R, that
U:y— (y+7Ti,y+1225...7,),

where y + 71 = [yly = [r1]1 and (®3)"([ra]2, [rs]s, ..., [raln) = y +
ZoZs3...Z,. Notice that [y]1 = [r1]1, thus

by Y= ([Tlhv [y}zv [y}37 ey [y]n)

Diagram (D) is commutative, therefore

(Wlas [Wls, -+ [wln) = Pa(y) = a(7(y)) = P2y + LoTs. .. In)
= ([ral2; [rals, -5 [raln)-
Thus @1 : y — ([r1]1,[r2]2,- .-, [rn]n), showing that mapping ®; is an

epimorphism. B



1.13. Definition. Element e of ring R is called idempotent if e* = e.
Idempotents e, f are called orthogonal if ef = 0.

1.14. Definition. Ideal Z of ring R is called principal ideal, if there
exist such a € R, that Z = aR.

1.15. Proposition. The following statements are equivalent:

1. R¥ Ry X Ra2 X -+ X Ry; here all R; are subrings of ring R;

2. There exist such orthogonal idempotents e;, that > e; = 1 and R; &

=1
67;R,'
3. R=1y x1Iy X -+ X Iy, here all Z; are main ideals of ring R and
I, ~R;.

Oo1. = 2. The unit element of ring R1 X Rz X --- X R, is tuple
(1,1,...,1). Therefore tuples oy = (d1k, 02k, - - -, Onk) are idempotents of
ring Ry X Rp X --- X Ry. Here

0, ifi#k;
ik = o
1, ifi=k.

Assume that ¢ : R1 X R2 X -+ X R, — R is a ring isomorphism. Then
©(0x) = ek is an idempotent of ring R, because

er = ©(0k) = p(0%) = @(6k)¢(0k) = exex = ef,

additionally
T=o(L,1,...,1) =0 ) =D e0k) = e
k=1 k=1 k=1
o eres) = o M ex)p  ei) = (0,0,...,0) if i # k. As ¢ is an iso-
morphism, then exe; = 0 only if 4 # k. Let € R, then ¢ '(z) =
(z1,22,...,Tn), where all x; € R;.
o er) = ¢ (e)p ()
= (0,0,..., 1 ,...,0 e Tiye . T
( ) ) ) ) ) )(xl7m27 7'/1: z )

Hence e; R = R;.
2. = 3. I; = e;jR. Notice that (e1,e2,...,en) is the unit element
of ring 7y X Iy X -+ - X Z,,. Let’s prove that

p:Ti xIy X+ XTIy, = R:(a1,a2,...,an) = a1+ a2+ -+ an

is a ring isomorphism. ~
(i)LetZL:(al,ag,...,an)GIl><Ig><~~><In andb:(b1,b2,...,bn)€
Ty X Iy X --- X I, then
p@+b) = (a1 +bi,az+ba,... a0+ by)
== al+b1+a2+b2+"'+an+bn
= (ama+ax+---+an)+br+ba+---+0bn)

= (@) + p(b).



(i) If z € Z;,y € I, and j # k, then zy = 0. As = € Z;, then there
exist such ' € R, that * = e;a’. Also, there exists such 3’ € R, that
y = exy’. Hence xy = ejz’ery’ = ejerz’y’ = 0x'y’ = 0.

p(ab) = ¢((a1,a2,...,an)(b1,b2,...,byn))
p(aibi,azba, ..., anby)
= a1bi +a2b2 + - + anbn,
= (a1+az+--+an)(br+b2+ -+ bn)
= (@)
(iii) Assume that z € Z; N Zy, then x € Z; = ¢;R and © € I, = exR.

Therefore © = e;jx; = exxr, where z;, x) are elements of ring R.
If j # k, then eje, = 0, hence

T =ejz; =ex; =cjerxr =0 25 =0
= Gty = G5 = CiCkbE = k=Y

Thus Ij ﬂIk =0.
Let y € Zx = exR. Then y = eryr, where yx € R. If ¢ # k, then
ey = eiepyr =0 yr = 0.
(iv) Let p(a) = ¢(b), i.e.,
a1 +az+- - +an=0b1 +ba+ -+ by,

then

ai—bi = Y (b —a). (1)

J#

As for all k ax. and by, are elements of ideal Zx, = ex R, then ar = exxr, b =
erYr, where zx, yr belongs to ring R. Expression (1) can be written as

eilwi—y) = Y ey — ),
J#i
ei(wi—yi) = ei(wi—y) = Y eiej(y; —a;)=0.
J#i
Then a; — b; = e;x; —e;y; = 0 or a; = b;. We have proven that ¢ is
injective.
(v) Let © € R and xy, = exx, then Vk xi, € ex R = Z), and
(xl,:cg,...,xn) c I ><I2><"'><In7
r1t+ax2+--+xn = eaxtex+--+enr
= (e1+e+ - +e)r=1-z==x.

Hence ¢(z1,x2,...,%n) = x. Therefore ¢ is surjective. We can conclude
that ¢ is an isomorphism, therefore R 27 X Ty X -+ X I,.
3. = 1. An ideal is a subring of a ring. B

1.16. Definition. Ideal T of commutative ring R is called a prime
ideal if
abel=acI Vbecl



1.17. Definition. Ideal M of ring R, M # R is called mazimal ideal
if for any ideal T of ring R:

MCICR=>M=IVI=R.

1.18. Lemma. If Z and J are ideals of commutatve ring R, then
T+ J is ideal of ring R.

O Let a,b be elements of ideal Z and, in turn, x,y to be elements of
ideal J. Thus a 4+ « and b + y are elements of set Z + 7.

i) (a+x)+b+y)=(a+db)+(z+y) €IT+T. —a—-beI+J.
0=04+0€Z+J.

(ii) Let r € R. Thenr(a+ ) =ra+rbe€Z+ J. Hence Z+ J is an
ideal. H

Let’s denote the equivalence class of element x in the quotient ring by

1.19. Proposition. If1 € R and M is mazimal ideal of commutative
ring R, then quotient ring R/M is a field.

O Assume that [z] # [0], then © ¢ M. Thus M + Rz # M and
M+ Rz = R. Then exist such x € M and y € R, that (u+yz = 1). Thus
for equivalence classes: [1] = [u+yz] = [u] + [yz] = [0] + [y][z] = [y][z]. W

1.20. Corollary. If M is a mazximal ideal of ring R, then M is a
prime ideal.

O R/M is a field. A field is a ring without zero divisors. B

1.21. Proposition. If M is ideal of commutative ring R and R/ M
is a field, then M is maximal ideal of ring R.

O As R/M is a field, then card( R/M) > 2. Let M # R. If T is an
ideal such that M C Z C R, then exists z € Z, that = ¢ M. As [z] # [0],
then there exists such y, that [zy] = [z][y] = [1]. As [zy] = zy + M,
therefore exist such u € M, that u + xy = 1. We have M C Z, therefore
u €T, xzy € Ty C 7T because 7 is an ideal. Thus 1 = u 4+ xzy € Z. Hence
I=R. 1

1.22. Definition. The set of all prime ideals of ring R is called the
spectrum of ring R and is denoted by Spec(R). The set of all mazimal
ideals of ring R is called the mazimal spectrum of ring R and is denoted
by Speem(R).

1.23. Corollary. Specm(R) C Spec(R).

1.24. Definition. Jacobson radical:

JR)= () T

IeSpecm(R)

1.25. Theorem. Z is prime ideal of ring R if and only if R/T is an
integral domain.



O An integral domain is a nonzero commutative ring with no nonzero zero
divisors.

