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Abstract—Quantum error correction is essential for re-
liable fault-tolerant quantum computing, necessitating the
encoding of information redundantly into physical degrees
of freedom to safeguard it against noise. A prominent ap-
proach involves continuous variable quantum information
processing using bosonic modes [3], [5], [6], [13], [17], [23].
This technique encodes information within the harmonic
oscillator’s occupation number space, expressed through
number states {|n⟩}∞n=0 [19], position and momentum
eigenstates {|x⟩}x∈R and {|p⟩}p∈R [12], or a selection of
coherent states {|α⟩}α∈S (for a finite set S) [9].

The initial continuous variable scheme involving bosonic
modes is the two-mode ”dual-rail” encoding, introduced in
1995 [8]. Presently, numerous bosonic codes are under as-
sessment for their potential in fault-tolerant quantum com-
putation. This review will focus on key contenders: firstly,
establishing a pragmatic bosonic error model; proceeding
to explore three prominent single-mode codes renowned for
their robust protection against this model; evaluating the
performance of these codes, considering relevant theoretical
aspects based on the work by [2]; and finally, delving into
hardware-efficient multi-mode extensions, notable for their
strides towards feasible physical implementation. These
extensions will be situated within the evolving realm of
bosonic quantum error correcting codes.

I. INTRODUCTION

A. Definitions

The fundamental objective of quantum error correc-
tion entails identifying two logical code words, repre-
senting a qubit within a vast Hilbert space, that exhibit
robustness. This robustness ensures that in the presence
of any of the individual and independent errors El,k ∈ E ,
no loss of quantum information occurs. Consequently,
any quantum superposition of these logical code words
can be accurately retrieved. Mathematically, this corre-
sponds to finding two logical code words |Wσ⟩, where
σ =↑, ↓, which satisfy the criteria for quantum error
correction, also known as the Knill-Laflamme conditions
[22].

These conditions are expressed as:

⟨Wσ|E†
lEk |Wσ⟩ = αl,kδσ,σ′ (1)

for all El,k ∈ E , where αl,k denote the elements of
a Hermitian matrix that are independent of the logical

code words. The independence of αl,k from the logical
code words, along with the specific structure of the
non-diagonal elements, ensures the distinguishability and
correctability of different errors.

In our notation, the non-Hermitian creation and an-
nihilation operators of a harmonic oscillator are repre-
sented as a† and a respectively. Furthermore, we define
n̂ := â†â. It’s worth recalling the following relations in
the context of Fock states |n⟩:

â†|n⟩ =
√
n+ 1|n+ 1⟩, â |n⟩ =

√
n|n− 1⟩

n̂ |n⟩ = n |n⟩
[â, â†] = 1, [n̂, â†] = â†, [n̂, â] = −â,

The natural convention of referring to n̂ as the ”num-
ber” operator is based on its relationship with Fock
states. Hence, we can establish a concept of parity by
considering operations involving:

(−1)n̂ (2)

Furthermore, let’s recall the definition of coherent
states |α⟩, which represent eigenstates of the annihilation
operator:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ = e−

|α|2
2 eαâ

†
|0⟩.

Errors caused by the action of â are referred to as
”loss” errors, those by â† as ”gain” errors, and those by
n̂ as ”dephasing” errors.

II. BOSONIC ERROR MODELS

Understanding a practical bosonic error model is cru-
cial when developing bosonic codes, given the distinctive
characteristics of photon errors. Photons are notably
susceptible to loss, and their interactions are weak,
driving bosonic QEC codes to primarily address photon-
loss errors using limited photon-photon interactions for
enhanced hardware efficiency [24].

The pure-loss channel serves as a representative model
for scenarios like broadband-line and free-space commu-
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nication. In optical and microwave cavities, the bosonic
pure-loss channel typifies a common incoherent error
process [2]. Another prevalent error source is cavity
dephasing, arising from fluctuations in cavity frequency.
While stabilizing optical cavities is essential to mitigate
frequency fluctuations, their impact is relatively minor
compared to energy loss effects, especially in microwave
cavities.

