
DECIMALISING INTEGER SEQUENCES

Abstract. In this paper, we observe how some well-known integer sequences

when divided by powers of 10 and summed to infinity have a unique discrete

value, similar to a person’s ‘DNA’.

In this paper we observe how certain integer sequences when divided by powers
of 10 and summed to infinity have discrete values. We will look at the Triangular
numbers, T(n), the Tetrahedral numbers, Te(n), Lazy Caterer’s numbers, LC(n), the
Fibonacci numbers, F(n), the Lucas numbers, L(n), the Pell numbers, P(n), the first

differences of the Pell numbers, P 1
(n), the Jacobsthal numbers, J(n), Padovan num-

bers, Pa(n), and Narayana’s Cows numbers, NC(n), the Catalan numbers, C(n),
the Central Binomial Coefficients, CB(n).

We can summarise our findings as follows:

∞∑

n=1

T(n)

10n
=

102

93

∞∑

n=1

LC(n)

10n
=

91

93
.

∞∑

n=1

Te(n)

10n
=

102

94

∞∑

n=1

F(n)

10n
=

1

89

∞∑

n=1

L(n)

10n
=

19

89

∞∑

n=1

P(n)

10n
=

1

79

∞∑

n=1

P 1
(n)

10n
=

9

79

∞∑

n=1

J(n)

10n
=

161

1100

∞∑

n=1

Pa(n)

10n
=

110

989

∞∑

n=1

NC(n)

10n
=

100

899
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∞∑

n=1

E(n)

10n
=

52

2.92
.

∞∑

n=1

C(n)

10n
=

√
5(
√
5−

√
3)

102

∞∑

n=1

CB(n)

10n
=

1
√
96

.

Triangular Numbers. The Triangular Numbers, T(n), are defined as:

T(n) =
n(n+ 1)

2
.

The first few Triangular Numbers are as follows:
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, (OEIS A000217).

We can arrange the Triangular Numbers as an infinite sum in the following way:

∞∑

n=1

T(n)

10n
= 0.1 + 0.03 + 0.006 + 0.0010 + 0.00015 + ...

⇒
∞∑

n=1

T(n)

10n
= 0.13717421124828532235939643347050754458161865569272976680384087

79149519890260631...

⇒
∞∑

n=1

T(n)

10n
=

102

93
.

As an aside, this reciprocal of 729 has the interesting property of being calculable
in reverse, working backwards from the last digit, such that:

0.0000000000000000001+

0.000000000000000003

0.00000000000000006

0.0000000000000010

0.000000000000015

0.00000000000021

0.0000000000028

0.000000000036

0.00000000045

...

=......79149519890260631
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Tetrahedral Numbers. The Tetrahedral Numbers, Te(n), are defined as:

Te(n) =
n(n+ 1)(n+ 2)

6
.

The first few Tetrahedral Numbers, where Te(1) = 0, are as follows:
0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140,
1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960,... (OEIS
A000292).

We can arrange the Tetrahedral Numbers as an infinite sum in the following
way:

∞∑

n=1

Te(n)

10n
= 0 + 0.01 + 0.004 + 0.0010 + 0.00020 + 0.000035 + 0.0000056 + ...

⇒
∞∑

n=1

Te(n)

10n
= 0.0152415789027587258039932937052278616064...28959

⇒
∞∑

n=1

Te(n)

10n
=

102

94
.

In general, for all figurate numbers, Pr, where r is the nth row of Pascal’s Triangle
(e.g. T(n) = P4(n), Te(n) = P5(n)), we can say that:

∞∑

n=1

Pr(n)

10n
=

102

9r−1
.

The number of repeating digits in each respective decimalisation is 9r−2.

Lazy Caterer’s Numbers. Closely related to the Triangular numbers are the

Lazy Caterer’s numbers, LC(n). These are defined as n(n+1)
2 + 1. The first few in

this sequence are:

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211,
232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, ... (A000124
OEIS).

We can arrange the Lazy Caterer’s Numbers as an infinite sum in the following
way:

∞∑

n=1

LC(n)

10n
= 0.1 + 0.02 + 0.004 + 0.0007 + 0.00011 + 0.000016 + 0.0000022...

⇒
∞∑

n=1

LC(n)

10n
= 0.124828532235939643347050754458161865569272976680384087791

4951989026063113717421...

⇒
∞∑

n=1

LC(n)

10n
=

91

93
.

Notice that the repeating decimals are the same as the repeating decimals of the
Triangular Numbers above, only shifted 8 places to the left.
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The Fibonacci Numbers. The Fibonacci numbers, Fn, may be defined by the
recurrence relation: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, for n > 1.

