Rational formal power series

Jānis Buls, Aigars Valainis
Department of Mathematics, University of Latvia, Jelgavas iela 3,
Rīga, LV-1004 Latvia, buls1950@gmail.com; AValainis@gmail.com

Abstract
We are following [1] and [5]. Nevertheless, we are interested only in
the clarification of proofs.

Keywords
finite commutative rings, formal power series

1. Structure of finite commutative rings

Our object of interest is an associative-commutative ring with a multi-
plicative identity element. In this text, the term ring will mean exactly
such a ring, i.e., an associative-commutative ring with a multiplicative
identity element. We will denote rings R commutative group by R^*. In
this section, we will consider only finite rings and we are following [1].

1.1. Definition. Subset H of ring R, is called a subring if
• H is a subgroup of the additive group,
• H is a subsemigroup of the multiplicative semigroup.

1.2. Definition. Subring I of ring R is called an ideal if
$RI \subseteq I$.

1.3. Proposition. If I_1, I_2, \ldots, I_n are ideals of ring R, then mapping
$\Phi : R \rightarrow R/I_1 \times R/I_2 \times \cdots \times R/I_n : r \mapsto (r + I_1, r + I_2, \ldots, r + I_n)$
is a ring homomorphism.

□ We will use notation $[x]_j \equiv x + I_j$.
Let $x, y \in R$, then
$\Phi(x + y) = ([x + y]_1, [x + y]_2, \ldots, [x + y]_n)$
$= ([x]_1 + [y]_1, [x]_2 + [y]_2, \ldots, [x]_n + [y]_n)$
$= ([x]_1, [x]_2, \ldots, [x]_n) + ([y]_1, [y]_2, \ldots, [y]_n)$
$= \Phi(x) + \Phi(y)$
$\Phi(1) = ([1]_1, [1]_2, \ldots, [1]_n)$,
\[\Phi(xy) = ([xy], [xy], \ldots, [xy]) \]
\[= ([x][y], [x][y], \ldots, [x][y]) \]
\[= (\langle x, y \rangle) \]
\[= \Phi(x)\Phi(y). \]

1.4. Definition. \{0\} and \(R \) are called trivial ideals of ring \(R \).

All other ideals of ring \(R \) are called nontrivial ideals. Ideal \(I \) are called proper ideal if \(I \neq R \).

Let \(I_1, I_2, \ldots, I_n \) be proper ideals of ring \(R \).

1.5. Definition. Proper ideals \(I_k \) un \(I_m \), \(1 \leq k < m \leq n \), are called coprime if \(I_k + I_m = R \).

Here \(I_k + I_m \equiv \{a + b \mid a \in I_k \land b \in I_m\} \)

1.6. Example. \(I_1 = \{0, 2, 4\} \), \(I_2 = \{0, 3\} \) are coprime ideals of ring \(\mathbb{Z}_6 \).

\[I_1 \mathbb{Z}_6 = \{0, 2, 4\}\{0, 1, 2, 3, 4, 5\} = \{0, 2, 4\} \]
\[2 \cdot 3 = 6 \equiv 0 \quad 2 \cdot 4 = 8 \equiv 2 \quad 2 \cdot 5 = 10 \equiv 4 \]
\[4 \cdot 3 = 12 \equiv 0 \quad 4 \cdot 4 = 16 \equiv 4 \quad 4 \cdot 5 = 20 \equiv 2 \]
\[I_2 \mathbb{Z}_6 = \{0, 3\}\{0, 1, 2, 3, 4, 5\} = \{0, 3\} \]
\[3 \cdot 3 = 9 \equiv 3 \quad 3 \cdot 4 = 12 \equiv 0 \quad 3 \cdot 5 = 15 \equiv 3 \]
\[I_1 + I_2 = \{0, 2, 4\} + \{0, 3\} = \{0, 0, 0, 3, 2 + 0, 2 + 3, 4 + 0, 4 + 3\} = \{0, 3, 2, 5, 4, 7 \equiv 1\} = \mathbb{Z}_6 \]

Notice that
\[\forall x \in I_1 \forall y \in I_2 \ xy = 0. \]

1.7. Proposition. If \(I_1, I_2, \ldots, I_n \) are coprime ideals of ring \(R \), then
\[\bigcap_{k=1}^{n} I_k = \bigcap_{k=1}^{n} I_k \]

Notice that
\[\prod_{k=1}^{n} I_k \equiv \{\sum_{k} x_{k1}x_{k2} \ldots x_{kn} \mid \forall j \ x_{kj} \in I_j\}. \]

Here, \(\sum_{k} x_{k1}x_{k2} \ldots x_{kn} \) denotes all possible finite sums of such form. In sum \(\sum_{k} x_{ky} \) there is a possibility for \(x_1 = x_2 \), but if so then \(y_1 \neq y_2 \).

As \(I_1 \) un \(I_2 \) are ideals, then
\[I_1 \cap I_2 = \{h \in R \mid h \in I_1 \land h \in I_2\} \]
is a proper ideal since \(0 \in I_1 \cap I_2 \). Notice that
\[\prod_{k=1}^{2} I_k = I_1I_2 = \{\sum_{k} x_{ky} \mid x_{k} \in I_1 \land y_{k} \in I_2\}. \]
Each member of sum \(\sum_k x_k y_k \) belongs to ideal \(\mathcal{I}_1 \) and also to \(\mathcal{I}_2 \), therefore \(\sum_k x_k y_k \in \mathcal{I}_1 \cap \mathcal{I}_2 \). Hence \(\mathcal{I}_1 \mathcal{I}_2 \subseteq \mathcal{I}_1 \cap \mathcal{I}_2 \).

Let \(a \in \mathcal{I}_1 \cap \mathcal{I}_2 \). As \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) are coprime ideals, then there exist such \(x \in \mathcal{I}_1 \) and \(y \in \mathcal{I}_2 \), that \(x + y = 1 \). Therefore

\[
a = a \cdot 1 = a(x + y) = ax + ay = xa + ay \in \mathcal{I}_1 \mathcal{I}_2.
\]

Hence \(\mathcal{I}_1 \mathcal{I}_2 = \mathcal{I}_1 \mathcal{I}_2 \).

Notice that \(\prod_{k=1}^n \mathcal{I}_k = \{ \sum_k x_k y_k \mid \forall j \ x_{kj} \in \mathcal{I}_j \} \). As the ring is commutative, it follows that each member of \(\sum_k x_k y_k \) is a member of an arbitrary ideal \(\mathcal{I}_k \), \(k \in \{1, \ldots, n\} \), therefore \(\prod_{k=1}^n \mathcal{I}_k \subseteq \bigcap_{k=1}^n \mathcal{I}_k \).

Further proof is inductive, assuming that ideals \(\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_{m+1} \) are pairwise coprime.

\[
\bigcap_{k=1}^{m+1} \mathcal{I}_k = \left(\bigcap_{k=1}^m \mathcal{I}_k \right) \cap \mathcal{I}_{m+1} = \left(\prod_{k=1}^m \mathcal{I}_k \right) \cap \mathcal{I}_{m+1}
\]

As all the pairs \(\mathcal{I}_{m+1}, \mathcal{I}_k, k \in \{1, \ldots, m\} \) are coprime ideals, then there exist such \(a_k \in \mathcal{I}_k, b_k \in \mathcal{I}_{m+1}, \) that \(a_k + b_k = 1 \). Therefore

\[
1 = (a_1 + b_1)(a_2 + b_2) \cdots (a_m + b_m) = a_1 a_2 \cdots a_m + B,
\]

where \(B \) is a sum. Here each member of \(B \) contains some \(b_k \) as a multiplier, therefore \(B \in \mathcal{I}_{m+1} \).

Let \(a \in \bigcap_{k=1}^{m+1} \mathcal{I}_k \), then

\[
a = a \cdot 1 = a(a_1 + b_1)(a_2 + b_2) \cdots (a_m + b_m) = a_1 a_2 \cdots a_m a + aB
\]

As \(a \in \bigcap_{k=1}^{m+1} \mathcal{I}_k \), it follows that \(a \in \bigcap_{k=1}^m \mathcal{I}_k \).

From the inductive assumption \(\bigcap_{k=1}^m \mathcal{I}_k = \prod_{k=1}^m \mathcal{I}_k \). Therefore \(a \) can be written as a sum \(\sum_k x_k y_k \), where \(\forall x_{kj} \in \mathcal{I}_j \). Thus

\[
aB = \sum_k x_k y_k B \in \prod_{k=1}^{m+1} \mathcal{I}_k,
\]

and therefore

\[
a = a_1 a_2 \cdots a_m a + aB = a_1 a_2 \cdots a_m a + \sum_k x_k y_k B \in \prod_{k=1}^{m+1} \mathcal{I}_k.
\]

1.8. Proposition. If \(\mathcal{I}, \mathcal{J} \) are coprime ideals, then \(\mathcal{I}^m, \mathcal{J}^m \) also are coprime for all \(m \in \mathbb{Z}_+ \).

Notice that \(\mathcal{I}^m = \mathcal{I} \cdots \mathcal{I} \).

\[\square \] As \(\mathcal{I}, \mathcal{J} \) are coprime ideals, then there exist such \(a \in \mathcal{I}, b \in \mathcal{J} \), that \(a + b = 1 \). Hence

\[
1 = (a + b)^2 = a^2 + 2ab + b^2.
\]
• If \(ab = 0 \), then \(a^2 + b^2 \in I^2 + J^2 \);
• If \(ab \neq 0 \), then \(2ab = 1 \cdot 2ab = 2(a + b)ab = 2a^2b + 2ab^2 \in I^2 + J^2 \).

Further proof is inductive. If \(I^k, J^k \) are coprime ideals, then there exist such \(a \in I^k, b \in J^k \), that \(a + b = 1 \). Hence

\[1 = (a + b)^2 = a^2 + 2ab + b^2. \]

• If \(ab = 0 \), then \(a^2 + b^2 \in I^{k+1} + J^{k+1} \);
• If \(ab \neq 0 \), then \(2ab = 1 \cdot 2ab = 2a^2b + 2ab^2 \in I^{k+1} + J^{k+1} \).

We are using the property of ideals: if \(a \in I^{m+1} \), then \(a \in I^m \). This arises from

\[a = \sum_i x_{i1}x_{i2}x_{i3}\ldots x_{im+1} = \sum_i(x_{i1}x_{i2})x_{i3}\ldots x_{im+1} \in I^m, \]

because \(x_{i1}x_{i2} \in I \). By further use of induction, it’s provable that: if \(a \in I^{m+n} \), then \(a \in I^m \).

1.9. Proposition. Ring homomorphism \(f : G \to G' \) is monomorphism if and only if \(\text{Ker} f = 0 \).

\(\Box \Rightarrow \) If \(f(x) = 0 \) and \(x \neq 0 \), then \(f(0) = 0 = f(x) \). Therefore \(f \) is not an injection.

\(\Leftarrow \) Let \(f(x) = f(y) \), then \(f(x - y) = 0 \). As \(\text{Ker} f = 0 \), then \(x - y = 0 \), i.e., \(x = y \). ■

1.10. Proposition. Assume that \(I_1, I_2,\ldots, I_n \) are ideals of ring \(R \). Mapping

\[\Phi : R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n : r \mapsto (r + I_1, r + I_2,\ldots, r + I_n) \]

is ring monomorphism if and only if \(\bigcap_{k=1}^n I_k = 0 \).

\(\Box \) Let \(\Phi(r) = ([0], [0],\ldots, [0]) \). Therefore \(r \in \bigcap_{k=1}^n I_k \). It shows that \(\text{Ker} \Phi = \bigcap_{k=1}^n I_k \). From previous proposition follows that \(\Phi \) is injective only when \(\text{Ker} \Phi = 0 \), i.e., \(0 = \text{Ker} \Phi = \bigcap_{k=1}^n I_k \). ■

1.11. Lemma. If \(I_1, I_2,\ldots, I_n \) are coprime ideals of ring \(R \), then \(I_1 \) and \(\prod_{k=2}^n I_k \) are coprime ideals of ring \(R \).

\(\Box \) We have (1.7. Proposition) \(\prod_{k=2}^n I_k = \prod_{k=2}^n I_k \), therefore \(\prod_{k=2}^n I_k \) is an ideal. As all pairs \(I_1, I_k, k \in \{1, n\} \) are coprime, then there exist such \(a_k \in I_1, b_k \in I_k \), that \(a_k + b_k = 1 \). Hence

\[1 = (a_2 + b_2)(a_3 + b_3)\cdots(a_n + b_n) = A + b_2b_3\cdots b_n, \]

where \(A \) is a sum. Here each term of sum \(A \) contains some \(a_k \) as a multiplier, therefore \(A \in I_1 \).

Thus \(1 = A + b_2b_3\cdots b_n \), where \(A \in I_1 \) and \(b_2b_3\cdots b_n \in \prod_{k=2}^n I_k \). ■
1.12. Proposition. Assume that I_1, I_2, \ldots, I_n are ideals of ring R.

Mapping

$\Phi : R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n : r \mapsto (r + I_1, r + I_2, \ldots, r + I_n)$

is a ring epimorphism if and only if for all different indexes $k, j \in \overline{1, n}$ ideals I_k, I_j are coprime.

$\square \Rightarrow$ If Φ is a epimorphism, then there exists such $x \in R$, that

$\Phi(x) = ([1], [0], \ldots, [0]).$

$\Phi(1 - x) = \Phi(1) - \Phi(x)$

$= ([1], [1], \ldots, [1]) - ([1], [0], \ldots, [0])$

$= ([0], [1], \ldots, [1])$

It shows that $1 - x \in I_1$, and also $x \in I_k$ for all $k \in \overline{2, n}$. Hence $1 \in I_1 + I_k$ for all $k \in \overline{2, n}$.