= [a][b] = [0] implies ab € Z. If 7 is prime, then a € Z V b € T.
Thus [a] = [0] V [b] = [0]. Hence R/Z is an integral domain.

< Assume that Z is not prime, then exist such a ¢ Z and b ¢ Z, that
ab € Z. [a][b] = [0] € R/T and [a] # [0] A [b] # [0]. Hence R/T is not an
integral domain. W

1.26. Proposition. A finite integral domain is a field.

O Let R = {a1,a2,...,an} be a finite integral domain, a € R and
a # 0. Consider terms aai,aaz,...,aa,. All those terms are unique. If
the contrary is true, then aa; = aa;. Thus aa; — aa; =0, a(a; — a;) = 0.
As R is an integral domain and a # 0, then a; —a; =0, i.e., a; = a;. As

R = {aa1,aas, ... aa},
therefore there exists such ax, that aar = 1. As an integral domain is
commutative, then 1 = aar = ara. Hence ay =a~ . W

1.27. Corollary. IfT is a prime ideal of ring R, then it is a mazimal
ideal.

O As 7 is a prime ideal, then (1.25. Theorem) R/Z is an integral domain.
Integral domain R/Z is finite, therefore (1.26. Proposition) it is a field.
Thus (1.21. Proposition) ideal Z is maximal. B

1.28. Proposition. If Z and J are distinct mazimal ideals of ring
R, then they are coprime ideals.

OAsZ# J,thenZ+J DZorZ+ 7 D J. Thus
RODI+JDI or RODI+JIDJ.
Notice that Z + J is ideal (1.18. Lemma) and Z, J are maximal ideals.
Its possible only if Z+ 7 = R. &

1.29. Definition. FElement a € R is called a nilpotent element, if
exists such natural n, that a™ = 0.

1.30. Definition. Set Nil(R), consisting of all nilpotent elements of
ring R, is called a nilradical.

1.31. Proposition. Nil(R) is ideal of ring R.
O Assume that ™ = 0 = b™, then

n+m

(@+b™m =3 (n;m) dpr

k=0

While k < n, we have n +m — k > m. As a result, all terms of sum are
equal to 0.

Let r € R, then (ra)” =r"a”™ =r™- 0 =0. Thus RNil(R) C Nil(R).
|

10



1.32. Proposition. If R is a commutative ring, then

Nil(R)= () I
ZeSpec(R)

O Let » € Nil(R), Then there exists such n, that r" = 0 € T €
Spec(R). T is an ideal, therefore 0 € Z. T is prime ideal and 7 -r" ™' € T,
therefore r € Z or ¥~ ! € Z. If r € Z, then we have obtained the
desired result. If the contrary is true, then we proceed inductively, i.e.,
we assume that 7" "% € Z and n—k > 1, then 7-7""*~1 € 7 and therefore
r e Zorr" %1t e We proceed until n — k —i = 1. Thus we have
proven, that r € Z for any Z € Spec(R). Thus r € Nzegpec(r)Z and
NZl(R) - mIGSpec(R)I'

Let’s now assume that f ¢ Nil(R) and consider set

§ = {J C R|Jis an ideal and VYm € Z; f™ ¢ J}.

Set § # 0, because 0 is an ideal. Set § is partially ordered with respect
to C, and for each chain J; C J2 C ... there exist a upper bound

I= U
k>0

Let’s prove that J is an ideal.

>Ifa € Jand b € J, then 3i a € J; and Ik b € Ji. Assume for
concreteness that J; C Ji, then a € Ji. Hence a4+ b € J, C 3.

Letr€e Runce J, then dscc € J,.. Hence rce J,. CJ. <

Let f™ € g, then 3k f™ € Ji. A contradiction!

As for each such chain an upper bound exists, then by Zorn’s lemma,
in set § exists a maximal element M. Let’s prove that M € Spec(R).

> Let a ¢ M and b ¢ M, then aR+ M D M and bR+ M D M.
Therefore aR + M ¢ § and bR + M ¢ §, thus

In f"€aR+ M and Im f" € bR+ M.

As f* € aR + M, then f* = ari + m1, where r1 € R and m; € M.
Similarly f™ € bR+ M, f™ = bra + ma, where ro € R and ma € M.

FrE™ = " = (ary+ma) (bra+ms) = abrire +arima +bromy +mimo.

Hence f™*" € abR + M. Therefore abR + M ¢ §, thus ab ¢ M.
With some logical transformations:

ag MAbEM = abd¢ M,

“(ag MAbEM) VvV abé¢ M,
aEMVbeEM V ab¢ M,
abg M VvV aeMVbeM,
abeM = aeMVbeM.

Therefore M is a prime ideal. <
Thus if element f is not nilpotent, then there exists such prime ideal
M to whom f doesn’t belong.

f ¢ Nil(R) = 3M € Spec(R) (f ¢ M).

11



From contraposition, we obtain:
VM € Spec(R) (f € M) = f € Nil(R).
Thats proves the inclusion (| Z C Nil(R). B
ZeSpec(R)
1.33. Lemma. There exists m, that (Nil(R))™ = 0.

O If a € Nil(R), then there exists such x4, that a"* = 0. As R is a
finite set, then N4l(R) also is a finite set, therefore there exists

k= max (Ka).
a€Nil(R)

Let’s assume for concreteness, that |[Nil(R)| = n. In product aias ... am,
where all a; € Nil(R) and m = nk, there is at least one nilpotent element
a;, whose power v is no less than &, i.e., v > &, therefore af = 0. B

1.34. Lemma. If¢: R — R’ is a ring epimorphism and T is a ideal
of ring R, then ¢(Z) is ideal of R'.

O (i) Let ' € R’ and @’ € ¢(Z), then there exist such x € R and
a € Z, that ¢(z) = 2’ and ¢(a) = a’. As z € R and a € Z, then az € Z,
therefore

d'z’ = ¢(a)g(x) = ¢(azx) € $(I).
(ii) Notice that ¢ : T — R’ is a ring homomorphism, then according to
the theorem of homomorphism ¢(Z) is a ring. B

1.35. Lemma. If ¢ : R — R is a ring epimorphism and I’ is ideal
of ring R', then there exists such T ideal of ring R, that ¢(Z) = T'.

O (i) Let’s define
IT={ze€G|3 €T ¢(z)=2"}.
(ii) Let e € Z un b € Z, then

¢pla+b) = ¢a)+o(b) €T,
¢(ab) = la)g(b) € T
Thus a + b and ab belong to set Z.
(ili) Let 7 € R, then ¢(ra) = ¢(r)¢(a) € ', because I’ is a ideal of
ring R'. Hence ra € Z. &

Let us consider groups. A subgroup, as usual, is denoted by <, and a
normal subgroup is denoted by <.

1.36. Lemma. Let N < G. If K < G/N, then there exists such
H <G, that K = H/N.

O From the definition of K:
K ={hN|hN € K A\ h € G}.

Let’s define H = {h|hN € # AN h € G}. Thus h € H & hN € 7. If
n € N, then nN = N € K, because N is the unit element of group G/N.
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(i) Assume that g € H and h € H. As K < G/N, then
ghN = (gN)(hN) € K.

Hence gh € H.

(i) As hN € K, then h™'N = (hN)™' € K. Thus accordingly to
definition of H we have h™' € H. Thus H < G.