The bosonic pure-loss channel, characterized by a
loss rate γ, is mathematically expressed as Nγ =
exp(κtD) using the Lindblad superoperator D(·) =
ââ† − 1/2{n̂, ·}, where κ represents the excitation loss
rate and t is the time interval [2]. An alternative repre-
sentation can be achieved through the Kraus operators
given by

El =
( γ

1− γ

)l/2 âl√
l!
(1− γ)n̂/2 (3)

where the ”loss rate” γ is defined as

γ = 1− exp(−κt) (4)

This formulation is derived by integrating over all
potential photon loss ”jump” times involving exactly
l photon jumps during a small finite time interval δt,
reminiscent of the Feynman path integral concept [7].
Consequently, the channel can be succinctly described
as

Nγ =

∞∑
l

ElρE
†
l

where ρ denotes the density operator.
The absence of the identity operator in the channel’s

Kraus operators, when γ ̸= 0, is due to the ”no-jump”
(or ”damping” or ”back-action”) term (1− γ)n/2.” This
term emerges from the non-trivial occurrence of no
photon jump, leading to a redistribution of probabilities
among Fock states. Interestingly, even in the absence
of loss, such redistribution persists. Moreover, both this
redistribution and photon loss unfold continuously over
time, resulting in an infinite array of potential errors.
Consequently, the direct utilization of the error correc-
tion criteria (1) is not feasible.

An alternative approach involves expanding each er-
ror operator in powers of κδt (where δt represents a
small finite time interval) and opting to correct up to a
specified highest order. Termed ”approximate quantum
error correction” [18], this strategy requires fulfilling
the quantum error correction criteria (1) approximately,

allowing recovery of the original state with an accuracy
corresponding to the chosen highest order in κδt [19].

By conducting a Taylor series expansion of the Kraus
operators El and addressing both photon loss and back-
action contributions up to order O[(κδt)L] for a given
L, a fresh set of approximate error correction conditions
can be derived. This process resembles the capability to
correct loss errors up to the Lth order in discrete time.
While the complete derivation is detailed in [19], we
summarize the outcomes below, which will be applied
in our forthcoming analysis.

Notably, Kraus operators El>L with an effect of at
least order L+1 can be disregarded. Let Eµ,l signify the
µth element of the expansion of (3) in terms of (κδt)1/2.
For simplicity, we decompose each Kraus operator El≤L

into two components:

El = Bl + Cl +O[(κδt)L+1/2],

where

Bl =

L∑
µ=l

Eµ,l(κδt)
µ/2,

Cl =

2L−1∑
µ=L+1

Eµ,l(κδt)
µ/2.

Subsequently, the channel can be reformulated as
follows:

Nγ =

∞∑
l=0

ElρE
†
l

=

L∑
l=0

ElρE
†
l +O[(κδt)L+1]

=

L∑
l=0

(BlρB
†
l +BlρC

†
l + ClρB

†
l ) +O[(κδt)L+1]

Hence, it is reasonable to neglect the negligible
O[(κδt)L+1] portion of the interference terms. It suffices
to verify that the impact of the remaining significant
portion is unconnected to the logical code words. In
unison, if the error operators Bl and Cl for all 0 ≤ l ≤ L
adhere to the subsequent conditions:

⟨Wσ|B†
lBl |Wσ′⟩ = βlδσσ′

⟨Wσ|B†
lCl |Wσ′⟩ = νlδσσ′ +O[(κδt)L+1]

(5)

then the original state can be rectified up to order
O[(κδt)L].
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These equations carry the implication of enabling us
to ascertain the extent to which a code corrects both
loss errors and back-action errors. For binomial codes
in this instance, it will become evident that back-action
correction is attainable up to the same order as photon
loss correction. Some other codes address the back-
action contribution by constructing multi-mode codes
[7]. These codes circumvent the occurrence of no-jump
evolution by combining multiple physical elements, each
with identical decay rates. The construction of logical
code words ensures they are superpositions of states with
the same combined total excitation number.

III. SINGLE MODE CODES

At first, it’s important to understand the motivation
behind developing new codes for bosonic systems. Al-
though, a straightforward encoding of M qubits exists—
where 2M Fock states cover photon numbers from 0 to
(2M−1)—this method, using the binary representation
|n⟩ = |bM−1bM−2 · · · b0⟩, faces challenges. Each binary
digit, like jth digit representing (1 + Zj)/2 eigenvalue,
corresponds to a physical qubit. For instance, Fock state
n = 16 is |10000⟩. However, this approach encounters
issues with photon loss (a common occurrence), leading
to correlated errors—illustrated by â |10000⟩ = |01111⟩.
This reveals that â induces 4 correlated errors. Con-
sequently, transferring QEC schemes from independent
single qubit error models, as discussed in [19], is not
straightforward. Thankfully, the stabilizer formalism of-
fers valuable insights for the codes we’ll explore (see
Section IV-C2).

