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sigmoid functionization of magnetization  

in the spin-glass Ising model. 
 

Akira Saito 

Abstract 

The magnetization of the spin-glass Ising model can be expressed using a 

sigmoid function. In the ground state, the magnetization is determined by 

solving a set of nonlinear simultaneous equations, each corresponding to a 

magnetization. As the magnetization of the ground state in the spin-glass 

Ising model constitutes an NP-complete problem, the P=NP problem can 

be reformulated as solving these nonlinear simultaneous equations. If 

practical computation yields result that are feasible, it can be essentially 

considered as P=NP. Furthermore, all interacting systems in nature can be 

represented by sigmoid functions, and the ground state can be obtained by 

solving nonlinear simultaneous equations. 

1 INTRODUCTION 

The Ising model is the simplest and most fundamental interaction model. Each spin (node) 

interacts with each other, taking states of either -1 or 1, and evolves continuously at 

temperature T, eventually converging to a state called the ground state at T=0. This ground 

state has the lowest energy in the system, with each state's expected value being the order 

parameter taking -1 or 1. It represents how the system settles due to interactions. In complex 

systems, the resultant states of interactions serve as solutions to combinatorial optimization 

problems (NP problems). In the real world, solutions to interaction systems and 

combinatorial optimization problems have wide applications across various fields. The spin-

glass Ising model is a variant of the Ising model where interactions include both positive and 

negative components individually. It can model various interaction systems and 

combinatorial optimization problems. Now, the magnetization of this spin-glass Ising model 

has been represented using a sigmoid function. Furthermore, in the ground state, 

magnetization can be expressed by a set of nonlinear simultaneous equations for each 

magnetization. Combinatorial optimization problems (NP problems) and interacting systems 

can be reduced to solving these nonlinear simultaneous equations. Below, we present the 

derivation of these equations. 

2 RESULTS 

At all temperatures, the following results were obtained. 

〈𝑛𝑖〉 =  〈
1

1 + 𝑒−𝜉𝑖𝑡
〉  (1) 

 𝜉𝑖 = 𝜀𝑖,𝑖 + ∑ 𝜀𝑖,𝑗𝑛𝑗

𝑁

𝑗=1≠𝑖

,  𝑡 =  
1

𝑘𝐵𝑇
 (2) 

Also, at the ground state (T=0), the following results were obtained. 
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〈𝑛𝑖〉 =  
1

1 + 𝑒−�̃�𝑖𝑡
 (3) 

 𝜉𝑖 = 𝜀𝑖,𝑖 + ∑ 𝜀𝑖,𝑗〈𝑛𝑗〉

𝑁

𝑗=1≠𝑖

,  𝑡 =  
1

𝑘𝐵𝑇
 (4) 

3 THEORY 

Let there be state variables for each node i = 1 to N, each with the following states. 

𝑛𝑖 = 0 𝑜𝑟 1  (5) 

The model, represented by the following Hamiltonian of the system, is called the Ising model 

[1]. (Although the Ising model is generally characterized by n = -1 or 1, it can be simplified 

for calculations as n = 0 or 1.) 

−𝐻 = ∑ 𝜀𝑖,𝑗𝑛𝑖𝑛𝑗

𝑖≤𝑗

  (6) 

However, εij can take any value within the specified range (spin-glass Ising model [1]). 

𝜀𝑖,𝑗 = −1 ~ 1  (7) 

The order parameter <ni> is determined by the following. 