(iii) Notice

H/N={hN|he Hy={hN|AN€ K} =K. ®

1.37. Theorem (Correspondence theorem). Let N < G.
(i) If N C H 9 G, then H/N < G/N.
(ii) If K < G/N, then there exist such H < G, that K = H/N.
(iii) Let

o S={H|NCHAH<G},

e ¥={K|K JdG/N}.
If$: S —G/N:Hw— H/N, then ¢ : S — & is a bijection.

O (i) Let gN € G/N un hN € H/N, then

(gN)(hN)(gN) ™" = (ghN)(g~'N) = ghg™ ' N.

As H < G, then ghg™' € H. Hence ghg”'N € H/N. Thus for each
gN € G/N and any hN € H/N we have proven

(9N)(RN)(gN)~" € H/N.

Thus by definition H/N < G/N.

(ii) There exists (1.36. Lemma) such H < G, that K = H/N. We
need to prove that H < G and thus H/N < G/N.

Let g € G and h € H, then gN and g~ ' N belong to group G/N. In
turn, hN belongs to group H/N. As H/N < G/N, then

ghg™'N = (gN)(hN)(gN)"*N € H/N.

Hence ghg™* € H. Thus for each ¢ € G and any h € H we have proven,
that ghg™! € H. Then according to the definition H < G.

(iii) From (ii) for each element K of set . there exists such H < G,
that K = H/N. Thus rangeof ¢ : S — G/N : H — H/N is Ran(¢) = .7,
and thus mapping ¢ : S — . is surjective (with . as a codomain).

Assume that ¢(H1) = ¢(Hz), i.e., Hi/N = Hz/N. Let hi € Hi,
then hiN € Hi/N = Hy/N. Hence hi € Hy. Thus Hy C Hs. We may
construct a symmetrical argument: hy € Ha, then hoN € Ho/N = Hi /N
and hse € Hy. Thus He C Hy. Thus Hy C Hy C Hy, i.e., HL = Ha. We
have proven that ¢ : S — . is an injection. B

The correspondence theorem holds also for rings. We will consider
commutative rings.

1.38. Theorem (Correspondence theorem for rings). Assume that

e R is a ring;

e 7 C R is an ideal;

13



e m: R— R/Z:rw |[r] is the natural mapping;
e S={G|Z C G and G is a subring of R};
e ¥ ={H|H ir a subring of ring R/T }.
Mapping ¢ : S — 7 : G — G/T is a bijction. If
e ' ={J|ZC J and J is an ideal of R},
e ' ={L|Lis an ideal of ring R/Z},
then mapping ¢ : 8" — %'+ T~ J/T is a bijection.

O (i) First we have to prove that mapping ¢ : S — &% : G — G/Z
is correctly defined,i.e., Ran(¢) C .. Assume that Z C G is a subring
of ringR. The image of the additive group of ring G (1.37. Theorem)
is G/Z.As T is an ideal, then G/Z is a ring. Thus we have proven that
Ran(¢) C .7

For different subrings of ring R additive groups are distinct. Thus
(1.37. Theorem) mapping ¢ is injective.

Let H be a subring of ring R/Z, then for H the additive group can
be expressed as (1.37. Theorem) H = A/Z, where A is a subgroup of the
additive group of ring R. Thusa € A< a+Z € A/Z. As H=A/T is
a subring, then (a +Z)(b+7Z) = ab+Z for all a € A, b € A. Therefore
ab € A, i.e., A is subring of ring G. According to the definition of ¢, we
have ¢(A) = A/Z. Thus mapping ¢ is surjective.

(ii) Let L be an ideal of ring R/Z, than the additive group of L can
be expressed (1.37. Theorem) as L = A/Z, where A is a subroup of the
additive group of ring R. Thusa € A< a+Z € A/Z. As L =A/T is an
ideal, then ra+Z = (r+Z)(a+Z) € A/Z for all r € R, a € A. Therefore
ra € A, i.e., A is an ideal of ring G. According to the definition 1 we
have ¥(A) = A/Z. Hence mapping v is surjective.

Let J be an ideal of ring R and Z C J. If we consider the additive
group of J, then (1.37. Theorem) mapping ¢ : J +— J/Z is injective.

We must prove that J/Z is an ideal. From the definition of J/Z
fallows, that a € J < a+Z € J/Z. If r € R, then ar € J, thus

(a+D)(r+I)=ar+Z e J/I.
Therefore J/Z is ideal of ring R/Z. Hence mapping v is also injective. B
1.39. Corollary. Assume that
e R is a ring;
e 7 C R is an ideal;
e m: R— R/Z:rw [r] is the natural mapping;
S ={J|Z C J and J is an ideal of R};
e ' ={L|Lis an ideal of ring R/Z};
o Yp:5 - J—J/I.

J/T is a mazimal ideal of ring R/T if and only if J is a mazimal ideal
of ring R, and J contains ideal T.

14



O Notice that mapping ¥ is bijective.

= Assume that L is a maximal ideal if ring R/Z. We already know that
there exist an ideal J of ring R, Z C 7, that L = J/Z and ¥(J) = J/Z.
If in turn, J is not a maximal ideal, then there exists such ideal 9% of
ring R, that 7 € 9 C R. Thus if J C M, then J/Z C M/Z. As ¢
is bijective, then J/Z # 9M/Z. Thus J/I C M/Z, ei., J/I is not a
maximal ideal. A contradiction!

< Assume that J is a maximal ideal of ring R, Z C 7. If in turn, J /Z
is not a maximal ideal of ring R/Z, then there exists such ideal M of ring
R/Z, that /I € M C R/Z. As M is an ideal of ring R/Z, then there
exist such ideal M of ring R, Z C M, that M/Z = M. Thus J/Z C M/T.
Notice that

a+Je€J/IT & acJ,
b+ZeM/I < beM.

Hence J C 9. As ¢ is bijective, then J # 9. Thus J C 9. As
M/Z C R/Z, then thre exist such r € R, that r +Z ¢ MM /Z. Therefore
r & M. Thus J is not a maximal ideal. A contradiction! B

1.40. Definition. A ring with only one mazximal ideal is called a local
ring.

The commutative group of ring R is denoted as R*, i.e., it is the set of
all invertible elements in ring R.

1.41. Proposition. If M # R is an ideal of ring R and R* = R\IM,
then R is a local ring and O is the mazimal ideal.

O (i) Assume that Z C R is ideal of ring R and a € ZN R*. Then
a™' € R. As T is an ideal, then 1 = aa™* € Z.

(ii) Assume that € R and r1 € Z. Thus Z = R. Thus any ideal
J C R doesn’t contain elements of set R*.

(iii) As ideal 9 contain all the nonreversible (in ring R) elements of
set R, then J C 9. Thus 91 is the one maximal ideal. B

1.42. Proposition. If 9 is the maximal ideal of local ring R, then
M=~R\R".

O Assume that a ¢ R*.

(i) It is obvious that a € aR and aR is a commutative group. If r € R
and b € aR, then b = af, where € R and br = afr € aR. Hence aR is
an ideal.

As a ¢ R*, then in ring R dosnt exist a™ ', therefore 1 ¢ aR and
aR C R, i.e., aR is a proper ideal of ring R.

(ii) Let

S={Z|aR CZ C R, whereZ is an ideal of ring R}.