A. A Simple Example

Consider a simple bosonic code designed to counteract
E = {I, â}. We define the states as follows:

|W↑⟩ =
|0⟩+ |4⟩

2
|W↓⟩ = |2⟩

Here, |E1⟩ = |3⟩ and |E2⟩ = |1⟩ represent our error
words.

Remarkably, we can achieve high-fidelity quantum
non-demolition measurements of photon number parity,
efficiently distinguishing these logical and error words
by modulo-2 checks. A syndrome of 0 implies no error,
while a syndrome of 1 prompts a unitary operation
swapping |E1⟩ with |W↑⟩ and |E2⟩ with |W↓⟩.

Now, note that both logical states share the same mean
photon number, i.e., ⟨Wσ| n̂ |Wσ⟩ = 2 for all σ. This
property ensures that â maps α |W↑⟩+β |W↓⟩ to α |E1⟩+
β |E2⟩, preserving the ”deformation” condition.

Generalization can be achieved by increasing the spac-
ing between states, allowing the detection of higher-order
loss or gain errors. For instance, with greater photon
number separation in |Wσ⟩ defined as:

|W↑⟩ =
|0⟩+

√
3 |6⟩

2

|W↓⟩ =
|3⟩+

√
3 |9⟩

2

Modulo-3 photon number measurements can indicate
error severity: syndrome 0 for no error, syndrome 1 for
single loss, and syndrome 2 for double loss.

Additionally, it’s observed that n ”dephases” lead to
transformed relative phases of Fock states, resulting in a
superposition of codewords and error words. Detecting
such dephasing error involves projecting onto the logical
codeword basis. A negative eigenvalue during measure-
ment, coupled with no photon loss, prompts the unitary
state transfer |Eσ⟩ ↔ |Wσ⟩ as described earlier.

B. Cat Codes

Cat codes were initially introduced for single-mode
systems in [9]. Expanding on this foundation, numerous
studies have extended these codes to the multi-mode
realm, aiming to enhance error correction or streamline
hardware implementation [1], [14], [20]. We provide an
overview of these developments in Section IV-C1, in-
spired by the effective bit-flip error suppression demon-
strated by the four-photon driven dissipative process in
[20].

Exploring the use of a superposition of ”well-
separated” coherent states for logical state encoding, cat
codes are often encountered in the context of single loss
error correction via the operator â. While the concept
can be extended to scenarios involving multiple losses
[1], we concentrate on the single-loss case.

A visually elegant approach involves framing the
code’s evolution around a stabilizing ”jump” operator,

J ∼ â4 (6)

Essentially, our logical code space, composed of su-
perpositions of coherent states, remains invariant under
the action of J (up to a phase), akin to the well-known
stabilizer formalism.

Notably, parity, defined as (2), commutes with J . We
leverage this property to label basis states of our code
subspace using the parity operator
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PΠ =
1 + (−1)n̂

2

where Π ∈ {0, 1}.
We assert that logical cat states are ”well-separated,”

meaning that the basis elements of cat states stem from
the projection of the parity operator onto coherent states.
As a result,

|αΠ⟩ = NΠPΠ |α⟩

where NΠ is the normalization factor. This leads to
the observation that

|αΠ⟩ ∼

{
|Π⟩ , α→ 0

|α⟩+ (−1)Π |−α⟩ , α→ ∞

This gives rise to the following relationships

â |α0⟩ = |α⟩ − |−α⟩ = |α1⟩
â |α1⟩ = |α⟩+ |−α⟩ = |α0⟩
â |iα0⟩ = i(|iα⟩ − |−iα⟩)
â |iα1⟩ = i(|iα⟩+ |−iα⟩)

(7)

These relationships will be utilized shortly. Accord-
ingly, we define logical code states Cµ, µ ∈ {↑, ↓} as

∣∣Cα,Π
µ

〉
= Nµ,Π(|αΠ⟩+ (−1)µ |iαΠ⟩)

= Nµ,Π

[0,∞)∑
p even/odd

√
exp(−|α|2)α

4p

2p!
|2p⟩

where Nµ,Π denotes normalization factors that tend to
the same value as α→ ∞.

