
Speedup Genetic Algorithm using Parallel

Processing Method

Hak Kun Ri*, Chol Hun Pak and Nam Song An
Faculty of Information Science, Kim Il Sung University, Taesong District, Pyongyang, DPR Korea

Abstract
Genetic Algorithm (GA) is one of most popular swarm based evolutionary search algorithms that

involve multiple data independent computations. Such computations can be made in parallel
processing method on GPU cores using Compute Unified Design Architecture (CUDA) platform.
In this paper, various operations of GA such as fitness evaluation, selection, crossover and mutation,
etc. are implemented in parallel on GPU cores and then performance is compared with its serial
implementation.
Result shows that the overall computational time can substantially be decreased by parallel

implementation on GPU cores. The proposed implementations resulted in 1.18 to 3.68 times faster
than the corresponding serial implementation on CPU.

Keywords: Genetic Algorithm, GA, General Purpose Computing on Graphics Processing Unit,
GPGPU, Compute Unified Device Architecture, CUDA

1. Introduction
Genetic Algorithm (GA) is a swarm based global search algorithm for genetical

improvements in biological field. GA essentially strives to attain the global maximum (or
minimum) of cost depending upon the nature of the problem. Over the period of advancements,
GA is widely used and extensively resea rched as optimization and search tools in several fields
such as, medical, engineering, and finance etc. The basic fact for their success are simple
structure, broad relevance with problem [4]. Goldberg and Harik brought the Term compact
Genetic Algorithm (cGA) which represents the solution as a probability distribution over the
wide space set of solutions, Huanlai and Rong well utilized the concept in minimization problem
of resources of network codes [5].

Prakash and Deshmukh investigated the use of meta-heuristics for combinatorial decision-
making problem in flexible manufacturing system with GA [7]. Prominent GA applications
include pattern recognition [8], classification problems [9] and protein folding [10] etc. GAs are
also suitable for multi-objective optimal design problems. Even though GAs has powerful
characteristic are capable of determining many practical bottleneck problems, their execution
time acts as bottleneck in some practical problems. GA is accompanied by a large number of
trial vectors to compute. However, most of the execution time is spent for evaluating fitness and
data being available for parallel processing due to data independency, whose performance can be
evaluated using parallel computing mechanism.

* Corresponding author
Email addresses: LHK1972612@star-co.net.kp (Hak Kun Ri)

2. Implementation of GA operators
Amidst many solutions provided by GA, it is the best one that has the shortest processing

time.GA consists of 4 major parallel processes; selection, crossover, mutation and operators.
1) Selective parallel processing
Roulette function is used for selective parallel processing. There is a global call of kernel for

execution of GA on GPU. The thread number per block threadIdx is equal to the respective
dimension of population. The selection is done in parallel by generating uniformly distributed
random numbers from zero to max (cumulative sum) and thereby checking which of the fitness
lies immediate greater than that of generated number. Then the corresponding fitness of the trial
solution get selected as parent chromosome for next generation as depicted in Algorithm 1.

Algorithm 1 Pseudocode for Roulette Selection
Global call of kernel for Roulette Wheel Selection function

No. of threads i is equal to threadIdx
Random number r ← (0, cumulative fitness)

While size of population < pop_size do
Generate random number r equal to pop_size
Calculate fitness (pi), cumulative sum of fitness (CSum)
Spin the wheel pop_size times with random force

If CSum < r then
Select the first chromosome, otherwise,
Select the jth chromosome

End if
End While
Return solution with the fitness value proportion to the size of selected chromosome on
roulette wheel

End
2) Parallel Implementation of Uniform Crossover
In Uniform Distribution Crossover technique, chromosome of parent solution is mixed

uniformly with a fixed ratio in terms of mixing ratio. The process of mixing parent
chromosomes produces child chromosomes mixed at gene level as compared with single and
double point crossover where mixing is done at segment level. Therefore uniform crossover is
more suitable for larger search space. In uniform crossover, there is a global call of kernel for
execution of the function on GPU. Uniformly distributed random number is generated at the
interval 0 to 1 while probability of crossover is defined at 0.9. The mixing ratio of 0.8 is applied
at gene level to produce child chromosome. The pseudocode for its parallel implementation is
shown in Algorithm 2.