Let {Ja} be a chain of set S, i.e., if Jg € {Jo} and T, € {Jun}, then
Js C Jy or Jy C Tp.
If 7 = UJa, then J C R because 1 ¢ J.
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Let b € J and ¢ € J. Then there exist such 8 and ~, that b € J3 and
c € Jy. Wehave Jg C J, or J, C Js. For concreteness assume Jg C J+,
then b and c are elements of ideal J,. As Jy is an ideal, then b+ c € Jy
also 0 € J, and —b € J,. As J, is an ideal, then br € J, for all r € R.
Thus b + ¢, 0, —b, br belong to set J, because Jz C J. Additionally, the
sum is associative and commutative, while the multiplication is associative
(J C R). Thus J is an ideal. Thus J € S and is upper bound of chain
{Ja}. According to Zorn’s lemma, set S has at least one maximal element
M. Thus N is a maximal ideal andN # M, because a ¢ M and a € N. This
gives us a contradiction because R is a local ring. B

1.43. Lemma. In a local ring, there are only two idempotent ele-
ments: 0 and 1.

O Assume that 0 # e # 1 is idempotent. Then e(1 —¢e) = e —e? =0,
i.e., both elements are zero divisors, thus e ¢ R* and 1 —e ¢ R*. Thus
both elements belong to the maximal ideal, but 1 = e+ (1 —e), ie., 1
belongs to the maximal ideal. A contradiction! B

1.44. Lemma. If e € R is idempotent, then eR is a ring with unit
element e.

O From (proof of 1.42. Proposition) eR is an ideal. Let’s show that e
is the unit element. Assume that x € eR, then x = er, where r € R.

2
re=er=er=er==«wx. ]

1.45. Theorem. Finite ring R is isomorph to the direct sum of local
rings (with precision to term order in the sum).

O Let Spec(R) = {P1,P2,...,P,}. As R is a finite ring, P; is a
maximal ideal (1.27. Corollary). Thus Spec(R) = Specm(R), because
each maximal ideal is also a prime ideal (1.20. Corollary). Hence

Ni(R)= () P= (] P=JR),

PeSpec(R) PecSpecm(R)

Additionaly, if k # s, then ideals Py and P, are coprime (1.28. Propo-
sition). Thus (1.7. Proposition)

ﬂ P, = H P,.
k=1 k=1

Also there (1.33. Lemma) exists such m, that J(R)™ = 0.

Ifz € H?=1 P[", then ¢ = Y, Tr1Tk2 ... Trn, where all zx; € P,
Each zp; = ZZ Yikj1Yikj2 - - - Yikjm, Where all yinj, € Pj. As a result, z is
representable as a sum, whose terms are a product of nm elements. By
taking into account the commutativity of multiplication, elements can be
rearranged so that in product term first m elements belong to set P, then
in turn m elements belonging to set P> m, etc., until the last m elements
belonging to set P,. Thus



Note (1.8. Proposition), that P;™, P;™ ere coprime if i # j, therefore (1.7.
Proposition) (_, ;" =[[j_, P;"-
Let’s define a homeomorphism of rings

®:R— R/P" x R/PY* x - x R/PT i v ([r]1, [, - -, [F]n)

Homeomorphism & is injective (1.10. Proposition), because

n

Arr=I1r"=q1r)" =7®" =0,
j=1 j=1 j=1
Additionally ® is surjective (1.12. Proposition), because P/, P;" are
coprime, if 4 # j. Thus @ is an isomorphism.
(i) We have a natural mapping

b, :R— R/P™ v+ [r];.

Thus (1.38. Theorem) each ideal P (of ring R) containing P/ is mapped
to ideal of ring R/P/™. Additionally mapping ¢ : P — P/P/™ is bijective.

(ii) From (1.8. Proposition) we have: if k # [, then P;", P/" are
coprime, because Py, P, are coprime. Thus P;* + P/ = R. Assume that
P* C P,then R=P"+P" C P+P" C P+ P, = P,. A contradiction!

Hence Py is the one maximal ideal, containing P;*. Thus from (1.39.
Corollary): P./P[" is the one maximal ideal of ring R/P}*. Thus R/P}"
is a local ring.

(iii) Assume that R = @]_, R; = P, , Sk, where all I;, Sy are local
rings. From (1.15. Proposition) there exist such orthogonal idempotents
e; € R, fr € R, that R; 2 ¢;R, S, = frR and

1= Zej = Z fr-
j=1 k=1
Hence

e = ;> fr=> eifr €e;R,
k=1 k=1
(eifi)* = €fi=¢eifu
If s # k, then (e fi)(e;fs) = €5 fufs = e; -0 =0. Thus
ejfi,eifz, .. €jfm
are orthogonal idempotents of ring e; R. As e;R is a local ring, then
e;jfkr =0, val ejfr=e;.

Note that (1.44. Lemma) e; is unit element of ring e;R. As all these
idempotents e; f1,€; fa, ..., e; fm are orthogonal, then only one of them is
not equal to 0 (all can’t be equal to 0, because e; = Y ;- €;fx). Hence
there exists such k, that e; = e;fc = fee; € fuR. As in the local ring
fxR, exists only 2 idempotents, then e; = f.. Thus

{e1,e2,...,en} T{f1, for--s fm}-

17



Similarly, we can make an argument for

{f13f23~~~,fm} - {61,62,...,6n},

Hence n = m and

{61,62,...,(3”} = {fl7f27-~~7fn}~ ||

2. Periodical rings

We are following [5] in this section.
Assume X ¢ R. We identify set R” with R[[X]], i.e., by using standart
notation

oo
k
aoa1a2~~-an---'—>ZakX .
k=0

o0
If f = 3 ar X", then we use notation for coeficient extraction f(n) = an.
k=0

2.1. Definition. Algebra (R[[X]],+,) is called formal power series
if

Sar X+ X" = ) (ax + k)X,
k=0 k=0 k=0

We use ”formal power series” (or simply ”series”) also when referring
to a concrete f € R[[X]].

2.2. Proposition. Series f = 3 ap X" are invertible in algebra R[[X]]
k=0

if and only if ap € R*.

This is a standard result found in textbooks dedicated to formal power
series. If series A = ao + a1 X + ... has a multiplicative inverse B =
bo + b1 X + ..., then the constant term aobo of A - B is the constant term
of the identity series, i.e., it is 1. The condition of invertibility of ag in R
is also sufficient, coefficients of the inverse series B can be computed as:

n
—1 —1
bo=ay"; bn = —ay E aibp—1, n > 1.
i=1

Polynomial ring R[X] is a subring of ring R[[X]].

2.3. Definition. Series f € R[[X]] is called rational series, if f = %,
where h,g € R[X] and g is invertible in ring R[[X]].

2.4. Definition. Series f = a; X" is called periodical series if

i=0
there exists such
k€Z+ :{1,2,...,71,...},
that Vi a; = aitk. Series f is called semiperiodic series, if there exist such
n € Zy, that series > aj+nX? is periodical.
7=0
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2.5. Proposition. If series f € R[[X]] is semiperiodic series, then
series f is rational series.

e}
oI f=> ax X", then there exist such m and n, that Vi > m a; =
k=0

ai+n. Hence

f = a+aX+.. . +anX"
+ Z(am+1Xm+1 + am+2Xm+2 +...+ am+nXm+n)Xin
1=0
— p(X) +q(x) Y X
i=0
q(X)
p(X)+ 1+
Here
p(X) = atuX+...+anX",
Q(X) = am+1Xm+1 + am+2Xm+2 +...+ am+nXm+n, ]

2.6. Definition. Ring R is called a periodic ring, if
Va€e RIme€ZyIneZy (m#n A o™ =a").

2.7. Definition. n € N is called characteristic of ring R, denoted by
char(R), if Zn is the kernel of homomorphism

AN:Z— R:k— kl.