Further analysis reveals that the normalization fac-
tor exhibits µ-dependence, which is exponentially sup-
pressed by α2 [1]. Similarly, considering pth order
dephasing errors n̂p, we find that the term〈

Cα,Π
↑

∣∣∣np ∣∣∣Cα,Π
↑

〉
−
〈
Cα,Π

↓

∣∣∣np ∣∣∣Cα,Π
↓

〉
is non-zero due to the µ-dependence of the normal-

ization factors. However, this discrepancy diminishes as
α → ∞. Thus, according to (1), cat states exhibit the
potential to withstand any order of dephasing.

1) Discrete Loss Errors: Using the relations from
equation (7), we can delineate the effect of operator â
on our cat code states:

â
∣∣∣Cα,0

↑

〉
= â

∣∣∣Cα,1
↓

〉
, â

∣∣∣Cα,0
↓

〉
= â

∣∣∣Cα,1
↑

〉
â
∣∣∣Cα,1

↑

〉
= â

∣∣∣Cα,0
↑

〉
, â

∣∣∣Cα,1
↓

〉
= â

∣∣∣Cα,0
↓

〉
This reveals that when â is applied to an even parity

(Π = 0) cat state, it shifts into the odd parity subspace
(Π = 1) while simultaneously inducing a logical bit
flip (↑↔↓). Conversely, â transforms an odd parity state
into an even parity state, maintaining the parity but not
the logical information. Hence, within the confines of
the approximate quantum error conditions (5), quantum
information remains intact, and with photon jumps being
detected and recorded, no further correction becomes
necessary. In essence, the precision limits of cat codes
are unswayed by the action of the detected single-loss
â.

However, if we apply â2, a logical bit flip emerges
while preserving parity. Consequently, our parity mea-
surement would indicate parity consistency despite an
underlying non-trivial transformation. Hence, â2 proves
to be non-correctable.

2) Dephasing Errors: As mentioned earlier, dephas-
ing errors experience suppression up to the same or-
der as the normalization constants for the pth moment
of photon number remain consistent across all logical
states. Specifically, dephasing errors exhibit exponential
suppression in terms of α2.

3) Continuous Errors: Now using the approximate
quantum error correction conditions established earlier,
it is noteworthy that, derived from equation (3), the
operator E1 takes the form:

E1 =

(
γ

1− γ

)1/2

â(1− γ)n̂/2 = âγ1/2(1− γ)n̂.

As a result, considering all Π, the following relation
holds:

〈
Cα,Π

↑

∣∣∣E1E
†
1

∣∣∣Cα,Π
↑

〉
−
〈
Cα,Π

↓

∣∣∣E1E
†
1

∣∣∣Cα,Π
↓

〉
≈ κδt(

〈
Cα,Π

↑

∣∣∣ n̂ ∣∣∣Cα,Π
↑

〉
−

〈
Cα,Π

↓

∣∣∣ n̂ ∣∣∣Cα,Π
↓

〉
≈ 4κδt|α|2 exp

(
−|α|2

)
(sin |α|2 + cos |α|2).

This implies that the approximate quantum error
correction conditions (5) are violated as long as the
above quantity is nonzero. This suggests the presence of
uncorrectable errors of order O(κδt), focusing on single-
loss errors. Notably, it is observed that this term tends
to diminish as α → ∞, aligning with the findings from
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the analysis of the first moment of photon number in
Section III-B2. Consequently, to mitigate such errors, a
larger value of α might be necessary. It is pertinent to
recall that the label α for a coherent state |α⟩ signifies the
mean photon number within the associated Poissonian
distribution of number states. Therefore, this potential
increase in the average photon number relative to other
coding schemes could potentially introduce a higher
error rate.

C. Binomial Codes

Next, let’s delve into binomial codes, as introduced in
[19]. These codes exhibit a resemblance to the encoding
strategy outlined in Section III-A, given that Fock states
serve as the foundation for encoding logical states.

Imagine a scenario where protection is
desired against a set of operators denoted as
E = {I, a, a2, · · · , aL, a†, · · · , (a†)G, N, · · · , ND}.
In this context, the authors propose a straightforward
family of codes with the following structure:

∣∣W↑/↓
〉
=

1√
2N

[0,N+1]∑
p even/odd

√(
N + 1

p

)
|p(S + 1)⟩ ,

where the parameter spacing is denoted as S =
L + G, and the maximum order is defined as N =
max{L,G, 2D}. Notably, the spacing between Fock
states is S+1, which facilitates the distinction of errors
through the measurement of photon numbers modulo
S+1. The efficacy of this approach is underpinned by the
distinctive spacing, which enables the transformation of a
state to a lower Fock state through successive application
of the operator â up to S times, until it aligns with
the next Fock state originally positioned lower in the
sequence.

