Proof of invariance of $\mathrm{d} s^{2}$ from the constancy of the speed of light

Sanjeev Saxena*
Dept. of Computer Science and Engineering, Indian Institute of Technology, Kanpur, INDIA-208 016

April 25, 2024

Abstract

In this short note, two elementary proofs of invariance of distance element $\mathrm{d} s^{2}$ from the speed of light are given. The proofs should be accessible even to school-going students.

1 Introduction

In special relativity, from the constancy of the speed of light, if $\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}$ is zero in one frame, in another frame, $\mathrm{d} s^{\prime 2}=c^{2} \mathrm{~d} t^{\prime 2}-\mathrm{d} x^{\prime 2}-\mathrm{d} y^{\prime 2}-\mathrm{d} z^{\prime 2}$ should also be zero. Landau and Lifshitz [2] [page 4] say they must be proportional to each other. Einstein $\mathbb{1}$ says, "This quantity might be transformed with a factor. This depends upon the fact that the right-hand side of (29) might be multiplied by a factor λ, independent of v. . He also observes that "this condition is satisfied only by linear transformations".

If the coordinate axes are so chosen that one frame moves with respect to the other only in the x-direction, then the problem becomes a 2 -dimension problem. This note shows that if $\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}$ is zero in one frame if and only if in another frame, $\mathrm{d} s^{\prime 2}=c^{2} \mathrm{~d} t^{\prime 2}-\mathrm{d} x^{\prime 2}$ is also zero, and if we are allowed only linear transformations, then $\mathrm{d} s^{2}$ and $\mathrm{d} s^{\prime 2}$ are proportional to each other. Two proofs of this result are given. These proofs are "elementary" and should be accessible to school students.

Several proofs are available on net [3, 4, 5, but these are not elementary.

2 First Proof

If in one frame a beam of light travels distance Δx in time Δt, then $c=\Delta x / \Delta t$, as the speed of light (not velocity) of light is constant, $\Delta s^{2}=\Delta x^{2}-c^{2} \Delta t^{2}=0$.

As the speed of light is constant, the same beam of light may travel Δx^{\prime} distance in Δt^{\prime} time when

[^0]observed from another frame. Thus, again $\Delta s^{\prime 2}=\Delta x^{\prime 2}-c^{2} \Delta t^{\prime 2}=0$.
Thus, $\Delta s^{2}=0$ implies (and is implied by) $\Delta s^{\prime 2}=0$.
Assume that (the simplest possible) linear transforms between primed and non-primed frames ${ }^{1} \Delta x^{\prime}=$ $\alpha \Delta x+c \beta \Delta t$ and $c \Delta t^{\prime}=\gamma \Delta x+c \delta \Delta t$

Let us try to determine how Δs^{2} changes from a primed to a non-primed frame. We will (only) use the fact that when it is zero in one frame, it is also zero in the other.

When $\Delta s^{2}=0$ then $\Delta x^{2}=c^{2} \Delta t^{2}$. Then $\Delta x= \pm c \Delta t$.
First, we choose $\Delta x=c \Delta t$. For this choice, $\Delta s^{2}=0$, hence $\Delta s^{\prime 2}$ must also be zero, or $c^{2} \Delta t^{\prime 2}=\Delta x^{\prime 2}$, thus

$$
\begin{aligned}
(\gamma \Delta x+c \delta \Delta t)^{2} & =(\alpha \Delta x+c \beta \Delta t)^{2} \text { or } \\
(\gamma c \Delta t+c \delta \Delta t)^{2} & =(\alpha c \Delta t+c \beta \Delta t)^{2} \text { or } \\
(\gamma+\delta)^{2} & =(\alpha+\beta)^{2} \text { or } \\
\gamma^{2}+\delta^{2}+2 \gamma \delta & =\alpha^{2}+\beta^{2}+2 \alpha \beta
\end{aligned}
$$

This is the first condition, which $\alpha, \beta, \gamma, \delta$ must satisfy.
Next, we choose $\Delta x=-c \Delta t$. For this choice, $\Delta s^{2}=0$, hence $\Delta s^{\prime 2}$ must also be zero, or $c^{2} \Delta t^{\prime 2}=\Delta x^{\prime 2}$, thus

$$
\begin{aligned}
(\gamma \Delta x+c \delta \Delta t)^{2} & =(\alpha \Delta x+c \beta \Delta t)^{2} \text { or } \\
(-\gamma c \Delta t+c \delta \Delta t)^{2} & =(\text { alphac } \Delta t+c \beta \Delta t)^{2} \text { or } \\
(-\gamma+\delta)^{2} & =(-\alpha+\beta)^{2} \text { or } \\
\gamma^{2}+\delta^{2}-2 \gamma \delta & =\alpha^{2}+\beta^{2}-2 \alpha \beta
\end{aligned}
$$

This is the second condition, which $\alpha, \beta, \gamma, \delta$ must satisfy.
Adding the two conditions, we find $\gamma^{2}+\delta^{2}=\alpha^{2}+\beta^{2}$ and subtracting one from the other gives $\gamma \delta=\alpha \beta$.