2.8. Corollary. If R is a periodical ring, then char(R) # 0.

O Let e be the unit element of periodic ring R. If e # 0 and e+ e = 0,
then char(R) = 2. Assume that e # 0 # e+e, then there exist such m > 0
and n > 0, that (e + €)™ = (e +¢e)™*™. Thus (e +¢e)™™" — (e +¢)" =0,

)
()20

Here ke = e+ e+ - -- 4+ e. Note that 2e is not idempotent. If the contrary
| ———
k
is true, then e +e = (e +e)? = e* +2e+e? = e+ 2e+e. Hence e +e = 0.
|

0 = (e+te™™" —(ete)

m—+n m+n
()

HM: l‘;

2.9. Proposition. If char(R) = m # 0, then there exist such subring
G of ring R, that G is isomorph to ring Zm
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O Let’s define set G = {ke |k € N}, here e is the unit element of ring
R. If

E4+n = mg+r, 0<r <m
kn = mg2+r2, 0<r2<m,
then
(k+n)e = (mq +ri)e=qi(me)+rie=rie,
kne = (mge+r2)e = ga(me) + r2e = rae.
In Z,, we have
k+n = r modm,

kn = 7o mod m.
Hence mapping f : G — Zy, : ke — k is an isomorphism of rings. Bl

We will use 1 instead of e, unless it may cause misunderstandings.

2.10. Definition. Consider a commutative ring with unity R. Fax-
tension G of R is called an integral extension, if for each ¢ € G, there
exists such monic polynomial p(X) € R[X], that p(c) = 0.

2.11. Proposition. A periodic ring is an integral extension of Zm
(up to isomorphism).

O Assume that R is periodical and a € R. From (2.8. corollary) and
(2.9. Proposition) there exist such m, that R contains a subring isomorph

to ring Z.,. As R is periodic, then there exists such 0 < k£ < n, that

a® = a™. Thus a is the root of the monic polynomial X™ — X" % m

2.12. Lemma. IfZ C J are ideal of ring R, then mapping
f:R/IIT—-R/T: z+T—z+J
is an epimorphism of rings.
O (i) Let’s show that mapping f is defined correctly. Assume that
r+Z = y+Z, then —y € Z and therefore x—y € J. Hence x+J = y+J.
(ii) Let’s introduce notation:
[zlz = 2+7T,
[zl = =+J,

then
fle+ylz = [z+yls = [z]ls + yls = flzlz + flylz,
flzylz = [zyls = [zlslylo = flz]zflylz,
fllz = []7.

Thus f is a homomorphism of rings.
(iii) Assume that [z]7 € R/J, then

[zlg =2+ T 22 +71=[7]z.

Thus f[z]z = [z]g, e.d, [ is surjective. B
Let’s denote principal ideal g(X)R[X] as (g(X)).
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2.13. Lemma. If R is a finite commutative local ring and
g(X)=1+a X +a X+ +a X" € RIX],

then | R[X]/(g(X))] < oc.
O (i) Assume that 9 is maximal ideal of ring R, a; € R*, but

X
At41,0¢t42,...,0k ¢ R 5

thus (1.42. Proposition) a¢+1, at+2,...,ar € M.

(ii) Maximal ideal 9 of ring R is prime (1.20. Corollary). If 7 is a
prime ideal of finite ring R, then it is maximal (1.27. Corollary). In the
given case, this means we have only one prime ideal, e.i., 9. As R is
commutative ring, then (1.32. Proposition)

Nil(R)= (] T
ZeSpec(R)
Here

e Nil(R) is a nilradical, e.i., a set consisting of all nilpotent elements
of R;

e Spec(R) is a spectrum of ring R spektrs, e.i., set of all prime ideals.

In this case Nil(R) = 9. Thus (1.33. Lemma) there exist such [, that
(Nil(R))" = 9" = 0. Note that R here is a finite ring.

(iii) Let g1(X) = (1+a1 X +aaX?+- - -4+a,X*)". For any commutative
ring holds

If
e o isgivenas 1+ a1 X FasX?+--- +atXt,
e 3 is given as — Zf:t-u a; X,
then o — 8 = g(X) and thus g(X) divides polynomial

k
1+aX tasX? 4 —|—atXt)l — (- Z aiXi)l.
i=t+1

As M = 0, then all coeficient of polynomial (— Zf: aq @i X 9! are equal

to 0, because a¢41,at+2,...,ar € M. Hence
k .
n(X)=0+aX+aX + - +aX) - (- > aX’).
i=t+1

(iv) Lets rewrite g1(X) as 1 + 61X + --- + b, X*. Here u = tl and
b, = ay € R*. Hence |R[X]/{(91(X))| = |R|" < co. Note that

RIX]/g1(X) = A[r(X)][h(X) € R[X]
A h(X) = f(X)g1(X) +r(X)
A deg(r(X)) < deg(g1(X)) = u}
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(v) If @ = be, then aR C bR. Thus if x € aR, then x = ar, where
r € R and x = ar = ber € bR.
As g(X) divides ¢1(X), then (g1(X)) = g1(X)R[X] C g(X)R[X] =
(9(X)). From (2.12. Lemma) mapping
[ RIX]/(g1(X)) = R[X]/{(9(X)) : p(X) + (91(X)) = p(X) + (9(X))

is surjective. Thus [R[X]/(g1(X))| = [R[X]/(g(X))|, e, [R]" = |R[X]/{g(X))I.
|

Let R and G be rings and ¢ : R — G™ be a ring isomorphism. Let
a; = (CL“, @iy ..y am), where

ai, if i=7;
Qij = oo .
0, if i#j.
Thus (a1,a2,...,an) = @1+ a2 + -+ + @n. As @ is an isomorphism, then

@ ' : G™ — R also is an isomorphism. Hence

@_1(a1,a2,...,an) = 90_1(&14—542-1—"--&-@”)
= ¢ @)+ @)+ + e (@)

Let e; = (e“,eig, .. .,em), where
1, if i=y;
€ij = AP .
0, if i#j.
Thus (1,1,...,1) =& + & + -+ + &,. Hence

1 = o', D)=¢p e +e+--+&)
= ¢ (@) +e @)+t ()

2.14. Lemma. If¢: R — S is a homomorphism of rings, then
¢ ¢ RIX] = S[X]: X’ 3 ofa) X’
i=0 i=0

is a homomorphism of rings.

o ¢(Z(ai+bi)X") = Z¢(ai+bi)xi=Z(¢(ai)+¢(bi))xi
= > ¢la)X'+ Z¢(bz)Xl
= 6> aX)+6>_biX")
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1=0 k=0 s=0
m+n k
= qu)(ZaSbk,s)Xk
on b
= > > dlas)(br-s)X
= Q:MMXﬁéjdeﬂ
= S ax)e(dbX). =

Thus we have proven:
* o(p+q) = o(p) + ¢(q),

* 9(pq) = #(p)#(q)
for all p,q € R[X].

2.15. Corollary. (i) If ¢ : R — S is a ring epimorphism, then

¢:RIX] = S[X]:> " a: X — >0 é(ai) X" is a ring epimorphism.
(i) If¢p: R— Sisa ring monomorphism, then

¢:RIX] = S[X]: Y aiX = Y7 plai)X* is a ring monomorphism.
(iii) Ifp: R— S is a ring isomorphism, then

¢ RIX] = S[X]: Y aiX = > plai)X* is a ring isomorphism.