Generally, $m \in \overline{1, n}$ reasoning is similar. If Φ is an epimorphism, then there exist such $x_m \in R$, that $\Phi(x_m) = ([x_{m1}], [x_{m2}], \ldots, [x_{mn}])$, where

$x_{mj} = \begin{cases} 0, & \text{if } j \neq m; \\ 1, & \text{if } j = m. \end{cases}$

$\Phi(1 - x_m) = ([y_{m1}], [y_{m2}], \ldots, [y_{mn}])$, where

$y_{mj} = \begin{cases} 1, & \text{if } j \neq m; \\ 0, & \text{if } j = m. \end{cases}$

It shows that $1 - x_m \in I_m$. Also $x_m \in I_k$ for all $k \neq m$. Hence $1 \in I_m + I_k$ for all $k \neq m$.

\Leftarrow Assume that all pairs I_k, I_j of ideals are coprime.

If $n = 2$, then there exist such $x \in I_1, y \in I_2$, that $x + y = 1$. As $x = 1 - y$ and $y = 1 - x$, then

$[x]_2 = [1 - y]_2 = [1]_2 - [y]_2 = [1]_2 - [0] = [1]_2,$

$[y]_1 = [1 - x]_1 = [1]_1 - [x]_1 = [1]_1,$

$\Phi(x) = ([x]_1, [x]_2) = ([0]_1, [1]_2),$

$\Phi(y) = ([y]_1, [y]_2) = ([1]_1, [0]_2),$

$\Phi(bx + ay) = \Phi(b)\Phi(x) + \Phi(a)\Phi(y)$

$= ([b]_1, [b]_2)([0]_1, [1]_2) + ([a]_1, [a]_2)([1]_1, [0]_2)$

$= ([0]_1, [b]_2) + ([a]_1, [0]_2) = ([a]_1, [b]_2).$

Hence mapping Φ is surjective. Further proof is inductive.

From (1.1.4. Lemma) follows, that $I_1, I_2I_3 \cdots I_n$ are coprime, therefore homomorphism

$\Psi : R \to R/I_1 \times R/I_2I_3 \cdots I_n : r \mapsto (r + I_1, r + I_2I_3 \cdots I_n)$

is surjective. From the inductions assumption, it follows that mapping

$\Phi_2 : R \to R/I_2 \times R/I_3 \cdots R/I_n : r \mapsto (r + I_2, r + I_3, \ldots, r + I_n)$
ir surjective. From the homomorphism theorem, there exists such homomorphism Φ_2, that diagram

$$
\begin{array}{ccc}
R & \xrightarrow{\Phi_2} & R/I_2 \times R/I_3 \times \cdots \times R/I_n \\
\pi & & \Phi_2^* \\
R/Ker\Phi_2 & \end{array}
$$

is commutative. Additionally, homomorphism Φ_2^* is a monomorphism. Therefore $R/Ker\Phi_2$ is isomorphic with ring $R/I_2 \times R/I_3 \times \cdots \times R/I_n$ (homomorphism Φ_2 is also surjective).

From proof of (1.10. Proposition) follows, that $\text{Ker}\Phi_2 = \bigcap_{k=2}^n I_k$, additionally (1.7. Proposition) $\bigcap_{k=2}^n I_k = \bigcap_{k=2}^n I_k$. Therefore $R/I_2 I_3 \cdots I_n$ is isomorphic with $R/I_2 \times R/I_3 \times \cdots \times R/I_n$.

Hence mapping $\Phi_2 : R/I_2 I_3 \cdots I_n \rightarrow R/I_2 \times R/I_3 \times \cdots \times R/I_n$ is an isomorphism.

Let $([r_1], [r_2], \ldots, [r_n]) \in R/I_1 \times R/I_2 \times R/I_3 \times \cdots \times R/I_n$. Notice that

$$
\begin{align*}
\Phi_1 : r & \mapsto ([r_1], [r_2], \ldots, [r_n]), \\
\Phi_2 : r & \mapsto ([r_2], [r_3], \ldots, [r_n]).
\end{align*}
$$

From the inductions assumption, mapping Φ_2 is an epimorphism, therefore there exists such $x \in R$, that

$$
\Phi_2 : x \mapsto ([r_2], [r_3], \ldots, [r_n]),
$$

i.e., $[x]_2 = [r_2], [x]_3 = [r_3], \ldots, [x]_n = [r_n]$. Let’s consider epimorphism

$$
\Psi : r \mapsto (r + I_1, r + I_2 I_3 \ldots I_n).
$$

As mapping Ψ is an epimorphism, then there exists such $y \in R$, that

$$
\Psi : y \mapsto (y + I_1, y + I_2 I_3 \ldots I_n),
$$

where $y + I_1 = [y]_1 = [r_1]$ and $(\Phi_2^*)^{-1}([r_2], [r_3], \ldots, [r_n]) = y + I_2 I_3 \ldots I_n$. Notice that $[y]_1 = [r_1]$, thus

$$
\Phi_1 : y \mapsto ([r_1], [y]_2, [y]_3, \ldots, [y]_n).
$$

Diagram (D) is commutative, therefore

$$
\begin{align*}
([y]_2, [y]_3, \ldots, [y]_n) & = \Phi_2(y) = \Phi_2^*(\pi(y)) = \Phi_2^*(y + I_2 I_3 \ldots I_n) \\
& = ([r_2], [r_3], \ldots, [r_n]).
\end{align*}
$$

Thus $\Phi_1 : y \mapsto ([r_1], [r_2], \ldots, [r_n])$, showing that mapping Φ_1 is an epimorphism.
1.13. Definition. Element e of ring R is called idempotent if \(e^2 = e \).
Idempotents e, f are called orthogonal if ef = 0.

1.14. Definition. Ideal \(\mathcal{I} \) of ring R is called principal ideal, if there exist such \(a \in R \), that \(\mathcal{I} = aR \).

1.15. Proposition. The following statements are equivalent:
1. \(R \cong R_1 \times R_2 \times \cdots \times R_n \); here all \(R_i \) are subrings of ring R;
2. There exist such orthogonal idempotents \(e_i \), that \(\sum_{i=1}^{n} e_i = 1 \) and \(R_i \cong e_iR \);
3. \(R \cong \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \), here all \(\mathcal{I}_j \) are main ideals of ring R and \(\mathcal{I}_j \cong R_j \).

\(1 \Rightarrow 2 \). The unit element of ring \(R_1 \times R_2 \times \cdots \times R_n \) is tuple \((1,1,\ldots,1)\). Therefore tuples \(\delta_k = (\delta_{1k}, \delta_{2k}, \ldots, \delta_{nk}) \) are idempotents of ring \(R_1 \times R_2 \times \cdots \times R_n \). Here
\[
\delta_{ik} = \begin{cases}
0, & \text{if } i \neq k; \\
1, & \text{if } i = k.
\end{cases}
\]

Assume that \(\varphi: R_1 \times R_2 \times \cdots \times R_n \to R \) is a ring isomorphism. Then \(\varphi(e_k) \mapsto e_k \) is an idempotent of ring R, because
\[
e_k = \varphi(\delta_k) = \varphi(\delta_k^2) = \varphi(\delta_k)\varphi(\delta_k) = e_k e_k = e_k^2,
\]
additionally
\[
1 = \varphi(1,1,\ldots,1) = \varphi\left(\sum_{k=1}^{n} \delta_k \right) = \sum_{k=1}^{n} \varphi(\delta_k) = \sum_{k=1}^{n} e_k.
\]
\[
\varphi^{-1}(e_k e_i) = \varphi^{-1}(e_k)\varphi^{-1}(e_i) = (0,0,\ldots,0) \quad \text{if } i \neq k.
\]
As \(\varphi \) is an isomorphism, then \(e_k e_i = 0 \) only if \(i \neq k \). Let \(x \in R \), then \(\varphi^{-1}(x) = (x_1, x_2, \ldots, x_n) \), where all \(x_j \in R_j \).
\[
\varphi^{-1}(e_i x) = \varphi^{-1}(e_i)\varphi^{-1}(x) = (0,0,\ldots,1,0)(x_1, x_2, \ldots, x_i, \ldots, x_n) = (0,0,\ldots,x_i,0).
\]

Hence \(e_i R \cong R_i \).

2. \(\Rightarrow 3 \). \(\mathcal{I}_j \subseteq e_j R \). Notice that \((e_1, e_2, \ldots, e_n)\) is the unit element of ring \(\mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \). Let’s prove that
\[
\varphi: \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \to R : (a_1, a_2, \ldots, a_n) \mapsto a_1 + a_2 + \cdots + a_n
\]
is a ring isomorphism.

(i) Let \(\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \) and \(\vec{b} = (b_1, b_2, \ldots, b_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \), then
\[
\varphi(\vec{a} + \vec{b}) = \varphi(a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n) = a_1 + b_1 + a_2 + b_2 + \cdots + a_n + b_n = (a_1 + a_2 + \cdots + a_n) + (b_1 + b_2 + \cdots + b_n) = \varphi(\vec{a}) + \varphi(\vec{b}).
\]
(ii) If \(x \in \mathcal{I}_j, y \in \mathcal{I}_k \) and \(j \neq k \), then \(xy = 0 \). As \(x \in \mathcal{I}_j \), then there exist such \(x' \in R \), that \(x = e_j x' \). Also, there exists such \(y' \in R \), that \(y = e_k y' \). Hence \(xy = e_j x' e_k y' = e_j e_k x' y' = 0x'y' = 0 \).

\[
\varphi(ab) = \varphi((a_1, a_2, \ldots, a_n)(b_1, b_2, \ldots, b_n)) = \varphi(a_1b_1, a_2b_2, \ldots, a_nb_n) = a_1b_1 + a_2b_2 + \cdots + a_nb_n = (a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n) = \varphi(a)\varphi(b).
\]

(iii) Assume that \(x \in \mathcal{I}_j \cap \mathcal{I}_k \), then \(x \in \mathcal{I}_j = e_j R \) and \(x \in \mathcal{I}_k = e_k R \). Therefore \(x = e_j x_j = e_k x_k \), where \(x_j, x_k \) are elements of ring \(R \).

If \(j \neq k \), then \(e_j e_k = 0 \), hence

\[
x = e_j x_j = e_k x_k = 0 \cdot x_k = 0.
\]

Thus \(\mathcal{I}_j \cap \mathcal{I}_k = 0 \).

Let \(y \in \mathcal{I}_k = e_k R \). Then \(y = e_k y_k \), where \(y_k \in R \). If \(i \neq k \), then \(e_i y = e_i e_k y_k = 0 \cdot y_k = 0 \).

(iv) Let \(\varphi(a) = \varphi(b) \), i.e.,

\[
a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n,
\]

then

\[
a_i - b_i = \sum_{j \neq i} (b_j - a_j). \tag{1}
\]

As for all \(k a_k \) and \(b_k \) are elements of ideal \(\mathcal{I}_k = e_k R \), then \(a_k = e_k x_k, b_k = e_k y_k \), where \(x_k, y_k \) belongs to ring \(R \). Expression (1) can be written as

\[
e_i(x_i - y_i) = \sum_{j \neq i} e_j(y_j - x_j),
e_i(x_i - y_i) = e_i^2(x_i - y_i) = \sum_{j \neq i} e_i e_j(y_j - x_j) = 0.
\]

Then \(a_i - b_i = e_i x_i - e_i y_i = 0 \) or \(a_i = b_i \). We have proven that \(\varphi \) is injective.

(v) Let \(x \in R \) and \(x_k = e_k x \), then \(\forall k x_k \in e_k R = \mathcal{I}_k \) and

\[
(x_1, x_2, \ldots, x_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n,
x_1 + x_2 + \cdots + x_n = e_1 x + e_2 x + \cdots + e_n x
\]

\[
= (e_1 + e_2 + \cdots + e_n)x = 1 \cdot x = x.
\]

Hence \(\varphi(x_1, x_2, \ldots, x_n) = x \). Therefore \(\varphi \) is surjective. We can conclude that \(\varphi \) is an isomorphism, therefore \(R \cong \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \).

3. \(\Rightarrow 1 \). An ideal is a subring of a ring. \(\blacksquare \)

1.16. Definition. Ideal \(\mathcal{I} \) of commutative ring \(R \) is called a prime ideal if

\[
ab \in \mathcal{I} \Rightarrow a \in \mathcal{I} \lor b \in \mathcal{I}.
\]
1.17. Definition. Ideal \mathcal{M} of ring R, $\mathcal{M} \neq R$ is called maximal ideal if for any ideal \mathcal{I} of ring R:

$$\mathcal{M} \subseteq \mathcal{I} \subseteq R \Rightarrow \mathcal{M} = \mathcal{I} \lor \mathcal{I} = R.$$

1.18. Lemma. If \mathcal{I} and \mathcal{J} are ideals of commutative ring R, then $\mathcal{I} + \mathcal{J}$ is ideal of ring R.

Let a, b be elements of ideal \mathcal{I} and, in turn, x, y to be elements of ideal \mathcal{J}. Thus $a + x$ and $b + y$ are elements of set $\mathcal{I} + \mathcal{J}$.

(i) $(a + x) + (b + y) = (a + b) + (x + y) \in \mathcal{I} + \mathcal{J}$. $-a - b \in \mathcal{I} + \mathcal{J}$.

(ii) Let $r \in R$. Then $r(a + x) = ra + rb \in \mathcal{I} + \mathcal{J}$. Hence $\mathcal{I} + \mathcal{J}$ is an ideal.

Let’s denote the equivalence class of element x in the quotient ring by $[x]$.

1.19. Proposition. If $1 \in R$ and \mathcal{M} is maximal ideal of commutative ring R, then quotient ring R/\mathcal{M} is a field.