Algorithm 2: Pseudocode for Uniform Crossover
Global call of kernel for uniform crossover function

No. of threads i is equal to threadIdx
N is population size pop_size
L is chromosome length of string chromoLength
Crossover Probability is defined as probCross
Mixing Ratio is defined as mixRatio
r ← random no. between 0 to 1

if r ≥ probCross then
if r ≥ mixRatio then

crossPoint(i)← random (0, L-1)
crossPoint(i+1)← crossPoint(i+1)

Else

crossPoint(i) ← no change
crossPoint(i+1) ← no change

End if
End if
End
3) Parallel Implementation of Mutation
seudocode represents the process carried out for mutation in GA on GPU Algorithm 3.
There is a global call of kernel for execution of the function on GPU. Each solution of the

population get mutated by a single thread operations. In this experiment, the mutation factor is
kept relative to the number of iteration from 0.01 to 1. Scheduling a block with a sufficient
number thread is used to mutate the whole population. After the crossover and mutation
operation, elite solution is applied. In this solution elite string is compared with parent
chromosomes and current child chromosomes of entire solution. Elite solution is updated if any
solution in the child population is superior to the solution in elite string. If there is not any further
improvement, it means the convergence of the swarm.)
Algorithm 3: Pseudocode Mutation
Global call of kernel for mutation function

Number of thread i is equal to threadIdx
Mutation factor is defined as m_fact
Obtain population after crossover new_Pop
Random no. r is generated between 0 and 1

For i =0 to n
If r < m_fact then

new_Pop = 1- new_Pop
Else

new_Pop = new_Pop
End if

End

3. GA Implementation using CUDA C
1) General Purpose GPU

The structure of General Purpose Computing on Graphics Processing Unit (GPGPU) is
characterized by high level of parallel, data processing unit with multiple number of streaming
processors. The program based on GPGPU can be easily developed using CUDA architecture.
The execution of CUDA program is composed of two parts: host section and device section. The
host section is executed on CPU while the device section is executed on GPU, respectively.
However, the execution of device section on GPU is managed by kernel. The threads in GPU
architecture can be grouped into blocks and grids . In GPU grid is (made up of)with group of
thread blocks, and a thread block comprises(is made up of) definite number of threads per block.
Differentiating between unique threads, thread block and grid may be done by using a set of

identifiers threadIdx, blockIdx and gridIdx variables respectively.
When threads are executed in a group of 32 streaming multiprocessors,wrap is called by the

Single Instruction Multiple Thread (SIMT) scheme, i.e., in nVIDIA GeForce GT 740M has
16KB of shared memory per streaming multiprocessor with 16384 64-bit registers. Shared
memory and registers limits the thread block per streaming multiprocessors while executing
threads. Hence, streaming multiprocessors are limited up to 8 blocks.

2) Implementing GA using CUDA C

Implementation of GA includes parallel flow of algorithm to find global optimal solution
using CUDA C. The major implementation of algorithm consists of generation of initial
population using GPU, randomly generated numbers to find global best solution, selection of
parent solution, implementation of genetic operators and elite solution and finally copying child
population back to parent population. The overview of GA execution is depicted in Fig 1. The
implementation of CUDA C kernels on GA is based on the following principle:

Fig 1. Implementation GA

All GA solution is calculated using thread block at each generation.
The maximum size of GA population during each generation is limited to the total number of

threads to be currently 216)12( . For every trial solution, threads are used to compute possible
results. GPU’s computation capability is 512 threads per block for 10241 . Hence, it is directly
proportional to the hardware capability.
GPU accesses all the trial solution in one step i.e., with each kernel call CUDA C launches

number of threads per block equivalent to the population size of the generation. CUDA C
kernels generates population in one step and then computes their individual fitness values. The
genetic operator is applied to each solution, where number of thread kept (to be) equal to its
population size. The same stages are repeated to generate the following population and find a

GA parameter
initialization

Uniform randomly
distributed
population

Benchmark Function
(fitness calculation)

Termina
tion

Roulette Selections

Genetic Operators
(Crossover,Mutation)

Elite Solutions

New Population

Stop
(Read Best Solution)

N

Y

solution.)Hence, due to these benefits of GP, it takes less time as compared to its sequential
execution on CPU.

