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Abstract

Image Transformer has recently achieved significant progress for natural image understanding, either
using supervised (ViT, DeiT, etc.) or self-supervised (BEiT, MAE, etc.) pre-training techniques. In
this paper, we propose HiT, a self-supervised pre-trained Histological Image Transformer model
using large-scale unlabeled histological images for medical image processing tasks, which is essential
since no supervised counterparts ever exist due to the lack of human-labeled histological images. We
leverage HiT as the backbone network in a variety of vision-based histological image processing tasks.
Experiment results have illustrated that the self-supervised pre-trained HiT model the new state-of-
the-art results on these downstream tasks, e.g. histological image classification on SIPaKMeD
database achieved an accuracy of 97.45% and 99.29% for 5-class and 2-class classifications,
respectively.
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1. Introduction

Recently, deep convolutional network (CN), an instance of Deep Learning (DL) architectures, has
shown that it is superior to the other non-deep learning based approaches in image analysis. DL is the
data-driven and end-to-end learning approach which learns high-level structure features from only the
pixel intensities that are useful for differentiating objects by a classifier. Recently, it has been
successfully employed for medical image analysis with various applications [1–9].
The approaches based on DL have been evoked great interests in the histological image analysis
community since the pioneer made a research in [10]. Histopathology represented an excellent use for
application of deep learning strategies when its size and complexity were given. In [10], a popular six-
layer CN, which is also called “ConvNet” is employed for mitotic detection. The model was a patch-
wise training process for pixel-wise labeling. It was first trained with a great amount of context
patches. Basically, there were two types of context patches: foreground patches whose central pixels
are located within target objects and background patches whose central pixels are located around the
neighborhood pixel of the target objects. After training, the model was employed to predict the central
pixel of chosen patches being targeted objects or not. Recently, much effort has been focused on
nuclear detection or segmentation [11–13]. In terms of nuclear detection, a Stacked Sparse
Autoencoder(SSAE)-based model was employed in [14] for discriminating nuclear and non-nuclear
patches. Then integrating with the sliding window operation the SSAE model was
further utilized for automated nuclear detection from high-resolution histological images in [11].

In [12], a Spatially Constrained CN was presented to nucleus detection. This segmentation free
strategy can detect and classify different nuclear types simultaneously on colorectal adenocarcinoma
images. The CN involves convolutional and subsampling operations to learn a set of locally connected
neurons through local receptive fields for feature extraction. Therefore, CN is good for capturing
contextual information. Based on this contexture information, a pixel-wise based CN was developed
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for pixel-wise segmentation of nuclear regions in [13]. Pixel-wise segmentation is different from
patch-wise classification since pixel-wise segmentation aims at predicting class label of each pixel in
an image based on a local patch around that pixel [10], while patch-wise classification aims for
assigning a single label to the entire image patch [15]. Therefore, pixel-wise classification is more
challenged. In [16], the authors employed the convolutional auto-encoder neural network architecture
with auto-encoder for histopathological image representation learning. Then, the softmax
classification is employed for classifying regions of cancer and non-cancer.

But DL-based approaches have some challenges for medical image processing especially for
histological image.

DL needs considerable training data because the data set’s size and quality significantly impact the
classifier’s effectiveness. But a lack of data is one of the biggest obstacles for using DL in medical
imaging. Generating significant amounts of medical imaging data is challenging because eliminating
human error takes a great deal of work for experts. Large medical imaging data sets are difficult to
construct because annotating the data takes a great deal of time and effort from a single expert to
many experts to eliminate human error. The absence of substantial training datasets has made it
challenging to construct deep-learning models for medical imaging, which was the first problem we
saw in our studies. Most reviewed studies evaluated and assessed these using various datasets that are
collected from the cancer research organizations or clinics privately. The main issue with this method
is that it is impossible to compare how well such models functioned in several investigations.

The absence of benchmarks provided a hurdle and highlighted a lack of flexibility.
Another issue with specific papers is using data expansion techniques rather than transferring

learning to minimize overfitting.
Techniques for breast cancer categorization using unsupervised grouping: The supervised learning

method was used to classify breast cancer in most of the selected primary papers. These strategies
have provided superior results when labeled images are used throughout the training. However,
finding breast cancer images with precise, medically labeled criteria might be difficult. There are
frequently many unidentified medical images available. Despite this is useful knowledge sources,
many blank labels cannot be used for supervised learning. Therefore, there is a pressing need for a
cancer categorization model that may be created using several grouping techniques without
supervision.