Assume that $[x] \neq [0]$, then $x \notin \mathcal{M}$. Thus $\mathcal{M} + Rx \neq \mathcal{M}$ and $\mathcal{M} + Rx = R$. Then exist such $x \in \mathcal{M}$ and $y \in R$, that $(u + yx = 1)$. Thus for equivalence classes: $[1] = [u + yx] = [u] + [yx] = [0] + [y][x] = [y][x]$. ■

1.20. Corollary. If \mathcal{M} is a maximal ideal of ring R, then \mathcal{M} is a prime ideal.

R/\mathcal{M} is a field. A field is a ring without zero divisors. ■

1.21. Proposition. If \mathcal{M} is ideal of commutative ring R and R/\mathcal{M} is a field, then \mathcal{M} is maximal ideal of ring R.

As R/\mathcal{M} is a field, then card(R/\mathcal{M}) ≥ 2. Let $\mathcal{M} \neq R$. If \mathcal{I} is an ideal such that $\mathcal{M} \subseteq \mathcal{I} \subseteq R$, then exists $x \in \mathcal{I}$, that $x \notin \mathcal{M}$. As $[x] \neq [0]$, then there exists such y, that $[xy] = [x][y] = [1]$. As $[xy] = xy + \mathcal{M}$, therefore exist such $u \in \mathcal{M}$, that $u + xy = 1$. We have $\mathcal{M} \subseteq \mathcal{I}$, therefore $u \in \mathcal{I}$, $xy \in \mathcal{I}y \subseteq \mathcal{I}$ because \mathcal{I} is an ideal. Thus $1 = u + xy \in \mathcal{I}$. Hence $\mathcal{I} = R$. ■

1.22. Definition. The set of all prime ideals of ring R is called the spectrum of ring R and is denoted by $\text{Spec}(R)$. The set of all maximal ideals of ring R is called the maximal spectrum of ring R and is denoted by $\text{Specm}(R)$.

1.23. Corollary. $\text{Specm}(R) \subseteq \text{Spec}(R)$.

1.24. Definition. Jacobson radical:

$$\mathcal{J}(R) = \bigcap_{\mathcal{I} \in \text{Specm}(R)} \mathcal{I}.$$

1.25. Theorem. \mathcal{I} is prime ideal of ring R if and only if R/\mathcal{I} is an integral domain.
An integral domain is a nonzero commutative ring with no nonzero zero divisors.

\[\Rightarrow [a][b] = [0] \Rightarrow ab \in I. \]

Thus \([a] = [0] \lor [b] = [0]\). Hence \(R/I\) is an integral domain.

\[\Leftarrow \]

Assume that \(I\) is not prime, then exist such \(a \notin I\) and \(b \notin I\), that \(ab \in I\). \([a][b] = [0] \in R/I\) and \([a] \neq [0] \land [b] \neq [0]\). Hence \(R/I\) is not an integral domain.

\[\Box \]

1.26. Proposition. A finite integral domain is a field.

\[\Box \]

Let \(R = \{a_1, a_2, \ldots, a_n\} \) be a finite integral domain, \(a \in R\) and \(a \neq 0\). Consider terms \(aa_1, aa_2, \ldots, aa_n\). All those terms are unique. If the contrary is true, then \(aa_i = aa_j\). Thus \(aa_i - aa_j = 0, a(a_i - a_j) = 0\). As \(R\) is an integral domain and \(a \neq 0\), then \(a_i - a_j = 0, i.e., a_i = a_j\). As \(R = \{aa_1, aa_2, \ldots, aa_n\}\), therefore there exists such \(a_k\), that \(aa_k = 1\). As an integral domain is commutative, then \(1 = aa_k = a_k a\). Hence \(a_k = a^{-1}\).

1.27. Corollary. If \(I\) is a prime ideal of ring \(R\), then it is a maximal ideal.

\[\Box \]

As \(I\) is a prime ideal, then (1.25. Theorem) \(R/I\) is an integral domain. Integral domain \(R/I\) is finite, therefore (1.26. Proposition) it is a field. Thus (1.21. Proposition) ideal \(I\) is maximal.

1.28. Proposition. If \(I\) and \(J\) are distinct maximal ideals of ring \(R\), then they are coprime ideals.

\[\Box \]

As \(I \neq J\), then \(I + J \supset I\) or \(I + J \supset J\). Thus \(R \supset I + J \supset I\) or \(R \supset I + J \supset J\).

Notice that \(I + J\) is ideal (1.18. Lemma) and \(I, J\) are maximal ideals. Its possible only if \(I + J = R\).

1.29. Definition. Element \(a \in R\) is called a nilpotent element, if exists such natural \(n\), that \(a^n = 0\).

1.30. Definition. Set \(\text{Nil}(R)\), consisting of all nilpotent elements of ring \(R\), is called a nilradical.

1.31. Proposition. \(\text{Nil}(R)\) is ideal of ring \(R\).

\[\Box \]

Assume that \(a^n = 0 = b^m\), then

\[(a + b)^{n + m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^k b^{n+m-k}. \]

While \(k < n\), we have \(n + m - k > m\). As a result, all terms of sum are equal to 0.

Let \(r \in R\), then \((ra)^n = r^n a^n = r^n \cdot 0 = 0\). Thus \(R \text{Nil}(R) \subseteq \text{Nil}(R)\).
1.32. Proposition. If R is a commutative ring, then

$$\text{Nil}(R) = \bigcap_{I \in \text{Spec}(R)} I.$$

Let $r \in \text{Nil}(R)$. Then there exists such n, that $r^n = 0 \in I \in \text{Spec}(R)$. I is an ideal, therefore $0 \in I$. I is prime ideal and $r \cdot r^{n-1} \subseteq I$, therefore $r \in I$ or $r^{n-1} \subseteq I$. If $r \in I$, then we have obtained the desired result. If the contrary is true, then we proceed inductively, i.e., we assume that $r^{n-k} \subseteq I$ and $n-k > 1$, then $r \cdot r^{n-k-1} \subseteq I$ and therefore $r \in I$ or $r^{n-k-1} \subseteq I$. We proceed until $n-k-i = 1$. Thus we have proven, that $r \in I$ for any $I \in \text{Spec}(R)$. Thus $r \in \bigcap_{I \in \text{Spec}(R)} I$ and $\text{Nil}(R) \subseteq \bigcap_{I \in \text{Spec}(R)} I$.

Let's now assume that $f \not\in \text{Nil}(R)$ and consider set

$$\mathfrak{J} = \left\{ J \subseteq R \mid J \text{ is an ideal and } \forall m \in \mathbb{Z}_+ f^m \not\in J \right\}.$$

Set $\mathfrak{J} \neq \emptyset$, because 0 is an ideal. Set \mathfrak{J} is partially ordered with respect to \subseteq, and for each chain $J_1 \subseteq J_2 \subseteq \ldots$ there exist a upper bound

$$\exists \mathfrak{J} = \bigcup_{k>0} J_k.$$

Let's prove that \exists is an ideal.

If $a, b \in \exists$, then $\exists a, b \in J_k$. Assume for concreteness that $J_i \subseteq J_k$, then $a \in J_k$. Hence $a + b \in J_k \subseteq \exists$.

Let $r \in R$ un $c \in \exists$, then $\exists c \in J_k$. Hence $rc \in J_k \subseteq \exists$. A contradiction!

As for each such chain an upper bound exists, then by Zorn's lemma, in set \exists exists a maximal element \mathcal{M}. Let's prove that $\mathcal{M} \in \text{Spec}(R)$.

Let $a \not\in \mathcal{M}$ and $b \not\in \mathcal{M}$, then $aR + \mathcal{M} \supset \mathcal{M}$ and $bR + \mathcal{M} \supset \mathcal{M}$. Therefore $aR + \mathcal{M} \not\in \exists$ and $bR + \mathcal{M} \not\in \exists$, thus

$$\exists n f^n \in aR + \mathcal{M} \text{ and } \exists m f^m \in bR + \mathcal{M}.$$

As $f^n \in aR + \mathcal{M}$, then $f^n = ar_1 + m_1$, where $r_1 \in R$ and $m_1 \in \mathcal{M}$.

Similarly $f^m \in bR + \mathcal{M}$, $f^m = br_2 + m_2$, where $r_2 \in R$ and $m_2 \in \mathcal{M}$.

$$f^{n+m} = f^n f^m = (ar_1 + m_1)(br_2 + m_2) = abr_1 r_2 + ar_1 m_2 + br_2 m_1 + m_1 m_2.$$

Hence $f^{n+m} \in abR + \mathcal{M}$. Therefore $abR + \mathcal{M} \not\in \exists$, thus $ab \not\in \mathcal{M}$.

With some logical transformations:

$$a \not\in \mathcal{M} \land b \not\in \mathcal{M} \Rightarrow ab \not\in \mathcal{M},$$

$$-(a \not\in \mathcal{M} \land b \not\in \mathcal{M}) \lor (ab \not\in \mathcal{M}),$$

$$a \in \mathcal{M} \lor b \in \mathcal{M} \lor (ab \not\in \mathcal{M}),$$

$$ab \not\in \mathcal{M} \lor a \in \mathcal{M} \lor b \in \mathcal{M},$$

$$ab \in \mathcal{M} \Rightarrow a \in \mathcal{M} \lor b \in \mathcal{M}.$$

Therefore \mathcal{M} is a prime ideal. A contradiction!

Thus if element f is not nilpotent, then there exists such prime ideal \mathcal{M} to whom f doesn't belong.

$$f \not\in \text{Nil}(R) \Rightarrow \exists \mathcal{M} \in \text{Spec}(R) \ (f \not\in \mathcal{M}).$$
From contraposition, we obtain:

\[\forall M \in \text{Spec}(R) \ (f \in M) \Rightarrow f \in \text{Nil}(R). \]

That proves the inclusion \(\bigcap_{I \in \text{Spec}(R)} I \subseteq \text{Nil}(R). \) ■

1.33. Lemma. There exists \(m \), that \((\text{Nil}(R))^m = 0. \)

If \(a \in \text{Nil}(R) \), then there exists such \(\kappa_a \), that \(a^{\kappa_a} = 0 \). As \(R \) is a finite set, then \(\text{Nil}(R) \) also is a finite set, therefore there exists

\[\kappa = \max_{a \in \text{Nil}(R)} (\kappa_a). \]

Let’s assume for concreteness, that \(|\text{Nil}(R)| = n \). In product \(a_1 a_2 \ldots a_m \), where all \(a_i \in \text{Nil}(R) \) and \(m = n \kappa \), there is at least one nilpotent element \(a_j \), whose power \(\nu \) is no less than \(\kappa \), i.e., \(\nu \geq \kappa \), therefore \(a_j^{\nu} = 0. \) ■

1.34. Lemma. If \(\phi : R \to R' \) is a ring epimorphism and \(I \) is an ideal of ring \(R \), then \(\phi(I) \) is ideal of ring \(R' \).

(i) Let \(x' \in R' \) and \(a' \in \phi(I) \), then there exist such \(x \in R \) and \(a \in I \), that \(\phi(x) = x' \) and \(\phi(a) = a' \). As \(x \in R \) and \(a \in I \), then \(ax \in I \), therefore

\[a' x' = \phi(a) \phi(x) = \phi(ax) \in \phi(I). \]

(ii) Notice that \(\phi : I \to R' \) is a ring homomorphism, then according to the theorem of homomorphism \(\phi(I) \) is a ring. ■

1.35. Lemma. If \(\phi : R \to R' \) is a ring epimorphism and \(I' \) is ideal of ring \(R' \), then there exists such \(I \) ideal of ring \(R \), that \(\phi(I) = I' \).

(i) Let’s define

\[I \leftarrow \{ x \in G | \exists x' \in I' \phi(x) = x' \}. \]

(ii) Let \(a \in I \) un \(b \in I \), then

\[\phi(a + b) = \phi(a) + \phi(b) \in I', \]

\[\phi(ab) = \phi(a)\phi(b) \in I'. \]

Thus \(a + b \) and \(ab \) belong to set \(I \).

(iii) Let \(r \in R \), then \(\phi(ra) = \phi(r)\phi(a) \in I' \), because \(I' \) is an ideal of ring \(R' \). Hence \(ra \in I. \) ■

Let us consider groups. A subgroup, as usual, is denoted by \(\leq \), and a normal subgroup is denoted by \(\triangleleft \).

1.36. Lemma. Let \(N \trianglelefteq G \). If \(K \leq G/N \), then there exists such \(H \leq G \), that \(K = H/N \).

From the definition of \(K \):

\[K = \{ hN | hN \in K \land h \in G \}. \]

Let’s define \(H \leftarrow \{ h | hN \in H \land h \in G \}. \) Thus \(h \in H \iff hN \in H \). If \(n \in N \), then \(nN = N \in K \), because \(N \) is the unit element of group \(G/N \).
(i) Assume that \(g \in H \) and \(h \in H \). As \(K \subseteq G/N \), then
\[
ghN = (gN)(hN) \in K.
\]

Hence \(gh \in H \).

(ii) As \(hN \in K \), then \(h^{-1}N = (hN)^{-1} \in K \). Thus accordingly to definition of \(H \) we have \(h^{-1} \in H \). Thus \(H \subseteq G \).

(iii) Notice
\[
H/N = \{hN \mid h \in H\} = \{hN \mid hN \in K\} = K. \quad \blacksquare
\]

1.37. Theorem (Correspondence theorem). Let \(N \subseteq G \).

(i) If \(N \subseteq H \subseteq G \), then \(H/N \subseteq G/N \).

(ii) If \(K \subseteq G/N \), then there exist such \(H \subseteq G \), that \(K = H/N \).

(iii) Let
\[
\begin{align*}
S &= \{H \mid N \subseteq H \land H \subseteq G\}, \\
\mathcal{J} &= \{K \mid K \subseteq G/N\}.
\end{align*}
\]

If \(\phi : S \to G/N : H \mapsto H/N \), then \(\phi : S \to \mathcal{J} \) is a bijection.

\(\square \) (i) Let \(gN \in G/N \) un \(hN \in H/N \), then
\[
(gN)(hN)(gN)^{-1} = (ghN)(g^{-1}N) = ghg^{-1}N.
\]

As \(H \subseteq G \), then \(ghg^{-1} \in H \). Hence \(ghg^{-1}N \in H/N \). Thus for each \(gN \in G/N \) and any \(hN \in H/N \) we have proven
\[
(gN)(hN)(gN)^{-1} \in H/N.
\]

Thus by definition \(H/N \subseteq G/N \).