1) Discrete Loss/Gain Errors: Moreover, when exam-
ining the impact of loss errors within the framework of
the discrete error correction conditions (1), a significant
insight emerges:

⟨W↑| (â†)lâl |W↑⟩ = ⟨W↓| (â†)lâl |W↓⟩ ,

This equality remains valid for l ≤ max{L,G}. This
observation is rooted in the realization that (â†)lâl = n̂l.
The authors elucidate this disparity in the lth moment
of photon number between codewords by expressing it
as the lth derivative of (1 + x)N+1|x=−1, where l ≤
max{L,G} (with appropriate scaling using the binomial
formula).

Furthermore, leveraging the utilization of orthonormal
Fock states as the basis reveals a crucial aspect:

⟨Wσ| (â†)lâm |Wσ′⟩ = 0,

This relationship holds sway under the condition that
l,m ≤ max{L,G} and additionally that l ̸= m. As a
result, the prerequisites for fulfilling the discrete error
correction conditions are satisfactorily met.

The demonstration of equivalence in the lth moment
of |n⟩ between both logical codewords naturally extends
to the mean photon number, given that the mean is
essentially the first moment. Consequently, the process of
measuring the mean photon number avoids introducing
deformation.

It’s noteworthy that the earlier discussion unveils an
intriguing characteristic – the ”quantum error correction
matrix” defined by the matrix elements Q(l,k) = αl,k as
elucidated in (1), manifests a distinctive diagonal pattern
in scenarios exclusively focused on loss/gain errors.

2) Discrete Dephasing Errors: When dephasing er-
rors are taken into account, the error correction matrix
no longer retains its strict diagonal form but remains
Hermitian. In order to identify and rectify these errors,
the implementation of projective measurements within
an orthonormalized basis becomes imperative,similar to
the approach in Section III-A. Following the detection
of an error, the restoration of the original state entails a
unitary operation that effectuates a state transfer between
the subspaces corresponding to the erroneous and logical
codewords.

3) Continuous Errors: Let’s revisit the approximate
quantum error conditions (5). Both B†

lBl and B†
lCl can

be approximated as polynomials in n̂ of maximum de-
gree L with an accuracy up to (κδt)L [19]. As discussed
earlier, the binomial code words designed to mitigate L
photon losses exhibit consistent expected values of n̂l

for all l ≤ L, a property shared by both variations of
the code words. This congruence signifies the fulfillment
of the approximate quantum error conditions for these
codes.

However, it’s important to emphasize that this rep-
resents a theoretical threshold for a recovery process
when utilizing these codes. The critical challenge re-
mains in identifying a specific and feasible process that
operates effectively within this established threshold. In
this context, the authors illustrate that a straightforward
procedure involving parity verification and subsequent
application of a suitable unitary transformation to inter-
change error words with logical code words proves to
be effective.

Moreover, due to the damping effect of the no-jump
evolution on coherent states, we find (1 − γ)n̂ |α⟩ =
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|(1− γ)α⟩ (1 − γ)n̂ |α⟩ = |(1− γ)α⟩. This observation
implies that the sole required correction involves ”re-
pumping” the cat states. This corrective action can be
achieved through a discrete unitary correction operation,
akin to the principles underlying binomial codes, or by
employing continuous nonlinear amplification stemming
from a meticulously engineered reservoir [14], [20].
Notably, the cat codes, as developed earlier, inherently
support a ”passive” error correction scheme, where the
primary focus revolves around detecting photon loss
events. This scheme primarily involves the gradual and
continuous inversion of the damping effect on the coher-
ent state amplitude, without necessitating active discrete
correction stages. Importantly, the two-mode variant of
the previously discussed code has already been stabilized
through reservoir engineering, successfully achieving
prominent two-photon drive and two-photon dissipation
[15].