〈𝑛𝑖〉 =
𝑍𝑖

𝑍
  (8) 

𝑍 = ∑ 𝑒−𝐻𝑡

{𝑛}

 , 𝑍𝑖 = ∑ 𝑛𝑖𝑒−𝐻𝑡

{𝑛}

 , 𝑡 =
1

𝑘𝐵𝑇
  (9) 

From equations (8) and (9) and (5), 

〈𝑛𝑖〉 =   〈(1 − 𝑛𝑖)𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

〉 

〈𝑛𝑖〉 + 〈𝑛𝑖𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

〉 =   〈𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

〉 

〈𝑛𝑖 (1 + 𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

)〉 =   〈𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

〉 

〈𝑛𝑖〉 =   〈
𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡𝑁

𝑗=1≠𝑖

1 + 𝑒𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡𝑁
𝑗=1≠𝑖

〉 

〈𝑛𝑖〉 =   〈
1

1 + 𝑒−𝜀𝑖,𝑖𝑡 ∏ 𝑒−𝜀𝑖,𝑗𝑛𝑗𝑡𝑁
𝑗=1≠𝑖

〉 

〈𝑛𝑖〉 =  〈
1

1 + 𝑒−𝜉𝑖𝑡
〉  (10) 
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 𝜉𝑖 = 𝜀𝑖,𝑖 + ∑ 𝜀𝑖,𝑗𝑛𝑗

𝑁

𝑗=1≠𝑖

,  𝑡 =  
1

𝑘𝐵𝑇
 (11) 

Based on the above, equations (1) and (2) are obtained. Equation (10) (equivalent to 

equation (1)) is a sigmoid function.  

Furthermore, at t=∞, From <n>=0or1 

〈𝑛𝑎𝑛𝑏〉 = 〈𝑛𝑎〉〈𝑛𝑏〉  

From the above, using the relations in equation (10)'s expansion, equations (3) and (4) are 

obtained. 

〈
1

1 + 𝑒−𝜉𝑖𝑡
〉 =  

1

2
+

1

2
〈tanh (

1

2
𝜉𝑖𝑡)〉 

=  
1

2
+

1

2
{〈(

1

2
𝜉𝑖𝑡)〉 −

1

3
〈(

1

2
𝜉𝑖𝑡)

3

〉 +
2

15
〈(

1

2
𝜉𝑖𝑡)

5

〉 − ⋯ } 

=  
1

2
+

1

2
{(

1

2
𝜉𝑖𝑡) −

1

3
(

1

2
𝜉𝑖𝑡)

3

+
2

15
(

1

2
𝜉𝑖𝑡)

5

− ⋯ } 

=  
1

2
+

1

2
tanh (

1

2
𝜉𝑖𝑡) 

=
1

1 + 𝑒−�̃�𝑡
 

〈𝑛𝑖〉 =  
1

1 + 𝑒−�̃�𝑖𝑡
 (3) 

 𝜉𝑖 = 𝜀𝑖,𝑖 + ∑ 𝜀𝑖,𝑗〈𝑛𝑗〉

𝑁

𝑗=1≠𝑖

,  𝑡 =  
1

𝑘𝐵𝑇
 (4) 

This constitutes a set of nonlinear simultaneous equations for <ni>. In other words, the 

problem of finding the order parameters <ni> of the ground state reduces to solving these 

nonlinear simultaneous equations. 

4 DISCUSSION 

In mathematics, there exists an unresolved problem known as the P vs NP problem. This 

problem, in the field of computer science, raises the question of whether if a solution to a 

problem can be efficiently verified, can it also be efficiently found? Here, "efficiently" means 

that the solution can be computed in polynomial time with respect to the size of the 

problem. "Polynomial time" refers to an algorithm that takes time proportional to n raised to 

a constant power (where n is the size of the problem). In essence, the P vs NP problem asks 

whether all problems for which solutions can be quickly verified (NP) are also problems for 

which solutions can be quickly found (P). Now, about this problem, the ground state of the 

spin-glass Ising model has been reduced to a solution of a set of nonlinear simultaneous 

equations. Since finding the ground state of the spin-glass Ising model is equivalent to NP-
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complete problems, which can be converted to all NP problems, if the solution to these 

nonlinear simultaneous equations can be obtained through numerical computation, it can be 

said that P=NP within a practical range. 
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