(ii) There exists (1.36. Lemma) such \(H \subseteq G \), that \(K = H/N \). We need to prove that \(H \subseteq G \) and thus \(H/N \subseteq G/N \).

Let \(g \in G \) and \(h \in H \), then \(gN \) and \(g^{-1}N \) belong to group \(G/N \). In turn, \(hN \) belongs to group \(H/N \). As \(H/N \subseteq G/N \), then
\[
ghg^{-1}N = (gN)(hN)(gN)^{-1}N \in H/N.
\]

Hence \(ghg^{-1} \in H \). Thus for each \(g \in G \) and any \(h \in H \) we have proven, that \(ghg^{-1} \in H \). Then according to the definition \(H \subseteq G \).

(iii) From (ii) for each element \(K \) of set \(\mathcal{J} \) there exists such \(H \subseteq G \), that \(K = H/N \). Thus range of \(\phi : S \to G/N : H \mapsto H/N \) is \(\text{Ran}(\phi) = \mathcal{J} \), and thus mapping \(\phi : S \to \mathcal{J} \) is surjective (with \(\mathcal{J} \) as a codomain).

Assume that \(\phi(H_1) = \phi(H_2) \), i.e., \(H_1/N = H_2/N \). Let \(h_1 \in H_1 \), then \(h_1N \in H_1/N = H_2/N \). Hence \(h_1 \in H_2 \). Thus \(H_1 \subseteq H_2 \). We may construct a symmetrical argument: \(h_2 \in H_2 \), then \(h_2N \in H_2/N = H_1/N \) and \(h_2 \in H_1 \). Thus \(H_2 \subseteq H_1 \). Thus \(H_1 \subseteq H_2 \subseteq H_1 \), i.e., \(H_1 = H_2 \). We have proven that \(\phi : S \to \mathcal{J} \) is an injection. \(\blacksquare \)

The correspondence theorem holds also for rings. We will consider commutative rings.

1.38. Theorem (Correspondence theorem for rings). Assume that
\[
\begin{align*}
\bullet & \quad R \text{ is a ring;} \\
\bullet & \quad I \subseteq R \text{ is an ideal;}
\end{align*}
\]
\begin{itemize}
 \item \(\pi : R \to R/I : r \mapsto [r] \) is the natural mapping;
 \item \(S = \{ G \mid I \subseteq G \text{ and } G \text{ is a subring of } R \} \);
 \item \(\mathcal{S} = \{ H \mid H \text{ is a subring of ring } R/I \} \).
\end{itemize}

Mapping \(\phi : S \to \mathcal{S} : G \mapsto G/I \) is a bijection. If
\begin{itemize}
 \item \(S' = \{ J \mid I \subseteq J \text{ and } J \text{ is an ideal of } R \} \),
 \item \(\mathcal{S}' = \{ L \mid L \text{ is an ideal of ring } R/I \} \),
\end{itemize}
then mapping \(\psi : S' \to \mathcal{S}' : J \mapsto J/I \) is a bijection.

\(\square \) (i) First we have to prove that mapping \(\phi : S \to \mathcal{S} : G \mapsto G/I \) is correctly defined, i.e., Ran(\(\phi \)) \(\subseteq \mathcal{S} \). Assume that \(I \subseteq G \) is a subring of ring \(R \). The image of the additive group of ring \(G \) (1.37. Theorem) is \(G/I \). As \(I \) is an ideal, then \(G/I \) is a ring. Thus we have proven that Ran(\(\phi \)) \(\subseteq \mathcal{S} \).

For different subrings of ring \(R \) additive groups are distinct. Thus (1.37. Theorem) mapping \(\phi \) is injective.

Let \(H \) be a subring of ring \(R/I \), then for \(H \) the additive group can be expressed as (1.37. Theorem) \(H = A/I \), where \(A \) is a subgroup of the additive group of ring \(R \). Thus \(a \in A \iff a + I \in A/I \). As \(H = A/I \) is a subring, then \((a + I)(b + I) = ab + I \) for all \(a \in A \), \(b \in A \). Therefore \(ab \in A \), i.e., \(A \) is subring of ring \(G \). According to the definition of \(\phi \), we have \(\phi(A) = A/I \). Thus mapping \(\phi \) is surjective.

(ii) Let \(L \) be an ideal of ring \(R/I \), than the additive group of \(L \) can be expressed (1.37. Theorem) as \(L = A/I \), where \(A \) is a subgroup of the additive group of ring \(R \). Thus \(a \in A \iff a + I \in A/I \). As \(L = A/I \) is an ideal, then \(ra + I = (r + I)(a + I) \in A/I \) for all \(r \in R \), \(a \in A \). Therefore \(ra \in A \), i.e., \(A \) is an ideal of ring \(G \). According to the definition \(\psi \) we have \(\psi(A) = A/I \). Hence mapping \(\psi \) is surjective.

Let \(J \) be an ideal of ring \(R \) and \(I \subseteq J \). If we consider the additive group of \(J \), then (1.37. Theorem) mapping \(\psi : J \to J/I \) is injective.

We must prove that \(J/I \) is an ideal. From the definition of \(J/I \) follows, that \(a \in J \iff a + I \in J/I \). If \(r \in R \), then \(ar \in J \), thus \((a + I)(r + I) = ar + I \in J/I \).

Therefore \(J/I \) is ideal of ring \(R/I \). Hence mapping \(\psi \) is also injective. \(\blacksquare \)

1.39. Corollary. Assume that
\begin{itemize}
 \item \(R \) is a ring;
 \item \(I \subseteq R \) is an ideal;
 \item \(\pi : R \to R/I : r \mapsto [r] \) is the natural mapping;
 \item \(S' = \{ J \mid I \subseteq J \text{ and } J \text{ is an ideal of } R \} \);
 \item \(\mathcal{S}' = \{ L \mid L \text{ is an ideal of ring } R/I \} \);
 \item \(\psi : S' \to \mathcal{S}' : J \mapsto J/I \).
\end{itemize}

\(J/I \) is a maximal ideal of ring \(R/I \) if and only if \(J \) is a maximal ideal of ring \(R \), and \(J \) contains ideal \(I \).
Notice that mapping ψ is bijective.

\Rightarrow Assume that L is a maximal ideal if ring R/I. We already know that there exist an ideal \mathcal{J} of ring \mathcal{R}, $I \subseteq \mathcal{J}$, that $L = \mathcal{J}/I$ and $\psi(\mathcal{J}) = \mathcal{J}/I$.

If in turn, \mathcal{J} is not a maximal ideal, then there exists such ideal \mathfrak{M} of ring \mathcal{R}, that $\mathcal{J} \subseteq \mathfrak{M} \subseteq R$. Thus if $\mathcal{J} \subseteq \mathfrak{M}$, then $\mathcal{J}/I \subseteq \mathfrak{M}/I$. As ψ is bijective, then $\mathcal{J}/I \neq \mathfrak{M}/I$. Thus $\mathcal{J}/I \subseteq \mathfrak{M}/I$, e.i., \mathcal{J}/I is not a maximal ideal. A contradiction!

\Leftarrow Assume that J is a maximal ideal of ring R, $I \subseteq J$. If in turn, J/I is not a maximal ideal of ring R/I, then there exists such ideal M of ring R/I, that $J/I \subseteq M/I \subseteq R/I$. Thus if $J/I \subseteq M/I$, then $J/I \subseteq M/I$. As ψ is bijective, then $J/I \neq M/I$. Thus J/I is not a maximal ideal. A contradiction!

1.40. Definition. A ring with only one maximal ideal is called a local ring.

The commutative group of ring \mathcal{R} is denoted as \mathcal{R}^*, i.e., it is the set of all invertible elements in ring \mathcal{R}.

1.41. Proposition. If $\mathfrak{M} \neq R$ is an ideal of ring \mathcal{R} and $\mathcal{R}^* = R \setminus \mathfrak{M}$, then \mathcal{R} is a local ring and \mathfrak{M} is the maximal ideal.

\square (i) Assume that $\mathcal{I} \subseteq \mathcal{R}$ is ideal of ring \mathcal{R} and $a \in \mathcal{I} \cap \mathcal{R}^*$. Then $a^{-1} \in \mathcal{R}$. As \mathcal{I} is an ideal, then $1 = aa^{-1} \in \mathcal{I}$.

(ii) Assume that $r \in \mathcal{R}$ and $r1 \in \mathcal{I}$. Thus $\mathcal{I} = \mathcal{R}$. Thus any ideal $\mathcal{J} \subseteq \mathcal{R}$ doesn’t contain elements of set \mathcal{R}^*.

(iii) As ideal \mathfrak{M} contain all the nonreversible (in ring \mathcal{R}) elements of set \mathcal{R}, then $\mathcal{J} \subseteq \mathfrak{M}$. Thus \mathfrak{M} is the one maximal ideal.

1.42. Proposition. If \mathfrak{M} is the maximal ideal of local ring \mathcal{R}, then $\mathfrak{M} = \mathcal{R} \setminus \mathcal{R}^*$.

\square Assume that $a \notin \mathcal{R}^*$.

(i) It is obvious that $a \in a\mathcal{R}$ and $a\mathcal{R}$ is a commutative group. If $r \in \mathcal{R}$ and $b \in a\mathcal{R}$, then $b = a\beta$, where $\beta \in \mathcal{R}$ and $br = a\beta r \in a\mathcal{R}$. Hence $a\mathcal{R}$ is an ideal.

As $a \notin \mathcal{R}^*$, then in ring \mathcal{R} doesnt exist a^{-1}, therefore $1 \notin a\mathcal{R}$ and $a\mathcal{R} \subset \mathcal{R}$, i.e., $a\mathcal{R}$ is a proper ideal of ring \mathcal{R}.

(ii) Let

$$S = \{ \mathcal{I} | a\mathcal{R} \subseteq \mathcal{I} \subset \mathcal{R}, \text{where } \mathcal{I} \text{ is an ideal of ring } \mathcal{R} \}.$$

Let $\{ \mathcal{J}_\alpha \}$ be a chain of set S, i.e., if $\mathcal{J}_\beta \in \{ \mathcal{J}_\alpha \}$ and $\mathcal{J}_\gamma \in \{ \mathcal{J}_\alpha \}$, then $\mathcal{J}_\beta \subset \mathcal{J}_\gamma$ or $\mathcal{J}_\gamma \subset \mathcal{J}_\beta$.

If $\mathcal{J} = \bigcup \mathcal{J}_\alpha$, then $\mathcal{J} \subset \mathcal{R}$ because $1 \notin \mathcal{J}$.

15
Let \(b \in \mathcal{J} \) and \(c \in \mathcal{J} \). Then there exist such \(\beta \) and \(\gamma \), that \(b \in \mathcal{J}_\beta \) and \(c \in \mathcal{J}_\gamma \). We have \(\mathcal{J}_\beta \subset \mathcal{J} \), or \(\mathcal{J}_\gamma \subset \mathcal{J} \). For concreteness assume \(\mathcal{J}_\beta \subset \mathcal{J} \), then \(b \) and \(c \) are elements of ideal \(\mathcal{J} \). As \(\mathcal{J} \) is an ideal, then \(b + c \in \mathcal{J} \), also \(0 \in \mathcal{J} \) and \(-b \in \mathcal{J} \). As \(\mathcal{J} \) is an ideal, then \(br \in \mathcal{J}_r \) for all \(r \in R \). Thus \(b + c, 0, -b, br \) belong to set \(\mathcal{J} \), because \(\mathcal{J}_\beta \subset \mathcal{J} \). Additionally, the sum is associative and commutative, while the multiplication is associative \((\mathcal{J} \subset R)\). Thus \(\mathcal{J} \) is an ideal. Thus \(\mathcal{J} \in \mathcal{S} \) and is upper bound of chain \(\{ \mathcal{J}_\alpha \} \). According to Zorn’s lemma, set \(\mathcal{S} \) has at least one maximal element \(\mathfrak{M} \). Thus \(\mathfrak{M} \) is a maximal ideal and \(\mathfrak{M} \neq \mathfrak{M}_e \), because \(a \notin \mathfrak{M} \) and \(a \notin \mathfrak{M} \). This gives us a contradiction because \(R \) is a local ring. ■

1.43. Lemma. In a local ring, there are only two idempotent elements: 0 and 1.

\(\square \) Assume that \(0 \neq e \neq 1 \) is idempotent. Then \(e(1 - e) = e - e^2 = 0 \), i.e., both elements are zero divisors, thus \(e \notin R^\times \) and \(1 - e \notin R^\times \). Thus both elements belong to the maximal ideal, but \(1 = e + (1 - e) \), i.e., 1 belongs to the maximal ideal. A contradiction! ■

1.44. Lemma. If \(e \in R \) is idempotent, then \(eR \) is a ring with unit element \(e \).

\(\square \) From (proof of 1.42. Proposition) \(eR \) is an ideal. Let’s show that \(e \) is the unit element. Assume that \(x \in eR \), then \(xe = x \), where \(r \in R \).

\[xe = ex = e^2r = er = x. \square \]

1.45. Theorem. Finite ring \(R \) is isomorphic to the direct sum of local rings (with precision to term order in the sum).

\(\square \) Let \(\text{Spec}(R) = \{ P_1, P_2, \ldots, P_n \} \). As \(R \) is a finite ring, \(P_i \) is a maximal ideal (1.27. Corollary). Thus \(\text{Spec}(R) = \text{Specm}(R) \), because each maximal ideal is also a prime ideal (1.20. Corollary). Hence

\[\text{Nil}(R) = \bigcap_{P \in \text{Spec}(R)} P = \bigcap_{P \in \text{Specm}(R)} P = \mathcal{J}(R), \]

Additionally, if \(k \neq x \), then ideals \(P_k \) and \(P_x \) are coprime (1.28. Proposition). Thus (1.7. Proposition)

\[\bigcap_{k=1}^n P_k = \prod_{k=1}^n P_k. \]

Also there (1.33. Lemma) exists such \(m \), that \(\mathcal{J}(R)^m = 0 \).