The first few Fibonacci Numbers are as follows:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, (OEIS A000045).

We can arrange the Fibonacci Numbers as an infinite sum in the following way:

∞∑

n=1

F(n)

10n
= 0.01 + 0.001 + 0.0002 + 0.00003 + 0.000005 + 0.0000008...

⇒
∞∑

n=1

F(n)

10n
= 0.01123595505617977528089887640449438202247191...

⇒
∞∑

n=1

F(n)

10n
=

1

89
.

For any positive integer x, we get the generating function for Fibonnaci numbers
such that:

∞∑

n=1

F(n)

xn
=

x

x2 − x− 1
.

But we also note that the reciprocal of 89 can also be calculated in reverse,
working backwards from the last digit, using the powers of 9, such that:

0.0000000000000000001

0.000000000000000009

0.00000000000000081

0.0000000000000729

0.000000000006561

0.00000000059049

0.0000000531441

0.000004782969

0.00043046721

...

=......40449438202247191

The Lucas Numbers. The Lucas numbers, Ln, may be defined by the recurrence
relation: L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2, for n > 1.

The first few Lucas Numbers are as follows:
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349,
15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851,
1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282,... (OEIS
A000032).
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We can arrange the Lucas Numbers as an infinite sum in the following way:
∞∑

n=1

L(n)

10n
= 0.2 + 0.01 + 0.003 + 0.0004 + 0.00007 + 0.000011...

⇒
∞∑

n=1

L(n)

10n
= 0.21348314606741573033707865158539325842696629...

⇒
∞∑

n=1

L(n)

10n
=

19

89
.

The Pell Numbers. The Pell Numbers may be defined by the recurrence relation:
P0 = 0, P1 = 1, and Pn = 2Pn−1 + Pn−2. The first few Pell Numbers, P(n), are as
follows:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,
470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681,...
(A000129 OEIS).

We can arrange the Pell Numbers as an infinite sum in the following way:
∞∑

n=1

P(n)

10n
= 0+0.01+0.002+0.0005+0.00012+0.000029+0.0000070+0.00000169...

⇒
∞∑

n=1

P(n)

10n
= 0.0126582278481...

⇒
∞∑

n=1

P(n)

10n
=

1

79

As with the Fibonnaci numbers the reciprocal of 79 can also be calculated in re-
verse, working backwards from the last digit, using the powers of 8.

The first differences of the Pell Numbers. Let us call this sequence P 1
(n),

since they are the first differences of the Pell numbers. They are also numerators

of continued fraction convergent to
√
2, e.g.

P
1
(n)

P(n)
=>

√
2.

This sequence may be defined by the recurrence relation: P 1
0 = 0, P 1

1 = 1, and
P 1
n
= 2P 1

n−1 + P 1
n−2. The first few in this sequence are as follows:

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807,
665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, ...
(A001333 OEIS).

We can again arrange these as an infinite sum in the following way:

∞∑

n=1

P 1
(n)

10n
= 0 + 0.1 + 0.01 + 0.003 + 0.0007 + 0.000017 + 0.0000041 + 0.00000099...
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⇒
∞∑

n=1

P 1
(n)

10n
= 0.1139240506329...

⇒
∞∑

n=1

P 1
(n)

10n
=

9

79

∞∑

n=1

P 1
(n)

10n
=

9

79

The Jacobsthal Numbers. The Jacobsthal Numbers can be defined as J(n) =
J(n−1) + 2J(n−2) with J(0) = 0, and J(1) = 1. The first few Jacobsthal Numbers,
J(n), are as follows:

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691,
87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621,...
(A001045 OEIS).

We can arrange the Jacobsthal Numbers as an infinite sum in the following way:
∞∑

n=1

J(n)

10n
= 0.0 + 0.01 + 0.001 + 0.0003 + 0.00005 + 0.000011 + 0.0000021...

⇒
∞∑

n=1

J(n)

10n
= 0.01463

⇒
∞∑

n=1

J(n)

10n
=

161

1100
.

We can arrange them alternatively in the following way:
∞∑

n=1

J(n)

102n
= 0.01 + 0.0001 + 0.000003 + 0.00000005 + 0.0000000011...

⇒
∞∑

n=1

J(n)

102n
= 0.010103051121438674479692867245908264958173368357243887654071

52960193978581531622550...

⇒
∞∑

n=1

J(n)

102n
=

1

98.98
.

Padovan Numbers. The Padovan Sequence can be defined as Pa(n) = Pa(n−2)+
Pa(n−3) with Pa(0) = Pa(1) = Pa(2) = 1. The first few Padovan Numbers are as
follows:

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351,
465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842,... (A001045 OEIS).