D. GKP Codes

The Gottesman, Kitaev, and Preskill (GKP) codes [12]
are constructed based on the continuous basis of non-
normalizable eigenstates of the position operator x̂. A
distinctive feature of GKP codes is that the correctable
errors themselves form a continuous set. The fundamen-
tal ideal qubit GKP states can be expressed as:

∣∣GKP↑/↓
〉
∼

(−∞,∞)∑
p even/odd

D̂
(
p

√
π

2

)
|x̂ = 0⟩ , (8)

where

D̂(α) = exp
(
αâ† − α∗â

)
is the displacement operator, and |x̂ = 0⟩ represents

the initial position eigenstate. By examining these states
in position space, it can be demonstrated that the ef-
fective spacing between the two logical states amounts
to S =

√
π. A similar result holds when considering

momentum (p̂) space through the Fourier transform
of (8). As anticipated, position and momentum shifts
exp(−iup̂) exp(−ivx̂) with |u|, |v| ≤

√
π/2 can be

corrected. Moreover, the GKP codes have the ability to
correct any error operators expandable in the basis of
correctable shifts. Intriguingly, it has been shown that
photon loss/gain and dephasing errors can satisfy the
conditions of approximate quantum error correction for
the GKP codes, when photon loss |a⟩ and other errors
are expanded within this basis [19].

The ideal GKP code words described in (8) encompass
both an infinite mean photon number and an infinite

number of states that are perfectly squeezed within the
x̂ lattice. In practice, to make these codes experimen-
tally viable, the superposition within the displacement
operator must be filtered, and the sharp |x̂ = 0⟩ state
needs to be substituted with a distribution of states. In
the conventional formulation of the approximate codes,
a p-dependent Gaussian envelope is introduced into the
sum in (8), and a Gaussian wavepacket replaces |x̂ = 0⟩.

Furthermore, the approximate code words are not
perfectly orthogonal, necessitating consideration of er-
rors stemming from non-orthogonality. As the ideal
GKP states exhibit an infinite mean photon number,
the approximate GKP states must include a sufficiently
high photon count to manage such imperfections. Con-
sequently, the traditional form of the approximate code
words is expected to contain more photons than, for
instance, the binomial code discussed in the previous
section.

However, GKP code words have the capability to
protect against a broader range of errors compared to
the minimal binomial code. Due to the various choices of
starting states and filters, and the challenge of comparing
continuous sets of correctable errors with discrete ones,
a comprehensive comparison of the relative capabilities
between the GKP and binomial/cat code classes remains
an open question.

The GKP code achieves approximate error correction
through the utilization of ancillae states prepared in
an equal superposition of logical basis states, homo-
dyne measurements, and incoherent χ(2) interactions.
It’s worth noting that the preparation of ancillae states
introduces χ(2) interactions, adding to the GKP code’s
resource burden for error correction [24].

IV. DISCUSSION

A. Theoretical Comparisons

From our development of the codes in the previous
section, we’ve observed essential differentiating proper-
ties.

Initially, when considering the average photon num-
ber n̄code for single-loss correction, a distinct ordering
becomes evident, as demonstrated by [19]:

n̄binom = 2,

n̄cat = 2.3,

n̄gkp = 4.

Consequently, in this regard, we find that binomial
codes outperform cat codes, followed by GKP codes,
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Fig. 1. Figure from [19] comparing binomial codes to cat codes.
Observe that, in principle, unlimited dephasing errors can be tolerated
by cat codes.

with the hierarchy binomial > cat > gkp. This hierar-
chical sequence was initially deduced by examining the
photon number pump needed to satisfy the approximate
quantum error correction conditions up to κδt order.
However, it is important to bear in mind that cat codes
possess the potential to correct errors of any order
due to dephasing, while GKP codes explicitly address
displacement errors. Additionally, it’s worth noting that
any trace class bosonic operator can be expanded using
displacement operators [2], suggesting that assessing
these codes solely based on single-loss correction ability
could be narrow-focused.

Secondly, we observed that single-mode binomial
codes and GKP codes necessitate explicit correction
gates at each time step, irrespective of whether a photon
jump has occurred. In contrast, the ”passive” scheme
described in Section III-C3 seems more straightforward
from an intuitive perspective. In this scheme, continuous
re-pumping of states is performed, and the occurrence of
photon loss events is monitored. This method simplifies
the process since, within a small time interval δt, one
merely needs to record an error syndrome without dy-
namically responding to it by applying a unitary gate.

On the flip side, binomial codes operate within a
constrained Hilbert space, which can prove advantageous
for the practical implementation of the necessary unitary
operators for error detection and recovery. This advan-
tage becomes particularly pronounced when dealing with
errors involving â† operators, as their operation on cat
codes is less straightforward compared to the case of â
operators alone.