If \(x \in \prod_{j=1}^n P_j^m \), then \(x = \sum_k x_{k1}x_{k2} \ldots x_{kn} \), where all \(x_{kj} \in P_j^m \). Each \(x_{kj} = \sum \gamma_{kj1} \gamma_{kj2} \ldots \gamma_{kjn} \gamma_{kj}, \) where all \(\gamma_{kj} \in P_j \). As a result, \(x \) is representable as a sum, whose terms are a product of \(nm \) elements. By taking into account the commutativity of multiplication, elements can be rearranged so that in product term first \(m \) elements belong to set \(P_1 \), then in turn \(m \) elements belonging to set \(P_2 \) \(m \), etc., until the last \(m \) elements belonging to set \(P_n \). Thus

\[\prod_{j=1}^n P_j^m = (\prod_{j=1}^n P_j)^m = \mathcal{J}(R)^m. \]
Note (1.8. Proposition), that P_i^m, P_j^m are coprime if $i \neq j$, therefore (1.7. Proposition) \[\bigcap_{j=1}^n P_j^m = \bigcap_{j=1}^n P_j^m. \]

Let’s define a homeomorphism of rings

\[\Phi : R \to R/P_i^m \times R/P_2^m \times \cdots \times R/P_n^m : r \mapsto ([r]_1, [r]_2, \ldots, [r]_n) \]

Homeomorphism Φ is injective (1.10. Proposition), because

\[\bigcap_{j=1}^n P_j^m = \bigcap_{j=1}^n P_j^m = (\bigcap_{j=1}^n P_j)^m = \mathcal{J}(R)^m = 0, \]

Additionally Φ is surjective (1.12. Proposition), because P_i^m, P_j^m are coprime, if $i \neq j$. Thus Φ is an isomorphism.

(i) We have a natural mapping

\[\Phi_i : R \to R/P_i^m : r \mapsto [r]_i. \]

Thus (1.38. Theorem) each ideal P (of ring R) containing P_i^m is mapped to ideal of ring R/P_i^m. Additionally mapping $\phi : P \mapsto P/P_i^m$ is bijective.

(ii) From (1.8. Proposition) we have: if $k \neq l$, then P_k^m, P_l^m are coprime, because P_k, P_l are coprime. Thus $P_k^m + P_l^m = R$. Assume that $P_k^m \subseteq P_l$, then $R = P_k^m + P_l^m \subseteq P_l + P_i^m \subseteq P_l = P_l$. A contradiction!

Hence P_k is the one maximal ideal, containing P_i^m. Thus from (1.39. Corollary): P_k/P_i^m is the one maximal ideal of ring R/P_i^m. Thus R/P_k^m is a local ring.

(iii) Assume that $R \cong \bigoplus_{j=1}^n R_j \cong \bigoplus_{k=1}^m S_k$, where all R_j, S_k are local rings. From (1.15. Proposition) there exist such orthogonal idempotents $e_j \in R$, $f_k \in R$, that $R_j \cong e_j R$, $S_k \cong f_k R$ and

\[1 = \sum_{j=1}^n e_j = \sum_{k=1}^m f_k. \]

Hence

\[e_j = e_j \sum_{k=1}^m f_k = \sum_{k=1}^m e_j f_k \in e_j R, \]

\[(e_j f_k)^2 = e_j f_k. \]

If $s \neq k$, then $(e_j f_k)(e_j f_s) = e_j f_k f_s = e_j \cdot 0 = 0$. Thus

\[e_j f_1, e_j f_2, \ldots, e_j f_m \]

are orthogonal idempotents of ring $e_j R$. As $e_j R$ is a local ring, then

\[e_j f_k = 0, \text{ vai } e_j f_k = e_j. \]

Note that (1.44. Lemma) e_j is unit element of ring $e_j R$. As all these idempotents $e_j f_1, e_j f_2, \ldots, e_j f_m$ are orthogonal, then only one of them is not equal to 0 (all can’t be equal to 0, because $e_j = \sum_{k=1}^m e_j f_k$). Hence there exists such κ, that $e_j = e_j f_\kappa = f_\kappa e_j \in f_\kappa R$. As in the local ring $f_\kappa R$, exists only 2 idempotents, then $e_j = f_\kappa$. Thus

\[\{e_1, e_2, \ldots, e_n\} \subseteq \{f_1, f_2, \ldots, f_m\}. \]
Similarly, we can make an argument for
\[\{f_1, f_2, \ldots, f_m\} \subseteq \{e_1, e_2, \ldots, e_n\}. \]
Hence \(n = m \) and
\[\{e_1, e_2, \ldots, e_n\} = \{f_1, f_2, \ldots, f_n\}. \]

2. Periodical rings

We are following [5] in this section.
Assume \(X \not\in R \). We identify set \(R^\omega \) with \(R[[X]] \), i.e., by using standard notation
\[a_0 a_1 a_2 \cdots a_n \cdots \rightarrow \sum_{k=0}^{\infty} a_k X^k. \]
If \(f = \sum_{k=0}^{\infty} a_k X^k \), then we use notation for coefficient extraction \(f(n) = a_n \).

2.1. Definition. Algebra \(\langle R[[X]], +, \cdot \rangle \) is called formal power series if
\[\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k = \sum_{k=0}^{\infty} (a_k + b_k) X^k, \]
\[\left(\sum_{k=0}^{\infty} a_k X^k \right) \left(\sum_{k=0}^{\infty} b_k X^k \right) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) X^k. \]

We use "formal power series" (or simply "series") also when referring to a concrete \(f \in R[[X]] \).

2.2. Proposition. Series \(f = \sum_{k=0}^{\infty} a_k X^k \) are invertible in algebra \(R[[X]] \)
if and only if \(a_0 \in R^\times \).

This is a standard result found in textbooks dedicated to formal power series. If series \(A = a_0 + a_1 X + \ldots \) has a multiplicative inverse \(B = b_0 + b_1 X + \ldots \), then the constant term \(a_0 b_0 \) of \(A \cdot B \) is the constant term of the identity series, i.e., it is 1. The condition of invertibility of \(a_0 \) in \(R \) is also sufficient, coefficients of the inverse series \(B \) can be computed as:
\[b_0 = a_0^{-1}; \quad b_n = -a_0^{-1} \sum_{i=1}^{n} a_i b_{n-i}, \quad n \geq 1. \]

Polynomial ring \(R[X] \) is a subring of ring \(R[[X]] \).

2.3. Definition. Series \(f \in R[[X]] \) is called rational series, if \(f = \frac{h}{g} \), where \(h, g \in R[X] \) and \(g \) is invertible in ring \(R[[X]] \).

2.4. Definition. Series \(f = \sum_{i=0}^{\infty} a_i X^i \) is called periodical series if there exists such \(k \in \mathbb{Z}_+ = \{1, 2, \ldots, n, \ldots\} \), that \(\forall i a_{i+k} = a_i \). Series \(f \) is called semiperiodic series, if there exist such \(n \in \mathbb{Z}_+ \), that series \(\sum_{j=0}^{n} a_{j+n} X^j \) is periodical.
2.5. Proposition. If series \(f \in R[[X]] \) is semiperiodic series, then series \(f \) is rational series.

\[f = a_0 + a_1 X + \ldots + a_m X^m + \sum_{i=0}^{\infty} (a_{m+i+1} X^{m+i+1} + a_{m+i+2} X^{m+i+2} + \ldots + a_{m+i+n} X^{m+i+n}) X^{in} \]

\[= p(X) + q(X) \sum_{i=0}^{\infty} X^{in} \]

\[= p(X) + \frac{q(X)}{1-X^n}. \]

Here

\[p(X) = a_0 + a_1 X + \ldots + a_m X^m, \]
\[q(X) = a_{m+1} X^{m+1} + a_{m+2} X^{m+2} + \ldots + a_{m+n} X^{m+n}. \]

2.6. Definition. Ring \(R \) is called a periodic ring, if

\[\forall a \in R \exists m \in \mathbb{Z}_+ \exists n \in \mathbb{Z}_+ (m \neq n \land a^m = a^n). \]

2.7. Definition. \(n \in \mathbb{N} \) is called characteristic of ring \(R \), denoted by \(\text{char}(R) \), if \(\mathbb{Z}_n \) is the kernel of homomorphism

\[\lambda : \mathbb{Z} \rightarrow R : k \mapsto k1. \]

2.8. Corollary. If \(R \) is a periodical ring, then \(\text{char}(R) \neq 0 \).

Let \(e \) be the unit element of periodic ring \(R \). If \(e \neq 0 \) and \(e + e = 0 \), then \(\text{char}(R) = 2 \). Assume that \(e \neq 0 \neq e + e \), then there exist such \(m > 0 \) and \(n > 0 \) that \((e + e)^m = (e + e)^{m+n} \). Thus \((e + e)^m + (e + e)^n = 0 \), i.e.,

\[0 = (e + e)^m + (e + e)^n \]
\[= \sum_{i=0}^{m+n} \binom{m+n}{i} e - \sum_{i=0}^{n} \binom{n}{i} e \]
\[= \left(\sum_{i=0}^{m+n} \binom{m+n}{i} - \sum_{i=0}^{n} \binom{n}{i} \right) e. \]

Here \(ke = e + e + \cdots + e \). Note that \(2e \) is not idempotent. If the contrary is true, then \(e + e = (e + e)^2 = e^2 + e^2 = e + 2e + e \). Hence \(e + e = 0 \).

2.9. Proposition. If \(\text{char}(R) = m \neq 0 \), then there exist such subring \(G \) of ring \(R \), that \(G \) is isomorph to ring \(\mathbb{Z}_m \).
Let’s define set \(G \rightleftharpoons \{ke \mid k \in \mathbb{N}\} \), here \(e \) is the unit element of ring \(R \). If
\[
 k + n = mq_1 + r_1, \quad 0 \leq r_1 < m;
 \quad kn = mq_2 + r_2, \quad 0 \leq r_2 < m,
\]
then
\[
 (k + n)e = (mq_1 + r_1)e = q_1(me) + r_1e = r_1e,
 \quad kn = (mq_2 + r_2)e = q_2(me) + r_2e = r_2e.
\]
In \(\mathbb{Z}_m \) we have
\[
k + n \equiv r_1 \mod m,
 \quad kn \equiv r_2 \mod m.
\]
Hence mapping \(f : G \rightarrow \mathbb{Z}_m : ke \mapsto k \) is an isomorphism of rings.

We will use 1 instead of e, unless it may cause misunderstandings.

2.10. Definition. Consider a commutative ring with unity \(R \). Extension \(G \) of \(R \) is called an integral extension, if for each \(c \in G \), there exists such monic polynomial \(p(X) \in R[X] \), that \(p(c) = 0 \).

2.11. Proposition. A periodic ring is an integral extension of \(\mathbb{Z}_m \) (up to isomorphism).

Assume that \(R \) is periodical and \(a \in R \). From (2.8. corollary) and (2.9. Proposition) there exist such \(m \), that \(R \) contains a subring isomorphic to ring \(\mathbb{Z}_m \). As \(R \) is periodic, then there exists such \(0 < k < n \), that \(a^k = a^n \). Thus \(a \) is the root of the monic polynomial \(X^n - X^{n-k} \).

2.12. Lemma. If \(\mathcal{I} \subseteq \mathcal{J} \) are ideal of ring \(R \), then mapping
\[
f : R/\mathcal{I} \rightarrow R/\mathcal{J} : x + \mathcal{I} \mapsto x + \mathcal{J}
\]
is an epimorphism of rings.

Let’s show that mapping \(f \) is defined correctly. Assume that \(x + \mathcal{I} = y + \mathcal{I} \), then \(x - y \in \mathcal{I} \) and therefore \(x - y \in \mathcal{J} \). Hence \(x + \mathcal{J} = y + \mathcal{J} \).

(ii) Let’s introduce notation:
\[
 [x]_\mathcal{I} \rightleftharpoons x + \mathcal{I},
 \quad [x]_\mathcal{J} \rightleftharpoons x + \mathcal{J},
\]
then
\[
f[x + y]_\mathcal{J} = [x + y]_\mathcal{J} = [x]_\mathcal{J} + [y]_\mathcal{J} = f[x]_\mathcal{I} + f[y]_\mathcal{I},
 \quad f[xy]_\mathcal{J} = [xy]_\mathcal{J} = [x]_\mathcal{J}[y]_\mathcal{J} = f[x]_\mathcal{I}[f[y]_\mathcal{I},
 \quad f[1]_\mathcal{J} = [1]_\mathcal{J}.
\]
Thus \(f \) is a homomorphism of rings.

(iii) Assume that \([x]_\mathcal{J} \in R/\mathcal{J} \), then
\[
 [x]_\mathcal{J} = x + \mathcal{J} \supseteq x + \mathcal{I} = [x]_\mathcal{I}.
\]
Thus \(f[x]_\mathcal{J} = [x]_\mathcal{J} \), e.i. \(f \) is surjective.

Let’s denote principal ideal \(g(X)R[X] \) as \(\langle g(X) \rangle \).
2.13. Lemma. If \(R \) is a finite commutative local ring and
\[g(X) = 1 + a_1X + a_2X^2 + \cdots + a_kX^k \in R[X], \]
then \(|R[X]/(g(X))| < \infty \).

\(\Box \) (i) Assume that \(\mathfrak{M} \) is maximal ideal of ring \(R \), \(a_t \in R^\times \), but
\[a_{t+1}, a_{t+2}, \ldots, a_k \notin R^\times, \]
thus (1.42. Proposition) \(a_{t+1}, a_{t+2}, \ldots, a_k \notin \mathfrak{M} \).