O (i) Let >y a; X" € S[X]. As ¢ : R — S is an epimorphism, then
exist such ai,az,...,am € R, that Vi ¢(a;) = a;. Hence ¢p(3 1w, a:X') =
Z;r;o Ch;XZ.

(ii) Let > ja; X" # > b: X", Thus there exists such k, that a #
be. Hence > 0 dplaqi) X* # 3 (b)) X"

(iii) Follows as a consequence of (i) and (ii). W

2.16. Lemma. If¢: R — S is a ring isomorphism, then

m m

RIX]/(QaiX") = S[X]/(Y ¢lai)X7).

1=0 1=0

OLet Y7 b X' =g >.1 ,ciX’, ie.., they represent the same element
of set R[X]/(3°i",aiX"). There is a possibility of polynomials " b; X"
and Y. ¢; X" to have different orders, then some of the coefficients are
equal to 0.

Let’s denote polynomials in consideration as: f = > a; X, o(f) =

P= Do, b Xt g= S Xt
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Then

P =r ¢
p—q =r O,
IreRX]fr = p-—gq,
o(r)o(f) =o(rf) = ép—aq) =9l — ¢,
o(p) —d(e) =s 0O,
o(p) =s ¢(a)

As mapping ¢ : R — S is an isomorpism, then p =r q¢ < ¢(p) =s ¢(q).
Hence mapping ¢ : R[X]/f — S[X]/¢(f) : [plr — [¢(p)]s is bijectivre.
Here

[plr = {99 =r p}, [p(p)]s = {h|h=s ¢(p)}-
o([plrlalr) = é(lpalr) = [6(pa)ls = [P(p)d(q)]s
= [o)]slo(a)]s = ([plr)o([d]r),
o(plr+1dr) = o(p+dr) =I[¢(0+ s = [6(p) + d(q)ls
= [o)]s + [¢(a)]s = o([pr) + &([a]r).

Thus ¢ is an isomorphism. H

2.17. Lemma. If¢: R— Gi1xGa2X---XGy is a ring homomorphism,
then for all
¢i : R— Gi 11— pr;(¢(r))

is a ring homomorphism. Here pr;(ri,72,...,Tn) = 7.
O Let ¢(x) = (z1,22,...,2n) and ¢(y) = (y1,Y2,...,Yn), then
pi(x+y) = prié(z+y)) =pri(o(z) + o) =z + v
= ¢i(z) + di(y);
gi(zy) = pri(é(ey)) = pr(d(z)o(y)) = wivi
= ¢i(z)gi(y). W

2.18. Proposition. I_fd) :R— G1 X Gax -+ X Gy is a ring isomor-
phism and f = 7" a; X7 € R[X], then

RIX]/(f) = GiX]/{01(f)) x Ga[X]/(@2(f)) > - X Gu[X]/(dn(f))-

Here  ¢i(f) = X7, pri(6(az)) X7
O (i) Mapping ¢; : R — G; : v+~ pr;(¢(r)) is ring homomorphism
(2.17. Lemma). As ¢ is an isomorphism, then ¢; is an epimorphism. Thus
(2.15. Corollary)
¢i : RIX] — Gi[X] : p = ¢i(p)

is an epimorphism.
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Assume that »°7_, b; X7 =g >0 ¢; X7 i.e,, they represent the same
element from set R[X]/ (37" a; X 7). Let’s denote polynomials in consid-
eration as: p = Y7_1b;X’, ¢ = >7_,¢;X’. Then

p =rR q,
p—q =r O,
Ire RX] fr = p—gq,
di(r)di(f) = ¢i(rf) = ¢ilp—q) = ¢i(p) — ¢i(q),

#i(p) — #i(q) =a, O,
¢i(p) =c, ¢ilg).

This shows that mappings

i« RIX]/(f) = GilX]/(¢:(£)) « [p]r = [9:(P)]a,

are defined correctly. Here

[Plr = {919 =r p}, [¢i(p)lc; = {h|h=c, ¢i(p)}

di([plrldlr) = @i([palr) = [pi(p)lc, = [bi(p)di(a)]a:
[9i(D)]c;[0i(D]e; = ¢i([pIr)¢i([d]r),

di(lplr +ldr) = dillp+dlr) = [¢i(p + @)la; = [¢i(p) + ¢i(@)]a,
= [piD)]e; +[¢i(@)]e; = ¢i([plr) + di(a]r)-

Hence q@l is a homomorphism. Thus

¢+ [plr = (¢1([p]r), 92([plR), - -, $u([p]R))

is a homomorphism.
(ii) Let p; € G;[X] and k = max deg(p;). Thus

pi(X) = iainj € Gi[X].
3=0
As ¢ is bijective, then there exist such 7, s € 1, k, that
d(rs) = (a1s, G2s, - - -, Ans)-
Lets choose p(X) = Z?:o r;X7. Thus mapping
@1 RIX] = Gi[X] X Ga[X] x -+ X Gu[X]: p = (91(p), 2(P), - -, Pn(P))

is surjective. As deg(¢i(p)) = deg(p), then only case, when ® is not
injective, might arise when p # ¢, but deg(p) = deg(q). Let ¢(X) =
Z?:o p; X7, r # pie and @(px) = (b1,b2,...,bn). In expanded expres-
sion:

(041%70,2%,. . .7CLn;¢) = ¢(T74) 7é ¢(p”) = (b17b27 e 7bn)'
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Thus there exist such v, that a,,. # b,.

k k
¢V(p) = Z¢V(Tj)xj = Zaquj = ZanXj +a,,. X”.
j=0 j=0 j#x
k
oula) = D du(p) X’ =D du(p) X + bu(p) X~
3=0 J#x
= D oulp) X’ + b, X",
JF#x

Thus ¢, (p) # év(q), i.e., @ is injective. From all the above, we conclude
that ® is bijective.
(iii) Let
([pl]G17 [pQ]Gm EEEE [p’ﬂ]Gn) €
G1[X]/(91(f)) X G2[X]/{(P2(f)) x -+ x Gn[X]/(Sn([)-

Thus [p;] € Gi[X] and p; € Gi[X]. As ® is bijective, then exist such
p € R[X], that ®(p) = (p1,p2,...,pn), e,

p1 = ¢1(p),p2 = ¢2(p), .- -, Pn = Pn(p)-

Hence [pi)c;, = [¢:(p)]c,. From the definition of ¢;, we have ¢; : [p|r
[¢i(p)]c; and

¢:[plr = (o1([Plr), $2([p]R); - -, dn([P]R))
= ([pl]G17[pQ]G27"'7[pn]Gn)'

Hence gz_Siis surjective. ~ ~

Let ¢([p|r) = ¢([0]r), then Vi ¢i([plr) = ¢:([0]r), t-i., [di(p)le; =
[¢:(0)]c, = [0]g,. Thus there exist such r; € G;[X], that ¢;(p) = ri¢:(f).
As

O : R[X] — G1[X] X G2[X] x -+ x Gn[X]

is bijective, then exists p € R[X], that ®(p) = (r1,72,...,7n). On the
other hand ®(p) = (¢1(p), $2(p), ..., Pn(p)). Thus r; = ¢i(p), therefore
di(p) =ridi(f) = ¢i(p)¢i(f) = di(pf). Hence