Methodology of reinforcement learning for breast cancer classification: The fundamental issue is a
lack of sufficient breast cancer image examples to depict all types of breast cancer. Creating a
machine learning model that simultaneously learns from its surroundings can be difficult. Therefore,
systems for identifying breast cancer from medical photos can perform and be more effective when
employing a learning-based reinforcement model.

Reliability of data collection techniques: The robustness issue of various clinical and technical
circumstances must be addressed to integrate new datasets gradually. Different image acquisition
scanners, lighting configurations, sizes, and views across many picture modalities, and varying
presentation aspects of the coloring and enlargement factors, are a few examples of these
modifications.

Despite its significance in medical picture segmentation, the segmentation’s influence still falls
short of what is required for practical use.

Experiment results have illustrated that the pre-trained HiT model has outperformed the existing
supervised and self-supervised pre-trained models and achieved new state-of-the-art on these tasks.

The contributions of this paper are summarized as follows:
(1) We generate large number of unlabeled histological images based on StyleGAN for self-

supervised learning to resolve weak datasets problem.
(2) We propose HiT, a self-supervised pre-trained histological image Transformer model, which

can leverage large-scale unlabeled histological images for pre-training.
(3) We leverage the pre-trained HiT models as the backbone for a histological image classification

task on SIPaKMeD database.



2. Related Work

Image Transformer has recently achieved significant progress in computer vision problems,
including classification, object detection, and segmentation. In [17], it was firstly applied the standard
Transformer directly to images with the fewest modifications. They split an image into 16 × 16
patches and provide the sequence of linear embeddings of these patches as an input to a Transformer
named ViT. The ViT model is trained on image classification in a supervised fashion and outperforms
the ResNet baselines. [18] proposed data-efficient image transformers & distillation through attention,
namely DeiT, which solely relies on the ImageNet dataset for supervised pre-training and achieves
SOTA results compared with ViT. [19] proposed a hierarchical Transformer whose representation is
computed with shifted windows. The shifted windowing scheme brings efficiency by limiting self-
attention computation to non-overlapping local windows while also allowing for cross-window
connection. In addition to supervised pre-trained models, [20] trained a sequence Transformer called
iGPT to auto-regressively predict pixels without incorporating knowledge of the 2D input structure,
which is the first attempt at self-supervised image transformer pre-training.
After that, self-supervised pre-training for image Transformer became a hot topic in computer

vision. [21] proposed DINO, which pre-trains the image Transformer using self-distillation with no
labels. [22] proposed MoCov3 that is based on Siamese networks for self-supervised learning. More
recently, [23] adopted a BERT-style pre-training strategy, which first tokenizes the original image
into visual tokens, then randomly masks some image patches and feeds them into the backbone
Transformer. Similar to the masked language modeling, they proposed a masked image modeling task
as the pre-training objective that achieves SOTA performance. [24] presented a self-supervised
framework iBOT that can perform masked prediction with an online tokenizer. The online tokenizer is
jointly learnable with the MIM objective and dispenses with a multi-stage pipeline where the
tokenizer is pre-trained beforehand.
Due to the lack of large-scale human-labeled datasets in histological image processing domain,

existing approaches are usually based on the ConvNets models that are pre-trained with
ImageNet/COCO datasets. Then, the models are continuously trained with task-specific labeled
samples. To the best of our knowledge, the pre-trained HiT model is the first large-scale self-
supervised pre-trained model for histological image processing tasks. Meanwhile, it can be further
leveraged for the multimodal pre-training for medical image processing.

3. Histological Image Transformer

In this section, firstly, we present the generating method of unlabeled histological images, the
architecture of HiT and the pre-training procedure. Then, we describe the application of HiT models
in different downstream tasks.

3.1. Generating Unlabeled Histological Images

The majority of studies on histopathology image analysis, according to the literature, are based on
small datasets that are often not shared with the scientific community.