(ii) Maximal ideal \(\mathfrak{M} \) of ring \(R \) is prime (1.20. Corollary). If \(I \) is a prime ideal of finite ring \(R \), then it is maximal (1.27. Corollary). In the given case, this means we have only one prime ideal, e.i., \(\mathfrak{M} \). As \(R \) is commutative ring, then (1.32. Proposition)
\[\text{Nil}(R) = \bigcap_{\mathcal{I} \in \text{Spec}(R)} \mathcal{I}. \]

Here
- \(\text{Nil}(R) \) is a nilradical, e.i., a set consisting of all nilpotent elements of \(R \);
- \(\text{Spec}(R) \) is a spectrum of ring \(R \), e.i., set of all prime ideals.

In this case \(\text{Nil}(R) = \mathfrak{M} \). Thus (1.33. Lemma) there exist such \(l \), that
\[(\text{Nil}(R))^l = \mathfrak{M}^l = 0. \]

Note that \(R \) here is a finite ring.

(iii) Let \(g_1(X) \equiv (1 + a_1X + a_2X^2 + \cdots + a_tX^t)^l. \) For any commutative ring holds
\[\alpha^l - \beta^l = (\alpha - \beta) \sum_{i=1}^{l} \alpha^{l-i} \beta^{i-1}. \]

If
- \(\alpha \) is given as \(1 + a_1X + a_2X^2 + \cdots + a_tX^t \),
- \(\beta \) is given as \(-\sum_{i=t+1}^{k} a_iX^i \),

then \(\alpha - \beta = g(X) \) and thus \(g(X) \) divides polynomial
\[(1 + a_1X + a_2X^2 + \cdots + a_tX^t)^l - (\sum_{i=t+1}^{k} a_iX^i)^l. \]

As \(\mathfrak{M}^l = 0 \), then all coefficient of polynomial \((\sum_{i=t+1}^{k} a_iX^i)^l \) are equal to 0, because \(a_{t+1}, a_{t+2}, \ldots, a_k \notin \mathfrak{M} \). Hence
\[g_1(X) = (1 + a_1X + a_2X^2 + \cdots + a_tX^t)^l - (\sum_{i=t+1}^{k} a_iX^i)^l. \]

(iv) Let’s rewrite \(g_1(X) \) as \(1 + b_1X + \cdots + b_uX^u \). Here \(u = tl \) and \(b_u = a_t^u \in R^\times \). Hence \(|R[X]/(g_1(X))| = |R|^u < \infty \). Note that
\[R[X]/g_1(X) = \{ [r(X)] | h(X) \in R[X] \} \]
\[\wedge \ h(X) = f(X)g_1(X) + r(X) \]
\[\wedge \ \deg(r(X)) < \deg(g_1(X)) = u \]
(v) If $a = bc$, then $aR \subseteq bR$. Thus if $x \in aR$, then $x = ar$, where $r \in R$ and $x = ar = ber \in bR$.

As $g(X)$ divides $g_1(X)$, then $\langle g_1(X) \rangle = g_1(X)R[X] \subseteq g(X)R[X] = \langle g(X) \rangle$. From (2.12. Lemma) mapping

$$f : R[X]/\langle g_1(X) \rangle \rightarrow R[X]/\langle g(X) \rangle : p(X) + \langle g_1(X) \rangle \mapsto p(X) + \langle g(X) \rangle$$

is surjective. Thus $|R[X]/\langle g_1(X) \rangle| \geq |R[X]/\langle g(X) \rangle|$, i.e., $|R|^n \geq |R[X]/\langle g(X) \rangle|$.

Let R and G be rings and $\varphi : R \rightarrow G^n$ be a ring isomorphism. Let $\bar{a}_i = (a_{i1}, a_{i2}, \ldots, a_{in})$, where

$$a_{ij} = \begin{cases} a_{ij} & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $(a_{11}, a_{12}, \ldots, a_{nn}) = \bar{a}_1 + \bar{a}_2 + \cdots + \bar{a}_n$. As φ is an isomorphism, then $\varphi^{-1} : G^n \rightarrow R$ also is an isomorphism. Hence

$$\varphi^{-1}(a_{11}, a_{12}, \ldots, a_{nn}) = \varphi^{-1}(\bar{a}_1 + \bar{a}_2 + \cdots + \bar{a}_n)$$
$$= \varphi^{-1}(\bar{a}_1) + \varphi^{-1}(\bar{a}_2) + \cdots + \varphi^{-1}(\bar{a}_n).$$

Let $\bar{e}_i = (e_{i1}, e_{i2}, \ldots, e_{in})$, where

$$e_{ij} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $(1, 1, \ldots, 1) = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_n$. Hence

$$1 = \varphi^{-1}(1, 1, \ldots, 1) = \varphi^{-1}(\bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_n)$$
$$= \varphi^{-1}(\bar{e}_1) + \varphi^{-1}(\bar{e}_2) + \cdots + \varphi^{-1}(\bar{e}_n).$$

2.14. Lemma. If $\phi : R \rightarrow S$ is a homomorphism of rings, then

$$\phi : R[X] \rightarrow S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i$$

is a homomorphism of rings.

$$\square \quad \phi(\sum_{i=0}^{m} (a_i + b_i) X^i) = \sum_{i=0}^{m} \phi(a_i + b_i) X^i = \sum_{i=0}^{m} (\phi(a_i) + \phi(b_i)) X^i$$
$$= \sum_{i=0}^{m} \phi(a_i) X^i + \sum_{i=0}^{m} \phi(b_i) X^i$$
$$= \phi(\sum_{i=0}^{m} a_i X^i) + \phi(\sum_{i=0}^{m} b_i X^i).$$
\[
\phi((\sum_{i=0}^{m} a_i X^i)(\sum_{j=0}^{n} b_j X^j)) = \phi\left(\sum_{k=0}^{m+n} \phi(\sum_{s=0}^{k} a_s b_{k-s}) X^k\right) \\
= \sum_{k=0}^{m+n} \phi(\sum_{s=0}^{k} a_s b_{k-s}) X^k \\
= \sum_{k=0}^{m+n} \sum_{x=0}^{k} \phi(a_x) \phi(b_{k-x}) X^k \\
= (\sum_{i=0}^{m} \phi(a_i) X^i)(\sum_{j=0}^{n} \phi(b_j) X^j) \\
= \phi(\sum_{i=0}^{m} a_i X^i)\phi(\sum_{j=0}^{n} b_j X^j). \quad \blacksquare
\]

Thus we have proven:
- \(\phi(p + q) = \phi(p) + \phi(q)\),
- \(\phi(pq) = \phi(p)\phi(q)\)
for all \(p, q \in R[X]\).

2.15. Corollary. (i) If \(\phi : R \rightarrow S\) is a ring epimorphism, then
\(\phi : R[X] \rightarrow S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i\) is a ring epimorphism.
(ii) If \(\phi : R \rightarrow S\) is a ring monomorphism, then
\(\phi : R[X] \rightarrow S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i\) is a ring monomorphism.
(iii) If \(\phi : R \rightarrow S\) is a ring isomorphism, then
\(\phi : R[X] \rightarrow S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i\) is a ring isomorphism.

\(\square\) (i) Let \(\sum_{i=0}^{m} a_i X^i \in S[X]\). As \(\phi : R \rightarrow S\) is an epimorphism, then
exist such \(a_1, a_2, \ldots, a_m \in R\), that \(\forall i \phi(a_i) = a_i\). Hence \(\phi(\sum_{i=0}^{m} a_i X^i) = \sum_{i=0}^{m} a_i X^i\).
(ii) Let \(\sum_{i=0}^{m} a_i X^i \neq \sum_{i=0}^{m} b_i X^i\). Thus there exists such \(k\), that \(a_k \neq b_k\). Hence \(\sum_{i=0}^{m} \phi(a_i) X^i \neq \sum_{i=0}^{m} \phi(b_i) X^i\).
(iii) Follows as a consequence of (i) and (ii). \(\blacksquare\)

2.16. Lemma. If \(\phi : R \rightarrow S\) is a ring isomorphism, then
\(R[X]/(\sum_{i=0}^{m} a_i X^i) \cong S[X]/(\sum_{i=0}^{m} \phi(a_i) X^i)\).

\(\square\) Let \(\sum_{i=0}^{m} b_i X^i \equiv_R \sum_{i=0}^{m} c_i X^i\), i.e., they represent the same element of set \(R[X]/(\sum_{i=0}^{m} a_i X^i)\). There is a possibility of polynomials \(\sum_{i=0}^{m} b_i X^i\) and \(\sum_{i=0}^{m} c_i X^i\) to have different orders, then some of the coefficients are equal to 0.

Let’s denote polynomials in consideration as: \(f = \sum_{i=0}^{m} a_i X^i\), \(\phi(f) = \sum_{i=0}^{m} \phi(a_i) X^i\),
\(p = \sum_{i=0}^{m} b_i X^i\), \(q = \sum_{i=0}^{m} c_i X^i\).
Hence mapping \(\phi : R \to S \) is an isomorphism, then \(p \equiv_R q \iff \phi(p) \equiv_S \phi(q) \).

Then
\[
p \equiv_R q, \\
p - q \equiv_R 0, \\
\exists r \in R[X] \ f_r = p - q, \\
\phi(r)\phi(f) = \phi(rf) = \phi(p - q) = \phi(p) - \phi(q), \\
\phi(p) - \phi(q) \equiv_S 0, \\
\phi(p) \equiv_S \phi(q).
\]

As mapping \(\phi : R \to S \) is an isomorphism, then \(p \equiv_R q \iff \phi(p) \equiv_S \phi(q) \).

Thus \(\tilde{\phi} \) is an isomorphism.

\[\boxdot \]

2.17. Lemma.

If \(\phi : R \to G_1 \times G_2 \times \cdots \times G_n \) is a ring homomorphism, then for all \(i \)
\[
\phi_i : R \to G_i : r \mapsto \text{pr}_i(\phi(r))
\]
is a ring homomorphism. Here \(\text{pr}_i(r_1, r_2, \ldots, r_n) = r_i \).

\[
\square \text{ Let } \phi(x) = (x_1, x_2, \ldots, x_n) \text{ and } \phi(y) = (y_1, y_2, \ldots, y_n), \text{ then}
\]
\[
\phi_i(x + y) = \text{pr}_i(\phi(x + y)) = \text{pr}_i(\phi(x) + \phi(y)) = x_i + y_i \\
\phi_i(x) + \phi_i(y) = \phi_i(x + y);
\]
\[
\phi_i(xy) = \text{pr}_i(\phi(xy)) = \text{pr}_i(\phi(x)\phi(y)) = x_i y_i \\
\phi_i(x)\phi_i(y). \quad \boxdot
\]

2.18. Proposition.

If \(\phi : R \to G_1 \times G_2 \times \cdots \times G_n \) is a ring isomorphism and \(f = \sum_{j=0}^m a_j X^j \in R[X] \), then
\[
R[X]/f \cong G_1[X]/(\phi_1(f)) \times G_2[X]/(\phi_2(f)) \times \cdots \times G_n[X]/(\phi_n(f)).
\]

Here \(\phi_i(f) = \sum_{j=0}^m \text{pr}_j(\phi(a_j))X^j \).

\[
\square \text{ (i) Mapping } \phi_i : R \to G_i : r \mapsto \text{pr}_i(\phi(r)) \text{ is ring homomorphism (2.17. Lemma). As } \phi \text{ is an isomorphism, then } \phi_i \text{ is an epimorphism. Thus (2.15. Corollary)}
\]
\[
\phi_i : R[X] \to G_i[X] : p \mapsto \phi_i(p)
\]
is an epimorphism.
Assume that $\sum_{j=0}^n b_j X^j \equiv_R \sum_{j=0}^n c_j X^j$, i.e., they represent the same element from set $R[X]/(\sum_{j=0}^n a_j X^j)$. Let's denote polynomials in consideration as: $p \equiv \sum_{j=0}^n b_j X^j$, $q \equiv \sum_{j=0}^n c_j X^j$. Then

$$\begin{align*}
p &\equiv_R q, \\
p - q &\equiv_R 0, \\
\exists r \in R[X]
fr &\equiv p - q, \\
\phi_i(r) &\equiv \phi_i(rf) = \phi_i(rf) = \phi_i(p - q) = \phi_i(p) - \phi_i(q), \\
\phi_i(p) - \phi_i(q) &\equiv_{G_i} 0, \\
\phi_i(p) &\equiv_{G_i} \phi_i(q).
\end{align*}$$

This shows that mappings

$$\bar{\phi}_i : R[X]/\langle f \rangle \to G_i[X]/\langle \phi_i(f) \rangle : [p]_R \mapsto [\phi_i(p)]_{G_i}$$

are defined correctly. Here

$$\begin{align*}
[p]_R &\equiv \{ g \mid g \equiv_R p \}, \\
[\phi_i(p)]_{G_i} &\equiv \{ h \mid h \equiv_{G_i} \phi_i(p) \}.
\end{align*}$$

$$\begin{align*}
\bar{\phi}_i([p]_R [q]_R) &= \bar{\phi}_i([pq]_R) = [\phi_i(pq)]_{G_i} = [\phi_i(p)\phi_i(q)]_{G_i} \\
&= [\phi_i(p)]_{G_i}[\phi_i(q)]_{G_i} = \bar{\phi}_i([p]_R)[\phi_i([q]_R)] \\
\bar{\phi}_i([p]_R) + [q]_R) &= \bar{\phi}_i([p + q]_R) = [\phi_i(p + q)]_{G_i} = [\phi_i(p) + \phi_i(q)]_{G_i} \\
&= [\phi_i(p)]_{G_i} + [\phi_i(q)]_{G_i} = \bar{\phi}_i([p]_R) + \bar{\phi}_i([q]_R).
\end{align*}$$

Hence $\bar{\phi}_i$ is a homomorphism. Thus

$$\tilde{\phi} : [p]_R \mapsto (\bar{\phi}_1([p]_R), \bar{\phi}_2([p]_R), \ldots, \bar{\phi}_n([p]_R))$$

is a homomorphism.