We can arrange the Padovan Numbers as an infinite sum in the following way:
∞∑

n=1

Pa(n)

10n
= 0.1+0.01+0.001+0.0002+0.00002+0.00003+0.0000004+0.00000005...
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⇒
∞∑

n=1

Pa(n)

10n
= 0.11122345803842264914054600606673407482305358948432760364

004044489383215369059...

∞∑

n=1

Pa(n)

10n
=

110

989
.

Narayana’s Cows Numbers. The Narayana’s Cows sequence can be defined as
NC(n) = NC(n−1) + NC(n−3) with NC(0) = NC(1) = NC(2) = 1. The first few
Narayana’s Cows Numbers, NC(n), are as follows:

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278,
1873, 2745, 4023, 5896, 8641, 12664, 85626, ... (A000930 OEIS).

We can arrange these as an infinite sum in the following way:
∞∑

n=1

NC(n)

10n
= 0.1+0.01+0.001+0.0002+0.00003+0.000004+0.0000006+0.00000009...

⇒
∞∑

n=1

NC(n)

10n
= 0.1112347052280311457174638720800889877641824249165739...

⇒
∞∑

n=1

NC(n)

10n
=

100

899
.

Eulerian Numbers. Here, we refer to the second column of the classic ver-
sion of Euler’s triangle used by Comtet (1974). This sequence can be defined
as E(n) = 3E(n−1) − 2E(n−2) + 1 with E(0) = 1, E(1) = 4. The first few Eulerian
Numbers, E(n), are as follows:

1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519,
131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584,... (A000295 OEIS).

We can arrange these as an infinite sum in the following way:
∞∑

n=1

E(n)

10n
= 0.1+0.04+0.011+0.0026+0.00057+0.000120+0.0000247+0.00000520...

⇒
∞∑

n=1

E(n)

10n
= 0.15432098765432

⇒
∞∑

n=1

E(n)

10n
=

52

2.92
.

So far, we have identities that do not involve square roots. In the final two ex-
amples, we conjecture that sequences defined by factorials will result in identities
with square roots.
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The Catalan Numbers. The Catalan Numbers are defined as (2n)!
n!(n+1)! . The first

few Catalan Numbers, C(n), are as follows:

0, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,
9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020,
91482563640, 343059613650,... (A000108 OEIS).

We can arrange the Catalan Numbers as an infinite sum in the following way:
∞∑

n=1

C(n)

10n
= 0 + 0.1 + 0.01 + 0.002 + 0.005 + 0.0014 + 0.00042 + 0.000132...

⇒
∞∑

n=1

C(n)

10n
= 0.01127016653792583114820734600217600389167078294708409...

⇒
∞∑

n=1

C(n)

10n
=

(5−
√
15)

102
.

If we set the denominator as 102n−1, we get the following:
∞∑

n=1

C(n)

102n−1
= 0.1 + 0.001 + 0.00002 + 0.0000005 + 0.000000014 + 0.00000000042...

⇒
∞∑

n=1

C(n)

102n−1
= 0.10102051443364380360531850588217216068105038686659743134614...

⇒
∞∑

n=1

C(n)

102n−1
= (

√
3−

√
2)2.

The Central Binomial Coefficients. The Central Binomial Coefficients, found

in the central column of Pascal’s Triangle, are defined as (2n)!
n!2 . The first few Central

Binomial Coefficients, CB(n), are as follows:

1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600,
40116600, 155117520, 601080390, 2333606220, 9075135300, 35345263800,... (A000984
OEIS).

Again, we can arrange them as an infinite sum:
∞∑

n=1

CB(n)

10n
= 0.1 + 0.02 + 0.006 + 0.0020 + 0.00070 + 0.000252...

⇒
∞∑

n=1

CB(n)

10n
= 0.12909944487358056283930884665941332036109739017638...

⇒
∞∑

n=1

CB(n)

10n
=

1
√
60

If we set the denominator as 102n−1, we get the following:
∞∑

n=1

CB(n)

102n−1
= 0.101020620726159657540915535031127454746652478116940279...
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⇒
∞∑

n=1

CB(n)

102n−1
=

1
√
96

More results. We also find the following results for the first few exponents of the
counting numbers:

∞∑

n=1

n

10n
=

10

34
.

∞∑

n=1

n2

10n
=

110

36
.

∞∑

n=1

n3

10n
=

470

37
.

∞∑

n=1

n4

10n
=

7370

39
.

∞∑

n=1

n5

10n
=

142870

311
.

But what is the pattern underlying these results?

The Rectory, Village Road, Waverton, Chester Ch3 7QN, UK

Email address: julianbeauchamp47@gmail.com