For example, Break His dataset is introduced in this. At four distinct magnifications (40×, 100×,
200×, and 400×), 82 patients provided 7909 microscopic photos of breast tumor tissue that were
clinically realistic. These images were collected for BreaKHis. It now has 2480 benign samples and
5429 cancerous ones. All information was made anonymous. Hematoxylin and eosin (HE)-stained
breast tissue biopsy slides were used to create the samples. Pathologists from the P&D Lab obtained
the samples through surgical (open) biopsy (SOB), prepared them for histological analysis, and
labeled them. From this point we need to generate lots of histological images for self-supervised pre-
training process. We introduced StyleGAN[25], developed by NVIDIA AI Lab, for generating
unlabeled histological images.



We used StyleGAN3 config-r and Break His dataset(including 7909 photos) to generate unlabeled
images. Real and generated histological images are shown in Fig. 1 and Fig. 2.

Fig.1. Real Histological Images Fig.2. Generated Histological Images by StyleGAN

3.2. HiT Model Architecture

Following ViT [17], we use the vanilla Transformer architecture [26] as the backbone of HiT. We
divide a histological image into nonoverlapping patches and obtain a sequence of patch embeddings.
After adding the 1d position embedding, these image patches are passed into a stack of Transformer

blocks with multi-head attention. Finally, we take the output of the Transformer encoder as the
representation of image patches, which is shown in Fig. 3.

3.3. Pre-training

Inspired by BEiT [23], we use Masked Image Modeling (MIM) as our pre-training objective. In
this procedure, the images are represented as image patches and visual tokens in two views
respectively.

During pre-training, HiT accepts the image patches as input and predicts the visual tokens with the
output representation. Like text tokens in natural language, an image can be represented as a sequence
of discrete tokens obtained by an image tokenizer. BEiT uses the discrete variational auto-encoder
(dVAE) from DALLE [27] as the image tokenizer, which is trained on a large data collection
including 400 million images. However, there exists a domain mismatch between natural images and
histological images, which makes the DALL-E tokenizer not appropriate for the histological images.



Fig.3. The model architecture of HiT with MIM pre-training

Therefore, to get better discrete visual tokens for the histological image domain, we train a dVAE
on our generated dataset from stylegan that includes 42 million histological images.

To effectively pre-train the HiT model, we randomly mask a subset of inputs with a special token
[MASK] given a sequence of image patches. The HiT encoder embeds the masked patch sequence by
a linear projection with added positional embeddings, and then contextualizes it with a stack of
Transformer blocks. The model is required to predict the index of visual tokens with the output from
masked positions. Instead of predicting the raw pixels, the masked image modeling task requires the
model to predict the discrete visual tokens obtained by the image tokenizer.

3.4. Fine-tuning

We fine-tune our model on publicly accessible SIPaKMeD database containing 966 WSI pap smear
images and 4,049 images of handcrafted cropped cells [28]. An optical magnifying device
(OLYMPUS BX53F) with a camera having a charge-coupled device (CCD) sensor (Lumenera’s
INFINITY-1) has been used to capture these pictures. The dataset is categorized into 5 classes by
clinical professionals. The classes “superficial-intermediate (SI)” and “parabasal (P)” refer to
“normal,” images sorted as “koilocytotic (K)” and “dyskeratotic (D)” indicate “abnormal,” and the
remaining “metaplastic (M)” belongs to have “benign” cells. The experiment is performed on WSI
slides and grouped into 5 class and 2 class (normal and abnormal).
Furthermore, the proposed framework is evaluated using liquid-based cytology (LBC) data

available online at Mendeley data [29]. Based on the Bethesda system, the collection includes 963
WSI LBC high-resolution images organized into four sets of classes: “no squamous intraepithelial
lesion (NILM),” “low-grade squamous intraepithelial lesion (LSIL),” “high-grade squamous
intraepithelial lesion (HSIL),” and “squamous cell carcinoma (SCC).” The “NILM” indicates a
“normal” grade, while the “LSIL,” “HSIL,” and “SCC” refer to “abnormal.”
For cancer detection based on image classification, we use average pooling to aggregate the

representation of image patches. Next, we pass the global representation into a simple linear classifier.