(I?’(p) = (¢1(p)7¢2(p)7 .- >¢'ﬂ(p)) = (¢1(pf)7¢2(pf)7 .. 7¢n(pf)) = CI)(pf),

Mapping ® is bijective, therefore p = pf, t.i., [p]r = [0]r. Thus the kernel
of homomorphism ¢ is trivial, hence ¢ is a monomorphism.
From all the above we conclude:

¢+ RIX]/(f) = G1[X]/{61(f)) x G2[X]/(¢2(f)) % -+ x Gu[X]/{on(f))
is an isomorphism. Wl

2.19. Lemma. Let g(X) = 14+ a1 X + a2 X? +--- +a, X" € R[X].
If R is integral extension of ring Zpm = Ly, then there exist such n, that
g(X) divides X™ — 1.
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O (i) Let @ = aaf'a3?...a;*,8 = baj'as?...a;*, where a,b € Zn,

then a + 8 = (a + b)aj’as?...a,* and a +b € Z,. Let denote by

Zm(ai,az2,...,a) the smallest extension of ring Z,,, containing all el-
ements a1, az,...,a,. Thus Z,(a1,az2,...,ar) consists of sums:
E azaytal? .. .agk,
2EZy,
where az € Z,, and > = (501, 72, ..., ). There all > are distinct.
(ii) As Zm(a1,az2,...,ak) is an integral extension, then for each a;

there exists such monic polinomial
Pi(X) = X" 4 bim, 1 X 4+ b X7 + b X + bio,

that p;(a;) = 0. Hence

m; m;—1 2
a; ' = —bim;—1a; * — - —bipa; — bina; — bio.
Thus each element of ring Z,,, (a1, az,...,ax) is representable as a sum
s 2 X,
g axaitay’® . .oagk,
ZEZm
where all 3z = (51, 52, ..., ) are distinct and all 5¢; < m;. Then count of
such sums is finite, because ring Z,, is finite. Thus ring Z,, (a1, az, ..., ax)

is finite.
(iii) As S = Zm(a1,az,...,ar) is a finite ring, then (1.45. Theorem)

S =S5 xSy X XS,
where all S; are finite commutative rings. Thus (2.18. Proposition)
S[X]/{g) = S1[X]/(61(9)) x S2[X]/(¢2(9)) x --- x Se[X]/{be(9))-
Here
¢ : S[X]/(g) = S1[X]/{é1(9)) x S2[X]/{2(g)) x -+ x Si[X]/(¢:(9))
is an isomorphism, where
¢:S—>Sl><5’2><~~~><.5‘t

is an isomorphism, ¢;(g) = 25:0 pr;(¢(a;)) X7 and ap = 1. Thus

k
Bulg) = Ls, + 3 pri(0(a;) X",

(2.13. Lemma) S;[X]/{¢i(g)) is a finite set, thus S[X]/(g) is a finite
ring. Therefore all classes [1],[X], [X?],[X?],...,[X"],... can’t be dis-
tinct. Thus there exist such v > 0 and n > 0, that [X”] = [X"*"] or
[XV(X™ —1)] = [0]. Thus thre exist such ¢(X) € S[X], that ¢(X)q(X) =
X"(X™ —1). As g(0) =1, then ¢(X) = X"r(X). Hence X"g(X)r(X) =
XY(X™—1). It is possible only if g(X)r(X)=X"—-1. 1
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2.20. Proposition. If integral extension [ of Zm, = Zy, is a rational
series, then f is semiperiodic.

O Let R be extension of ring Z,,, f(X) = Zgg and g(X) = 35 _, an X",
then g(X) = ao(1+ Y y_, ag 'axX"). Thus (2.19. Lemma) exists such n,
that X™ — 1 = ay ' gr, where r € R[X]. Hence

h  h(X"-1)  ay'h X"—-1_  ag'h ag'gr

f = Ezg(X"—l)_Xn_l aa1g _Xn_l ao—lg
—1 o0
ag  hr _ n
= X(:l 1= —aolhrZXk
k=0
Assume that —ag'hr = 327 b, X”, then f = >0 _ 0. X*> 2 Xk
If n =1, then

NS T
»x=0 k=0
= (bo+0X +bX 40, XVA+X+X>+... +X74+..)

bo + (bo + b1)X + (bo + b1 +b2) X + ...+ (bo + b1 + ...+ bs) X7
4+ (bodbi+. b)) X (o b b)) X

o—1 k ) o
= ()t () x
k=0 =0 n=0 =0

If ¢ < n, then

fo= D Xy XM
=0 k=0
= (bo+biX +baX? . 40X )1 +X"+ X"+ + X" 4. )
= bo+ b X +bX>+.. . +b,X°
boX™ 4+ b1 X" b X2 4 4 X"
bo X2 + by X2 4 b X2 b X

k=0 =0

+ +

Ifo=n+7un0<7<n,then

o0

f = ib%X”ZX’“"
=0

k=0
(bo4+ 01X +b2 X% 4 by 1 X" b, X"+ 4 by X"

x (QI+X"+X" 4. 4 X" )

= bo+biX+bX*+... b, X"}

+ (bo 4+ b)) X" 4 (b1 + b)) X 4 (b F b)) X

+ b XM b o XY b, X

+ (bo+ b)) X" 4 (b1 + by )X b (b F by ) X
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+ b X L X L b, X
n—1 ) T n—1

_ Z b X + Z(Z(bi + an)anﬂ' + Z bian-H)
k=0 k=1 =0 i=7+1

Ifo=mn+7un 0 <7 <n, then

f = Zb,,X”ZXk“
=0 k=0

(bo+b1X +b2X? o+ bu 1 X" 4 b X" A by X

(I+X"+ X"+ X"+

bo+b1 X +ba X2+ .. by X"

+ (b0 +ba) X" 4 (b + b)) X" (bt b2) X 4
(b0 + br + b2 - - + b 1)n) XTI

+ (b1 +but1 +bons1 +.. + b(mfl)n+1)X(m_1)”+1 Lo

+  (bn—1+b2n—1+b3p_1+...+ bmn—l)Xm”71

+ (bo+bat . F b)) X+ (b1 + byt F oo A ) X 4
+(br +bngr + oA b ) X

+ (st bt o D) X

m—1n—1 k

= 20 2 (X beran )X
k=0 i=0 j=0
T m

P Obi+jn)xkn+f+_’§ (3 b)) m

m =0 j= i=7+4+1 j=0

X

kS
Il

2.21. Corollary. FEach formal power series of a periodic ring is semiperi-
odic.

O Periodic ring is integral extension of ring Z.,, (2.11. Proposition),
up to isomorphism. The result follows from (2.20. Proposition). B

2.22. Example. f(X) = %, where polinomials are elements
of ring Zs[X].

X?24+2X -1 (XP+2X-1)(X?-1)
X+ X+1  (XP+X+D)(X3-1)
(X2 42X —1)(X —1)
X3 -1
= —(1-3X+X’+XH1+X+X°+Xx%+..)

f(X)

Let’s consider the general expression: ¢ =n =3 and 7 = 0.

f(X) = (bo+biX+bX+b: X1+ X+ X0+ X 4..)

bo+ 01X + b2 X7 4+ ((bo +ba) X*F 4 by X 4 by X )
k=1
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In our case:
f(X) = —1+3X—X2+Z((_1_ 1)X3k+3X3k+1 _X3k+2)
k=1
= —1+4+3X-Xx? +Z(,2X3k 43X xk2)

k=1

3. Mealy machines

We will consider mappings

plfl 0 g(X) = f(X)g9(X),
alf] = g(X) = f(X)+g(X),

where f(X) and g(X) are elements of ring R[[X]].
We recall some facts from [6]. Details see in [2], [3] and [4].