4. Performance evalution
1) Setting up experimental condition

The experiments are made on PC and NVIDIA card for performance evaluations. (Refer
Table 1) The total number of streaming processors and streaming multiprocessorsare 16, hence,
(there are) 256 streaming processors in each PC. Entire GA code of CUDA C is written in Visual
Studio C++ 2013 release mode and complied on nvcc compiler. The result of (the)above
experiment is evaluated using two different iteration size of 10,000 and 100,000. The dimension
size of experiment is fixed. The larger the dimension size of its area and iteration, the more
effective the acceleration of GA on GPU is.

TABLE 1 Computational Systems Specification

CPU
Processor Intel Core(TM)i3

3320(U)+3.3GHz
catch 3072KB
Memory 2GB

GPU
Graphic Card NVIDIA Geforce

GT 730
Version 9.18.13.2057
CUDA Version 8.0

2) Benchmark Functions
Benchmark Test Functions for our experiment with distinct minima (����) is given in Table 2,

which are numbered from �1 � up to �7(�).

TABLE 2 Benchmark Functions

Benchmark Functions Range
of ��

����

�1 � = �=1
� ��

2� ±5.12 0

�2 � = �=1
� ��

4� ±100 0

�3 � = 1
4000 �=1

� ��
2� − �=1

� cos (�
�

�
)-1

±2048 0

�4 � = �=1
� ��

5 − 3��
4 + 4��

3 +�
2��

2 − 10�� − 4
±10 0

�5 � = �=1
� �� sin �� + 0.1��� ±10 0

�6 � =− exp (− 0.5 �=1
� ��

2�) ±1 0

�7 � = �=0
�−1 100 �� − ��+1

2 +�
(1 − ��)2

±2048 0

3) Experiment Result

As serial implementing time using CPU is compared with parallel implementing time using
GPU and CUDA C, there is a remarkable difference under the same condition.

(1) Case study 1

In this experiment, the dimension size of the population generation is kept first 32 and then 64.
Each dimension size is iterated for maximum number of iteration, which was set as 10,000. The
performance shown in result table is average value of 20 trials.

The speedup of GPU over CPU for all seven benchmark test functions are shown in Table
3.The best computational performance achieved for dimension size of 32, is 2.17 times for �4 �
on GPU, while on GPU with the dimension size of 64, �4(�) shows a speedup of 3.68 times
higher than its CPU execution time.

TABLE 3 CUDA C Vs. C Performances for 10,000 iterations

N Function

CPU GPU
Time(sec) Time(sec) Speedup

32

)(1 xf 4.24 3.58 1.18
)(2 xf 7.60 3.50 2.17
)(3 xf 5.31 3.91 1.35
)(4 xf 7.20 3.97 1.81
)(5 xf 5.86 3.75 1.56
)(6 xf 5.43 3.62 1.50
)(7 xf 5.48 3.60 1.52

64

)(1 xf 8.42 4.28 1.96
)(2 xf 15.84 4.30 3.65
)(3 xf 10.30 4.78 1.55
)(4 xf 17.47 4.75 3.68
)(5 xf 11.43 4.68 2.44
)(6 xf 12.49 4.33 2.88
)(7 xf 8.58 4.50 1.91

(2) Case study 2

In this experiment the dimension size is the same as Case Study 1, but the iterations size
increases to 100,000. The highest speedup achieved in this case for dimension size 32 is 2.18 for
test function �7(�) . On the other hand, dimension size 64 has best speedup of 3.47 times for
�7 � .