(ii) Let $p_i \in G_i[X]$ and $k = \max_i \deg(p_i)$. Thus

$$p_i(X) = \sum_{j=0}^k a_{ij} X^j \in G_i[X].$$

As ϕ is bijective, then there exist such $r_s, s \in \overline{1,k}$, that

$$\phi(r_s) = (a_{1s}, a_{2s}, \ldots, a_{ns}).$$

Let's choose $p(X) \equiv \sum_{j=0}^k r_j X^j$. Thus mapping

$$\Phi : R[X] \to G_1[X] \times G_2[X] \times \cdots \times G_n[X] : p \mapsto (\phi_1(p), \phi_2(p), \ldots, \phi_n(p))$$

is surjective. As $\deg(\phi_i(p)) = \deg(p)$, then only case, when Φ is not injective, might arise when $p \neq q$, but $\deg(p) = \deg(q)$. Let $q(X) = \sum_{j=0}^k r_j X^j$, $r_s \neq \rho_s$ and $\phi(\rho_s) = (b_1, b_2, \ldots, b_n)$. In expanded expression:

$$(a_{1s}, a_{2s}, \ldots, a_{ns}) = \phi(r_s) \neq \phi(\rho_s) = (b_1, b_2, \ldots, b_n).$$
Thus there exist such ν, that $a_{\nu R} \neq b_\nu$.

$$\phi_\nu(p) = \sum_{j=0}^{k} \phi_\nu(r_j)X^j = \sum_{j=0}^{k} a_{\nu j}X^j = \sum_{j \neq \nu} a_{\nu j}X^j + a_{\nu \nu}X^\nu.$$

$$\phi_\nu(q) = \sum_{j=0}^{k} \phi_\nu(p_j)X^j = \sum_{j \neq \nu} \phi_\nu(p_j)X^j + \phi_\nu(p_\nu)X^\nu$$

$$= \sum_{j \neq \nu} \phi_\nu(p_j)X^j + b_\nu X^\nu.$$

Thus $\phi_\nu(p) \neq \phi_\nu(q)$, i.e., Φ is injective. From all the above, we conclude that Φ is bijective.

(iii) Let

$$([p_1]_{G_1}, [p_2]_{G_2}, \ldots, [p_n]_{G_n}) \in G_1[X]/\langle \phi_1(f) \rangle \times G_2[X]/\langle \phi_2(f) \rangle \times \cdots \times G_n[X]/\langle \phi_n(f) \rangle.$$

Thus $[p_1] \subseteq G_1[X]$ and $p_n \in G_n[X]$. As Φ is bijective, then exist such $p \in R[X]$, that $\Phi(p) = (p_1, p_2, \ldots, p_n)$, e.i.,

$$p_1 = \phi_1(p), p_2 = \phi_2(p), \ldots, p_n = \phi_n(p).$$

Hence $[p_1]_{G_1} = [\phi_1(p)]_{G_1}$. From the definition of $\tilde{\phi}_i$, we have $\tilde{\phi}_i : [p]_R \rightarrow [\phi_i(p)]_{G_i}$ and

$$\tilde{\phi} : [p]_R \mapsto (\tilde{\phi}_1([p]_R), \tilde{\phi}_2([p]_R), \ldots, \tilde{\phi}_n([p]_R)) = ([p_1]_{G_1}, [p_2]_{G_2}, \ldots, [p_n]_{G_n}).$$

Hence $\tilde{\phi}$ is surjective.

Let $\tilde{\phi}([p]_R) = \tilde{\phi}([0]_R)$, then $\forall i \tilde{\phi}_i([p]_R) = \tilde{\phi}_i([0]_R)$, t.i., $[\phi_i(p)]_{G_i} = [\phi_i(0)]_{G_i} = [0]_{G_i}$. Thus there exist such $r_i \in G_i[X]$, that $\phi_i(p) = r_i \phi_i(f)$.

As $\Phi : R[X] \rightarrow G_1[X] \times G_2[X] \times \cdots \times G_n[X]$ is bijective, then exists $p \in R[X]$, that $\Phi(p) = (r_1, r_2, \ldots, r_n)$. On the other hand $\Phi(p) = (\phi_1(p), \phi_2(p), \ldots, \phi_n(p))$. Thus $r_i = \phi_i(p)$, therefore $\phi_i(p) = r_i \phi_i(f) = \phi_i(p) \phi_i(f) = \phi_i(pf)$. Hence

$$\Phi(p) = (\phi_1(p), \phi_2(p), \ldots, \phi_n(p)) = (\phi_1(pf), \phi_2(pf), \ldots, \phi_n(pf)) = \Phi(pf).$$

Mapping Φ is bijective, therefore $p = pf$, t.i., $[p]_R = [0]_R$. Thus the kernel of homomorphism $\tilde{\phi}$ is trivial, hence ϕ is a monomorphism.

From all the above we conclude:

$$\tilde{\phi} : \langle f \rangle / \langle f \rangle \rightarrow G_1[X]/\langle \phi_1(f) \rangle \times G_2[X]/\langle \phi_2(f) \rangle \times \cdots \times G_n[X]/\langle \phi_n(f) \rangle$$

is an isomorphism. $lacksquare$

2.19. Lemma. Let $g(X) = 1 + a_1X + a_2X^2 + \cdots + a_kX^k \in R[X]$. If R is integral extension of ring $\mathbb{Z}_m \cong \mathbb{Z}_m$, then there exist such n, that $g(X)$ divides $X^n - 1$.

27
(i) Let \(\alpha = a_1^\ast a_2^\ast \ldots a_k^\ast, \beta = b_1^\ast b_2^\ast \ldots b_k^\ast \), where \(a, b \in \mathbb{Z}_m \), then \(\alpha + \beta = (a + b)^{\ast} \). Let denote by \(\mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) the smallest extension of ring \(\mathbb{Z}_m \), containing all elements \(a_1, a_2, \ldots, a_k \). Thus \(\mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) consists of sums:

\[
\sum_{x \in \mathbb{Z}_m} a_x a_1^\ast a_2^\ast \ldots a_k^\ast,
\]

where \(a_x \in \mathbb{Z}_m \) and \(\bar{x} = (x_1, x_2, \ldots, x_k) \). There all \(\bar{x} \) are distinct.

(ii) As \(\mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) is an integral extension, then for each \(a_i \) there exists such monic polynomial

\[
p_i(X) = X^{m_i} + b_1m_{i-1}X^{m_i-1} + \ldots + b_1X + b_0,
\]

that \(p_i(a_i) = 0 \). Hence

\[
a_i^{m_i} = -b_1m_{i-1}a_i^{m_i-1} - \ldots - b_1a_i - b_0.
\]

Thus each element of ring \(\mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) is representable as a sum

\[
\sum_{x \in \mathbb{Z}_m} a_x a_1^\ast a_2^\ast \ldots a_k^\ast,
\]

where all \(\bar{x} = (x_1, x_2, \ldots, x_k) \) are distinct and all \(x_i < m_i \). Then count of such sums is finite, because ring \(\mathbb{Z}_m \) is finite. Thus ring \(\mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) is finite.

(iii) As \(S \simeq \mathbb{Z}_m(a_1, a_2, \ldots, a_k) \) is a finite ring, then (1.45. Theorem)

\[
S \simeq S_1 \times S_2 \times \ldots \times S_t,
\]

where all \(S_i \) are finite commutative rings. Thus (2.18. Proposition)

\[
S[X]/(g) \simeq S_1[X]/(\phi_1(g)) \times S_2[X]/(\phi_2(g)) \times \ldots \times S_t[X]/(\phi_t(g)).
\]

Here

\[
\bar{\phi} : S[X]/(g) \to S_1[X]/(\phi_1(g)) \times S_2[X]/(\phi_2(g)) \times \ldots \times S_t[X]/(\phi_t(g))
\]

is an isomorphism, where

\[
\phi : S \to S_1 \times S_2 \times \ldots \times S_t
\]

is an isomorphism, \(\phi_1(g) = \sum_{j=0}^k p_j(\phi(a_j))X^j \) and \(a_0 = 1 \). Thus

\[
\phi_i(g) = 1s_i + \sum_{j=1}^k p_j(\phi(a_j))X^j.
\]

(2.13. Lemma) \(S[X]/(\phi_1(g)) \) is a finite set, thus \(S[X]/(g) \) is a finite ring. Therefore all classes \([1], [X], [X^2], [X^3], \ldots, [X^n], \ldots \) can’t be distinct. Thus there exist such \(n \geq 0 \) and \(\nu > 0 \), that \([X^n] = [X^{n+\nu}] \) or \([X^n(X^n - 1)] = [0] \). Thus thee exist such \(q : X \to S[X] \), that \(q(X)q(X) = X^n(X^n - 1) \). As \(q(0) = 1 \), then \(q(X) = X^\nu r(X) \). Hence \(X^\nu q(X)r(X) = X^\nu(X^n - 1) \). It is possible only if \(g(X)r(X) = X^n - 1 \).
2.20. Proposition. If integral extension \(f \) of \(\mathbb{Z}_m \cong \mathbb{Z}_m \) is a rational series, then \(f \) is semiperiodic.

Let \(R \) be extension of ring \(\mathbb{Z}_m \), \(f(X) = \frac{b(X)}{g(X)} \) and \(g(X) = \sum_{k=0}^{\nu} a_k X^k \), then \(g(X) = a_0 (1 + \sum_{k=1}^{\nu} a_k X^k) \). Thus (2.19. Lemma) exists such \(n \), that \(X^n - 1 = a_0^{-1} g \), where \(r \in R[X] \). Hence

\[
f = \frac{h}{g} = \frac{h(X^n - 1)}{g(X^n - 1)} = \frac{a_0^{-1} h}{X^n - 1} \cdot \frac{X^n - 1}{a_0^{-1} g} = \frac{a_0^{-1} h}{a_0^{-1} g} \cdot \frac{1}{X^n - 1} = -a_0^{-1} hr \sum_{k=0}^{\infty} X^{kn}
\]

Assume that \(-a_0^{-1} hr = \sum_{\nu=0}^{\sigma} b_{\nu} X^\nu \), then \(f = \sum_{\nu=0}^{\sigma} b_{\nu} X^\nu \sum_{k=0}^{\infty} X^{kn} \).

If \(n = 1 \), then

\[
f = \sum_{\nu=0}^{\sigma} b_{\nu} X^\nu \sum_{k=0}^{\infty} X^k = (b_0 + b_1 X + b_2 X^2 + \ldots + b_{\sigma} X^\sigma) (1 + X + X^2 + \ldots + X^n + \ldots)
\]

If \(\sigma < n \), then

\[
f = \sum_{\nu=0}^{\sigma} b_{\nu} X^\nu \sum_{k=0}^{\infty} X^{kn} = (b_0 + b_1 X + b_2 X^2 + \ldots + b_{\sigma} X^\sigma) (1 + X^n + X^{2n} + \ldots + X^{kn} + \ldots)
\]

If \(\sigma = n + \tau \) un 0 \(\leq \tau < n \), then

\[
f = \sum_{\nu=0}^{\sigma} b_{\nu} X^\nu \sum_{k=0}^{\infty} X^{kn} = (b_0 + b_1 X + b_2 X^2 + \ldots + b_{\sigma} X^\sigma)(1 + X^n + X^{2n} + \ldots + X^{kn} + \ldots)
\]

28
\[f = \sum_{k=0}^{n-1} b_k X^k + \sum_{k=1}^{\infty} \left(\sum_{i=0}^{r} (b_i + b_{n+i}) X^{kn+i} + \sum_{i=\tau+1}^{n-1} b_i X^{kn+i} \right) \]

If \(\sigma = mn + \tau \) un \(0 \leq \tau < n \), then

\[f = \sum_{a=0}^{\sigma} b_a X^a \sum_{k=0}^{\infty} X^{kn} \]

\[= (b_0 + b_1 X + b_2 X^2 + \ldots + b_{n-1} X^{n-1} + b_n X^n + \ldots + b_{mn+\tau} X^{mn+\tau}) \times (1 + X^n + X^{2n} + \ldots + X^{kn} + \ldots) \]

\[= b_0 + b_1 X + b_2 X^2 + \ldots + b_{n-1} X^{n-1} + (b_0 + b_n) X^n + (b_1 + b_{n+1}) X^{n+1} + \ldots + (b_0 + b_n + b_{n+1} + \ldots + b_{(m-1)n+1}) X^{(m-1)n} + \ldots \]

\[+ (b_1 + b_{n+1} + b_{2n+1} + \ldots + b_{(m-1)n+1}) X^{(m-1)n+1} + \ldots \]

\[+ (b_0 + b_n + \ldots + b_{mn}) X^{mn} + (b_1 + b_{n+1} + \ldots + b_{mn+1}) X^{mn+1} + \ldots \]

\[+ (b_0 + b_n + \ldots + b_{mn} + b_{mn+1} + \ldots + b_{mn+\tau}) X^{mn+\tau} \]

\[+ (b_{r+1} + b_{n+\tau+1} + \ldots + b_{(m-1)n+\tau+1}) X^{mn+\tau+1} + \ldots \]

\[= \sum_{k=0}^{m-1} \sum_{i=0}^{n-1} \left(\sum_{j=0}^{k} b_{i+jn} \right) X^{nk+i} \]

\[+ \sum_{k=m}^{\infty} \left(\sum_{i=0}^{m} \left(\sum_{j=0}^{k} b_{i+jn} \right) X^{kn+i} + \sum_{i=\tau+1}^{n-1} \left(\sum_{j=0}^{m-1} b_{i+jn} \right) X^{kn+i} \right) \]

2.21. Corollary. Each formal power series of a periodic ring is semiperiodic.

\(\Box \) Periodic ring is integral extension of ring \(\mathbb{Z}_m \) (2.11. Proposition), up to isomorphism. The result follows from (2.20. Proposition). \(\Box \)

2.22. Example. \(f(X) = \frac{X^2 + 2X - 1}{X^2 + X + 1} \), where polynomials are elements of ring \(\mathbb{Z}_4[X] \).

\[f(X) = \frac{X^2 + 2X - 1}{X^2 + X + 1} = \frac{(X^2 + 2X - 1)(X^3 - 1)}{(X^2 + X + 1)(X^3 - 1)} \]

\[= \frac{(X^2 + 2X - 1)(X - 1)}{X^3 - 1} \]

\[= -(1 - 3X + X^2 + X^3)(1 + X^3 + X^6 + X^9 + \ldots) \]

Let’s consider the general expression: \(\sigma = n = 3 \) and \(\tau = 0 \).

\[f(X) = (b_0 + b_1 X + b_2 X^2 + b_3 X^3)(1 + X^3 + X^6 + X^9 + \ldots) \]

\[= b_0 + b_1 X + b_2 X^2 + \sum_{k=1}^{\infty} ((b_0 + b_3) X^{3k} + b_1 X^{3k+1} + b_2 X^{3k+2}) \]
In our case:

\[f(X) = -1 + 3X - X^2 + \sum_{k=1}^{\infty} ((-1 - 1)X^{3k} + 3X^{3k+1} - X^{3k+2}) \]

\[= -1 + 3X - X^2 + \sum_{k=1}^{\infty} (-2X^{3k} + 3X^{3k+1} - X^{3k+2}) \]

3. Mealy machines

We will consider mappings

\[\mu[f] : g(X) \mapsto f(X)g(X), \]

\[\alpha[f] : g(X) \mapsto f(X) + g(X), \]

where \(f(X) \) and \(g(X) \) are elements of ring \(R[[X]] \).