3.1. Proposition.

e «[f] is a bijection;

o if f is invertible in ring R[[z]], then p[f] is bijective;

o if f is invertible in ring R[[x]], then (u[f])~" = u[f~;

o if f is invertible in ring R[[x]], then u[f']a[hlu[f] = a[fh]
3.2. Definition. Mapping

o(f) =Y arn X"
k=0

is called a shift. Here f(X) = Y arX".
k=0
3.3. Corollary.
f=ao+a(f)X;
(1—-aX)™ ' = io: a"X*;
k=0

if f = ﬁ then o(f) = af;
e if f is invertible in ring R[[z]], then p[f~|a[hlulf] = o[fh)]

3.4. Definition. Let ¢ : AY — B* is w—determined function. Func-

tion ¢ defines set
Qc ={Culue A"},

where Cy is restriction of function (. If set Qy is finite, then ¢ is called a
finitely determined function.

1
3.5. Theorem. If f = =%’ then p[f] is finitely determined func-
tion, whose restriction set Qy = {u[f] o as]|s € R}.
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Let f = ﬁ Define My = (Qy, R, 0, *):

e with set Q5 = {a[s]u[f]|s € R} of states and
e alphabet R,
* QxR Q:alslu[f]or = als +r]ulf],
e Qx A" A:alslu[flxr=s+r.
If R is Galois field GF(2), then we obtain the Lamplighter group. Here
ofOlulf] =q,  alJulfl—p
and I'(Mz) = (q,p) = (a[0]u[f], a[1]u[f]).
M My!
1/0 0/1

0/0
o B 0" DR

1/1 1/1

1. Figure: Mealy machine generating the Lamplighter group.

Problem. Witch groups are generated by the rational series of com-

mutative rings?

Here are some intuitive considerations as to why this might be inter-

esting.

e Are all groups defined by rational formal power series of finite com-
mutative rings infinite?

e If there still are finite groups defined by rational formal power series
of finite commutative rings, then a question arises: is the finiteness
problem algorithmically decidable?

3.6. Example. What kind of group is determined by polynomial f(X) =

1+ X+ X%2
Let g(X) =so+ 51X + $o X2+ ... = Y oreo sk X", then

ga[r]ulf] (r+so+ > sk X ) ulf] = (r+50) f(X) + F(X)D_ sp X"
k=1

k=1
(r+s0) + (1 + 50)X + (1 + 50) X

+ I+ X +X) (51X + 52X +53X° + 84X +--0)

= (r+s0)+ (r+50)X+(r+s0)X?>

+ 51X+ (s1+82) X7

+ (s1+82+83)X° + (s24+ 83+ 84) X" + (53 + 55+ 85) X"+
= (r+s0)+(r+so+s1)X+(r+so+s+s2)X°

+ (s1+82+83)X° + (s24+ 83+ 84) X"+ (53 + 54+ 85) X"+
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3

gulf] s0+ (so + s1)X 4 (so + 51+ 52)X° + (51 + 52 + 53) X

s0+ (50 + 81)X + > (s + skt1 + sx42) X2,
k=0

Hence

guelf] = r+so+ (r+so0+51)X + (s0+s1+52) X+ (51 + 52+ 83) X+

r+so+ (r+so+s1)X + Z(Sk + Sk41 + 5k+2)Xk+27
k=0

gur2 [ f]

= 2r+so+(r+so+s1)X+ Z(Sk + Sp41 + 3k+2)Xk+2,
k=0

gttrs [ f]

= 2r+so+(r+so+s1)X+ Z(Sk + Sgy1 + 3k+2)Xk+2,

k=0
girn [f] =2r + s0+ (r+ so + s1)X + Z(Sk + Sk41 + 5k+2)Xk+2~
k=0

Glirr|f] = T14 719450+ (T2 4 504+ 51)X + (so + s1 + s2) X7 4 - -
X

= ri+ra+so+(ra+so+s)X + Z(Sk + Sk+1 + sk+2)Xk+2,
k=0

Glrirars[f] = T2 +13+ 50+ (r3 4+ so+51)X + (s0+ 51 +52) X7+

= ro+7r3+s0+(rs+so+s1)X+ Z(Sk + Sk4+1 + 3k+2)Xk+27
k=0

GHry-rp_1rn [f] = Tp—1+7Tn+ S0+ (Tn + so + Sl)X + (So + 51+ 82)X2 + -
Tr—1+Tn + S0+ (rn + so + s1) X

oo

+ Z(Sk + Sk+1 + 3k+2)Xk+2,

k=0

Lets introduce notation pu = py[f] for each u € R*.
What happens if R = GF(2)?
from the above, it follows that:

© = p0 = puol - so+ (so +s1)X
pl = p0l = pull - 14+s0o+(14+s0+s1)X
110 = pul0 - 14 s0+(so+s1)X
ull = pull - so+ (14 s0+s1)X

What happens if R = GF(4)?
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1/1
M,y
oo { 1) (1)

o1 1/0

QIlD QIIQI' 11

0/0

2. Figure: Machine defined by 1 + X + X? in field GF(2).

| addition z +y | multiplication zy |
o [0 [a[P0]1[a] © ]

0 O|1]al|bl|lO]0O]O0 0

1 110|b|la|l0]1]a b

a a|lb|O|[1]|0]a|b 1

b bla|1]|0fO0|b]|1 a
w = p0 = puo0 --3 so+ (so+s1)X
ul = p0l = puol -3 1+so+(14+s0+s1)X
pa = pla = pula - a+so+ (a+s0+s1)X
b = p0b = pulb - b+ so+ (b+so+s1)X
w10 = pul0 -3 14504 (so+s1)X
ull = pull - S0+ (1+so+s1)X
pla = pula -5 b+ so+ (a+so+s1)X
nlb = pulb -3 a+so+ (b+so+s1)X
pal = pual - a+so+ (so+s1)X
pal = pual - b+so+ (14 s0+s1)X
paa = puaa - so+ (a+s0+s1)X
pab = puab - 1+so+ (b+so+s1)X
1b0 = pub0 --3 b+ so+ (so+s1)X
ubl = publ - a+so+ (14 so+s1)X
pba = puba - 1450+ (a+so+s1)X
ubb = pubb - so+ (b+so+s1)X
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o H I ‘ ul ‘ na ‘ ub ‘ ©10 ‘ pll

0 | w10 | pal | pbO I p10 | pal | pb0
1| pl | pll | pal | wbl | wl | pll | pal | wpbl
a || pa | pla | paa | pwba | pa | pla | paa | pba
b || ub m pab | pbb | pb | plb | pab | ubb
* B ul na pb | pl0 | pll | pla | pld
0 0 1 a b 1 0 b a
1 1 0 b a 0 1 a b
a a b 0 1 b a 1 0
b b a 1 0 a b 0 1
o H na0 [ pal [ naa [ pab [ ub0 [ ubl [ uba [ ubb
0 I ©#10 | pal | pb0 I 110 | paO | pbO
1 pl | pll | pal | pbl | pl | pll | pal | wpbl
a pa | pla | paa | pba | pa | pla | paa | pba
b pb | plb | pab | wbb | pb | plb | pab | ubb
* || pa0 | pal | paa | pab | pwbO | ubl | wba | ubb
0 a b 0 1 b a 1 0
1 b a 1 0 a b 0 1
a 0 1 a b 1 0 b a
b 1 0 b a 0 1 a b
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