The GPU average execution time is 3370 seconds while 12752 seconds in CPU.

TABLE 4 CUDA C Vs. C Performances for 100,000 iterations

N Function
CPU GPU

Time(sec) Time(sec) Speedup

32

)(1 xf 40.61 26.92 1.51
)(2 xf 44.81 27.55 1.63
)(3 xf 50.06 31.90 1.57
)(4 xf 61.31 32.22 1.90
)(5 xf 45.24 31.14 1.45
)(6 xf 52.16 28.61 1.82
)(7 xf 62.69 28.76 2.18

64

)(1 xf 81.86 34.84 2.35
)(2 xf 89.77 35.42 2.53
)(3 xf 101.13 40.01 3.03
)(4 xf 122.97 40.53 2.36
)(5 xf 93.61 39.63 2.51

)(6 xf 92.36 36.83 2.88
)(7 xf 127.52 36.71 3.47

5. Conclusion
In this paper, the implementation of GA on GPGPU using CUDA C is carried out.
It shows acceleration of 1.18-3.68 times as compared to its sequential execution on CPU on

various benchmark test functions. From this result it is concluded that the algorithm can be
made for several search problems to enhance its wide variety of features.

In future work, the performance of GA model will be more improved by modifying single
objective GA to multi-objective GA.

Acknowledgment
We thank the following organizations for offering the wonderful basic data and software:

● Applied Mathematics and Computation Press Publication for providing basic project
and software

● Computers and Electrical Engineering Press Publication for providing a large number
of useful data and experiments.

References
[1] Esraa Shehab b, Alsayed Algergawy a,b, Amany Sarhan b “Accelerating relational database operations

using both CPU and GPU co-processor” Computers and Electrical Engineering 57 (2019) 69–80
[2] Vincent Roberge, Mohammed Tarbouchi ,Gilles Labonté, ” Fast Genetic Algorithm Path Planner for

Fixed-Wing Military UAV Using GPU” 10.1109/TAES.2019.2807558, IEEE Transactions on
Aerospace

and Electronic Systems
[3] Abhijit Ghosh, Chittaranjan Mishra, “ Highly efficient parallel algorithms for solving the Bates PIDE
for

pricing options on a GPU” Applied Mathematics and Computation 409 (2021) 126411
[4] Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-Accelerated Computation of Vietoris-Rips

Persistence Barcodes. In 36th International Symposium on Computational Geometry (SoCG 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[5] Sun, X.; Wu, C.-C.; Liu, Y.-F, “The Design and Implementation of an Improved Lightweight BLASTP
on CUDA GPU” , Symmetry 2021, 13, 2385. sym13122385

[6] S. Yang, H. Cheng, and F. Wang, “ Genetic algorithms with immigrants and memory schemes for
dynamic

shortest path routing problems in mobile ad hoc networks,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 40, no. 1, pp.52–63, 2015.

[7] A. Prakash, F. T. Chan, and S. Deshmukh, “Fms scheduling with knowledge based genetic algorithm
approach,” Expert Systems with Applications, vol. 38, no. 4, pp. 3161–3171, 2016.

[8] J. Adams, D. L. Woodard, G. Dozier, P. Miller, K. Bryant, and G. Glenn, “Genetic-based type ii feature
extraction for periocular biometric recognition: Less is more,” in Pattern Recognition (ICPR),2010 20th
International Conference on. IEEE, 2017, pp. 205–208.

[9] A. Quteishat, C. P. Lim, and K. S. Tan, “A modified fuzzy min–max neural network with a genetic-
algorithm-based rule extractor for pattern classification,” Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 40, no. 3, pp. 641–650, 2015.

[10] Y. Zhang and L. Wu, “ Artificial bee colony for two dimensional protein folding, ” Advances in
Electrical

Engineering Systems, vol. 1, no. 1, pp.19–23, 2016.