We recall some facts from [6]. Details see in [2], [3] and [4].

3.1. Proposition.

- \(\alpha[f] \) is a bijection;
- if \(f \) is invertible in ring \(R[[x]] \), then \(\mu[f] \) is bijective;
- if \(f \) is invertible in ring \(R[[x]] \), then \((\mu(f))^{-1} = \mu(f^{-1}) \);
- if \(f \) is invertible in ring \(R[[x]] \), then \(\mu(f^{-1})\alpha[h]\mu[f] = \alpha[fh] \)

3.2. Definition. Mapping

\[\sigma(f) = \sum_{k=0}^{\infty} a_{k+1}X^k \]

is called a shift. Here \(f(X) = \sum_{k=0}^{\infty} a_kX^k \).

3.3. Corollary.

- \(f = a_0 + \sigma(f)X \);
- \((1 - aX)^{-1} = \sum_{k=0}^{\infty} a^kX^k \);
- if \(f = \frac{1}{1 - aX} \) then \(\sigma(f) = af \);
- if \(f \) is invertible in ring \(R[[x]] \), then \(\mu(f^{-1})\alpha[h]\mu[f] = \alpha[fh] \)

3.4. Definition. Let \(\zeta : A^\omega \to B^\omega \) is \(\omega \)-determined function. Function \(\zeta \) defines set

\[Q_{\zeta} = \{ \zeta_u \mid u \in A^* \} \]

where \(\zeta_u \) is restriction of function \(\zeta \). If set \(Q_f \) is finite, then \(\zeta \) is called a finitely determined function.

3.5. Theorem. If \(f = \frac{1}{1 - X} \), then \(\mu[f] \) is finitely determined function, whose restriction set \(Q_f = \{ \mu[f] \circ \alpha[s] \mid s \in R \} \).
Let \(f = \frac{1}{1-X} \). Define \(M_f = \langle Q_f, R, \circ, \ast \rangle \):

- with set \(Q_f = \{ \alpha[s]\mu[f] \mid s \in R \} \) of states and
- alphabet \(R \),
- \(Q \times R \overset{\circ}{\longrightarrow} Q : \alpha[s]\mu[f] \circ r = \alpha[s+r]\mu[f] \),
- \(Q \times A \overset{\ast}{\longrightarrow} A : \alpha[s]\mu[f] \ast r = s + r \).

If \(R \) is Galois field \(GF(2) \), then we obtain the Lamplighter group. Here

\[
\alpha[0]\mu[f] \mapsto q, \quad \alpha[1]\mu[f] \mapsto p
\]

and \(\Gamma(M_2) = (q, p) = (\alpha[0]\mu[f], \alpha[1]\mu[f]) \).

\[
\begin{array}{c|c|c}
M_2 & 0/0 & 1/0 \\
\hline
0/1 & p & q \\
1/1 & q & p
\end{array}
\]

\[
\begin{array}{c|c|c}
M_2^{-1} & 0/0 & 1/0 \\
\hline
0/1 & p^{-1} & q^{-1} \\
1/1 & q^{-1} & p^{-1}
\end{array}
\]

1. Figure: Mealy machine generating the Lamplighter group.

Problem. Witch groups are generated by the rational series of commutative rings?

Here are some intuitive considerations as to why this might be interesting.

- Are all groups defined by rational formal power series of finite commutative rings infinite?
- If there still are finite groups defined by rational formal power series of finite commutative rings, then a question arises: is the finiteness problem algorithmically decidable?

3.6. Example. What kind of group is determined by polynomial \(f(X) = 1 + X + X^2 \)?

Let \(g(X) = s_0 + s_1X + s_2X^2 + \cdots = \sum_{k=0}^{\infty} s_kX^k \), then

\[
g[\alpha]\mu[f] = (r + s_0 + \sum_{k=1}^{\infty} s_kX^k)\mu[f] = (r + s_0) f(X) + f(X) \sum_{k=1}^{\infty} s_kX^k
\]

\[
= (r + s_0) + (r + s_0)X + (r + s_0)X^2
+ (1 + X + X^2)(s_1X + s_2X^2 + s_3X^3 + s_4X^4 + \cdots)
= (r + s_0) + (r + s_0)X + (r + s_0)X^2
+ s_1X + (s_1 + s_2)X^2
+ (s_1 + s_2 + s_3)X^3 + (s_2 + s_3 + s_4)X^4 + (s_3 + s_4 + s_5)X^5 + \cdots
\]

\[
= (r + s_0) + (r + s_0 + s_1)X + (r + s_0 + s_1 + s_2)X^2
+ (s_1 + s_2 + s_3)X^3 + (s_2 + s_3 + s_4)X^4 + (s_3 + s_4 + s_5)X^5 + \cdots
\]

31
\[g\mu[f] = s_0 + (s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \]
\[= s_0 + (s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}. \]

Hence

\[g\mu_0[f] = r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \]
\[= r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

\[g\mu_1[f] = 2r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \]
\[= 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

\[g\mu_2[f] = 2r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \]
\[= 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

\[g\mu_n[f] = 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}. \]

\[g\mu_{r_1r_2}[f] = r_1 + r_2 + s_0 + (r_2 + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots \]
\[= r_1 + r_2 + s_0 + (r_2 + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

\[g\mu_{r_1r_2r_3}[f] = r_2 + r_3 + s_0 + (r_3 + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots \]
\[= r_2 + r_3 + s_0 + (r_3 + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

\[g\mu_{r_1\ldots r_{n-1}r_n}[f] = r_{n-1} + r_n + s_0 + (r_n + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots \]
\[= r_{n-1} + r_n + s_0 + (r_n + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \]

Let’s introduce notation \(\mu u = \mu_u[f] \) for each \(u \in R^* \).

What happens if \(R = GF(2) \)?

From the above, it follows that:

\[
\begin{align*}
\mu & = \mu 0 = \mu u00 \quad \rightarrow \quad s_0 + (s_0 + s_1)X \\
\mu 1 & = \mu 01 = \mu u01 \quad \rightarrow \quad 1 + s_0 + (1 + s_0 + s_1)X \\
\mu 10 & = \mu u10 \quad \rightarrow \quad 1 + s_0 + (s_0 + s_1)X \\
\mu 11 & = \mu u11 \quad \rightarrow \quad s_0 + (1 + s_0 + s_1)X
\end{align*}
\]

What happens if \(R = GF(4) \)?
2. Figure: Machine defined by $1 + X + X^2$ in field $GF(2)$.

\[
\begin{array}{|c|c|c|c|}
\hline
x \backslash y & 0 & 1 & a \\
\hline
0 & 0 & 1 & a \\
1 & 0 & 1 & a \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
\text{addition } x + y & 0 & 1 & a \\
\hline
0 & 0 & 1 & a \\
1 & 0 & 1 & a \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
\text{multiplication } xy & 0 & 1 & a \\
\hline
0 & 0 & 1 & a \\
1 & 0 & 1 & a \\
\hline
\end{array}
\]

\[
\begin{align*}
\mu &= \mu_0 = \mu u00 \\
\mu1 &= \mu01 = \mu u01 \\
\mu a &= \mu0a = \mu u0a \\
\mu b &= \mu0b = \mu u0b \\
\mu 10 &= \mu u10 \\
\mu 11 &= \mu u11 \\
\mu 1a &= \mu u1a \\
\mu 1b &= \mu u1b \\
\mu a0 &= \mu ua0 \\
\mu a1 &= \mu ua1 \\
\mu aa &= \mu uaa \\
\mu ab &= \mu uab \\
\mu b0 &= \mu ub0 \\
\mu b1 &= \mu ub1 \\
\mu ba &= \mu uba \\
\mu bb &= \mu ubb \\
\end{align*}
\]

\[
\begin{align*}
&\rightarrow s_0 + (s_0 + s_1)X \\
&\rightarrow 1 + s_0 + (1 + s_0 + s_1)X \\
&\rightarrow a + s_0 + (a + s_0 + s_1)X \\
&\rightarrow b + s_0 + (b + s_0 + s_1)X \\
&\rightarrow 1 + s_0 + (s_0 + s_1)X \\
&\rightarrow s_0 + (1 + s_0 + s_1)X \\
&\rightarrow b + s_0 + (a + s_0 + s_1)X \\
&\rightarrow a + s_0 + (b + s_0 + s_1)X \\
&\rightarrow a + s_0 + (s_0 + s_1)X \\
&\rightarrow b + s_0 + (1 + s_0 + s_1)X \\
&\rightarrow s_0 + (a + s_0 + s_1)X \\
&\rightarrow 1 + s_0 + (b + s_0 + s_1)X \\
&\rightarrow b + s_0 + (s_0 + s_1)X \\
&\rightarrow a + s_0 + (1 + s_0 + s_1)X \\
&\rightarrow 1 + s_0 + (a + s_0 + s_1)X \\
&\rightarrow s_0 + (b + s_0 + s_1)X
\end{align*}
\]
<table>
<thead>
<tr>
<th></th>
<th>μ</th>
<th>μ_1</th>
<th>μa</th>
<th>μb</th>
<th>μ_{10}</th>
<th>μ_{11}</th>
<th>μ_{1a}</th>
<th>μ_{1b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>μ</td>
<td>μ_{10}</td>
<td>μa_0</td>
<td>μb_0</td>
<td>μ</td>
<td>μ_{10}</td>
<td>μa_0</td>
<td>μb_0</td>
</tr>
<tr>
<td>1</td>
<td>μ_1</td>
<td>μ_{11}</td>
<td>μa_1</td>
<td>μb_1</td>
<td>μ_1</td>
<td>μ_{11}</td>
<td>μa_1</td>
<td>μb_1</td>
</tr>
<tr>
<td>a</td>
<td>μa</td>
<td>$\mu a a_1$</td>
<td>$\mu a b_1$</td>
<td>$\mu a b_1$</td>
<td>μa</td>
<td>$\mu a a_1$</td>
<td>$\mu a b_1$</td>
<td>$\mu a b_1$</td>
</tr>
<tr>
<td>b</td>
<td>μb</td>
<td>$\mu b a_1$</td>
<td>$\mu b b_1$</td>
<td>$\mu b b_1$</td>
<td>μb</td>
<td>$\mu b a_1$</td>
<td>$\mu b b_1$</td>
<td>$\mu b b_1$</td>
</tr>
<tr>
<td>*</td>
<td>μ</td>
<td>μ_1</td>
<td>μa</td>
<td>μb</td>
<td>μ_{10}</td>
<td>μ_{11}</td>
<td>μ_{1a}</td>
<td>μ_{1b}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>1</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>μa_0</th>
<th>μa_1</th>
<th>$\mu a a_1$</th>
<th>$\mu a b_1$</th>
<th>μb_0</th>
<th>μb_1</th>
<th>$\mu b a_1$</th>
<th>$\mu b b_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>μ</td>
<td>μ_{10}</td>
<td>μa_0</td>
<td>μb_0</td>
<td>μ</td>
<td>μ_{10}</td>
<td>μa_0</td>
<td>μb_0</td>
</tr>
<tr>
<td>1</td>
<td>μ_1</td>
<td>μ_{11}</td>
<td>μa_1</td>
<td>μb_1</td>
<td>μ_1</td>
<td>μ_{11}</td>
<td>μa_1</td>
<td>μb_1</td>
</tr>
<tr>
<td>a</td>
<td>μa</td>
<td>$\mu a a_1$</td>
<td>$\mu a b_1$</td>
<td>$\mu a b_1$</td>
<td>μa</td>
<td>$\mu a a_1$</td>
<td>$\mu a b_1$</td>
<td>$\mu a b_1$</td>
</tr>
<tr>
<td>b</td>
<td>μb</td>
<td>$\mu b a_1$</td>
<td>$\mu b b_1$</td>
<td>$\mu b b_1$</td>
<td>μb</td>
<td>$\mu b a_1$</td>
<td>$\mu b b_1$</td>
<td>$\mu b b_1$</td>
</tr>
<tr>
<td>*</td>
<td>μa_0</td>
<td>μa_1</td>
<td>$\mu a a_1$</td>
<td>$\mu a b_1$</td>
<td>μb_0</td>
<td>μb_1</td>
<td>$\mu b a_1$</td>
<td>$\mu b b_1$</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>1</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
References