Now,

$$
\begin{aligned}
\Delta s^{\prime 2} & =\Delta x^{\prime 2}-c^{2} \Delta t^{\prime 2} \\
& =(\alpha \Delta x+c \beta \Delta t)^{2}-(\gamma \Delta x+c \delta \Delta t)^{2} \\
& =\Delta x^{2}\left(\alpha^{2}-\gamma^{2}\right)-c^{2} \Delta t^{2}\left(\delta^{2}-\beta^{2}\right)+2 c \Delta x \Delta t\left(\alpha \beta-\not \chi^{\prime}\right) \\
& =\Delta x^{2}\left(\alpha^{2}-\gamma^{2}\right)-c^{2} \Delta t^{2}\left(\delta^{2}-\beta^{2}\right) \\
& =\Delta x^{2}\left(\alpha^{2}-\gamma^{2}\right)-c^{2} \Delta t^{2}\left(\alpha^{2}-\gamma^{2}\right) \\
& =\left(\alpha^{2}-\gamma^{2}\right)\left(\Delta x^{2}-c^{2} \Delta t^{2}\right) \\
& =\left(\alpha^{2}-\gamma^{2}\right) \Delta s^{2}
\end{aligned}
$$

Thus, $\Delta s^{\prime 2}$ and Δs^{2} differ by only a constant.

[^1]
3 Second Proof

Let $\Delta s^{2}=\Delta x^{2}-c^{2} \Delta t^{2}$, and let $\left(x^{\prime}, t^{\prime}\right)$ be linear combinations of x and t and let $\Delta s^{\prime 2}=\Delta x^{\prime 2}-c^{2} \Delta t^{\prime 2}$.
Δs^{2}, under linear transform becomes, a quadratic form (say) $\alpha x^{2}+\beta t^{2}+2 \gamma x t$.
In general, if we have two quadratic forms $Q=a x^{2}+b y^{2}+2 c x y$ and $R=f x^{2}+g y^{2}+2 h x y$, then it is sufficient to show that $Q=0 \Leftrightarrow R=0$ imply Q is a constant times R.
$Q / y^{2}=a(x / y)^{2}+2 c(x / y)+b$ and $R / y^{2}=f(x / y)^{2}+2 h(x / y)+g$. If $Q / y^{2}=0$, the quadratic equation in (x / y) will be zero. Let the two roots be α_{1} and α_{2} then $Q / y^{2}=\lambda\left((x / y)-\alpha_{1}\right)\left((x / y)-\alpha_{2}\right)$. Similarly let β_{1} and β_{2} be two roots of R / y^{2} then $R / y^{2}=\mu\left((x / y)-\beta_{1}\right)\left((x / y)-\beta_{2}\right)$. If for some x / y both Q and R are equal then that $x / y=\alpha_{1}=\beta_{1}$ or $x / y=\alpha_{1}=\beta_{2}$. And for other root $x / y=\alpha_{2}=\beta_{2}$ or $x / y=\alpha_{2}=\beta_{1}$ (respectively).

Thus, Q and R differ by only a multiplicative constant.

Acknowledgements

I wish to thank students who attended lectures of CS601 (2023-2024) for their comments and reactions on a previous version.

References

[1] Albert Einstein, The Meaning of Relativity, 1922
[2] L.D.Landau and E.M.Lifshitz, The classical Theory of Fields, 3rd Ed, Pergamon Press, 1971.
[3] Quadratic Forms on a (finite dimensional real) vector space with same zero set are scalar multiples? Maths Stack Exchange, question 3643404.
[4] Proving invariance of $\mathrm{d} s^{2}$ from the invariance of the speed of light, Physics Stack Exchange, question 89603.
[5] Einstein's postulates \leftrightarrow Minkowski space for a Layman, Physics Stack Exchange, question 12435.

[^0]: *E-mail: ssax@iitk.ac.in

[^1]: ${ }^{1}$ Actually, from dimensional analysis, since everything is of the dimension of [L^{2}] only second-order terms can be there, hence transformation should be linear.