4. Experiments

4.1. Settings

Pre-training Setup.We pre-train HiT on the IIT-CDIP Test Collection 1.0 [30]. We pre-process the
dataset by splitting multi-page documents into single pages, and obtain 42 million histological images.
We also introduce random resized cropping to augment training data during training. We train our

HiT-B model with the same architecture as the ViT base: a 12-layer Transformer with 768 hidden
sizes, and 12 attention heads. The intermediate size of feed-forward networks is 3,072. A larger
version, HiT-L, is also trained with 24 layers, 1,024 hidden sizes, and 16 attention heads. The
intermediate size of feed-forward networks is 4,096.

The dVAE Tokenizer. BEiT borrows the image tokenizer trainedby DALL-E, which is not aligned
with the histological image data. In this case, we fully utilize the 42 million histological images in the
IIT-CDIP dataset and train a document dVAE image tokenizer to obtain the visual tokens. Like the
DALL-E image tokenizer, the histological image tokenizer has the codebook dimensionality of 8,192
and the image encoder with three layers. Each layer consists of a 2D convolution with a stride of 2
and a ResNet block. Therefore, the tokenizer eventually has a downsampling factor of 8.
In this case, given a 112×112 image, it ends up with a 14×14 discrete token map aligning with the

14×14 input patches.
We implement our dVAE codebase from open-sourced DALL-E implementation1 and train the

dVAE model with the entire IITCDIP dataset containing 42 million histological images. The new
dVAE tokenizer is trained with a combination of a MSE loss to reconstructe the input image, and a
perplexity loss to increase the use of the quantized codebook representations. The input image size is
224×224, and we train the tokenizer with a learning rate of 5e-4 and a minimum temperature of 1e-10
for 3 epochs.

Fine-tuning on SIPaKMeD. We evaluate the pre-trained HiT models and other image backbones on
SIPaKMeD for histological image classification. We fine-tune the image transformers for 100 epochs
with a batch size of 128 and a learning rate of 1e-3. For all settings, we resize the original images to
224 × 224 with the RandomResizedCrop operation

4.2. Results

Table 1 depicts the results obtained from different classifiers and our proposed model on
SIPaKMeDWSI data for classification into 5 class and 2 class.

Table 1. Performance metrics for different fine-tuned classifiers and proposed model on SIPaKMeD WSI data

Data Models Accuracy (%) Precision (%) Recall (%) F-score (%)

SIPaKMeDWSI 5-class

VGG-16 94.89 95.88 95.77 95.83
ResNet-152 93.37 93.76 94.66 94.21
DenseNet-169 90.82 91.94 92.06 92
Proposed model 97.45 97.94 98.08 98.01

SIPaKMeDWSI 2-class

VGG-16 97.16 95.7 100 97.8
ResNet-152 96.45 94.62 100 97.24
DenseNet-169 94.33 93.55 97.75 95.6
Proposed model 99.29 98.92 100 99.46

Here is the performance of the individual fine-tuned models of VGG-16, ResNet-152, and
DenseNet-169 are confronted with our proposed model based on HiT pre-training. Our proposed
model achieves better results than the other classifiers with an accuracy of 97.45% and 99.29% for 5-
class and 2-class classifications, respectively. For 5-class classification, our model predicts the pap-
smear images with a precision score of 97.94%, a recall value of 98.08%, and an F-score of 98.01%.



This model outperforms the other classifiers with the precision, recall, and F-score values of 98.92%,
100%, and 99.46%, respectively, in 2 class classification.
The accuracy and loss curve for SIPaKMED 5-class classification of our proposed model based on HiT

pre-training are shown in Fig. 4.

Fig.4. Fine-tuned classifier (a - Accuracy curve, b – Loss curve for SIPaKMED 5-class classification)

5. Conclusion

In this paper, we present HiT, a self-supervised foundation model for general histological image
processing tasks. The HiT model is pre-trained with largescale unlabeled histological images that
cover a variety of templates and formats, which is ideal for downstream histological image processing
tasks. We evaluate the pre-trained HiT on histological image classification task. The proposed model
based on HiT pre-training is evaluated on SIPaKMeD data and gives an accuracy of 97.45% for 5-
class classification and 99.29% for 2-class classification. Moreover, the experiment performed on
LBC WSI data provides 99.49% accuracy. The precise recognition of infected WSI images enables
experts to perform a more in-depth analysis of cells within the images. The futuristic approach to this
method involves the utilization of more optimal feature selection algorithms, progressive resizing, and
advanced ensemble methods to further improve model performance and computation cost-cutting.
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