It’s also worth noting that the Fock state distributions
of binomial and cat codes are binomial and Poissonian,
respectively. Consequently, as the average photon count
increases (larger N ), both distributions tend to approxi-
mate a normal distribution. As a result, the binomial and
cat codes gradually converge as N becomes larger.

B. Performance Comparisons

In their work [2], Albert et al. introduce ”channel
fidelity”, denoted as FE , as a practically feasible mea-
sure to assess the efficacy of single-mode bosonic code
protection. The rationale behind this lies in the fact
that the noise model operators might lack well-behaved
properties, whereas optimal recovery for each code
can be conveniently computed by employing a semi-
definite program when channel fidelity is considered.
Furthermore, if we assume that our noise is entirely
characterized by the lossy bosonic channel (meaning
perfect encoding, recovery, and decoding), then channel
fidelity essentially quantifies the resilience of entangle-
ment in the presence of the noisy bosonic channel. More
specifically, it measures the degree of overlap between
the initial state and the final state, with the initial state
being an entangled Bell state, while only the first qubit
is subjected to the influence of the noise channel.

Figure IV-B provides an overview of the performance
evaluation of the optimal code from each code family
(determined through solving the semi-definite program),
under the constraint of mean photon number, while
varying the loss rate γ (4).

The numerical findings demonstrate that codes de-
signed to effectively counter predominant errors at low
γ might not necessarily translate into equally effective
performance at higher γ values. In our specific case,
both cat and binomial codes ensure precise protection
against initial loss errors by maintaining an adequate
spacing, denoted as S, between Fock states, as previously
described. Both cat and binomial codes offer the flexi-
bility to increase S arbitrarily, while gkp codes exhibit
S ∈ {0, 1} [2], contingent on whether their lattice is
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displaced from the origin or not. Nonetheless, the gkp
strategy of approximately suppressing all errors appears
to yield the most promising results.

In a related vein, Noh et al. establish in their paper
[25] that GKP codes achieve the quantum capacity of
Gaussian loss channels, attaining this capacity up to a
constant gap relative to an upper bound of the quantum
capacity.

C. Multi-Mode Extensions

In this part, I aim to provide a concise overview
of recent findings derived from these basic single-
mode codes. The goal is to develop codes that can
be practically implemented in the near future and offer
comparable or even better error-correction abilities.

1) Pair-Cat Codes: The pair-cat codes introduced
in [1] by Albert et al. incorporate an extra mode not
necessarily to enhance error-correction capabilities com-
pared to traditional cat codes (although this becomes
plausible with more than two modes), but rather to
progress towards achievable physical implementation.
This approach notably reduces the level of non-linearity
required for realization.

The inherent uncorrectable error in this code is âb̂,
where â and b̂ represent loss operators acting on the
first and second modes, respectively. Consequently, this
replaces the uncorrectable error â2 in the case of single-
mode cat codes, resulting in similar quality code sub-
spaces.

Moreover, this method permits the simultaneous uti-
lization of discrete quantum error correction (QEC)
techniques (such as non-demolition measurement of
error syndromes and dynamic control) and continuous
QEC techniques. This parallel application is unfeasible
in the context of single-mode scenarios using existing
techniques.

To elaborate, recall that with cat codes, continuous
”pumping” can suppress dephasing, and discrete pho-
ton loss recording can guard against losses. However,
attempting both simultaneously is currently unattainable
[1]. This limitation is linked to the fact that the entan-
gling gate for measurement is generated through a cross-
Kerr interaction, which only commutes with the single-
mode jump operator J1 ∼ â4 (as seen in equation 6) at
discrete time intervals. Consequently, the dissipation due
to J must be halted during measurement. Interestingly,
the pair-cat code’s ability to utilize photon number
differences, rather than parity, as syndromes permits fine-
tuning of the parameters of the two-mode cross-Kerr
interaction to commute with the pair-cat jump operator
J2 ∼ â2b̂2.

Furthermore, Albert et al. propose a continuous error
correction scheme against loss for the pair-cat codes
using Superconducting Nonlinear Asymmetric Induc-
tive eLements (SNAILs) [10]. These require a lower-
order non-linearity than the array of Josephson junctions
required for continuous error correction against photon
loss in the single-mode case.

Finally, we observe that J2 spreads out the quartic
stabilizing nonlinearity across two modes. This provides
the advantage of requiring less photons per mode to
have a comparable protection against dephasing and so
a slightly lower probability of the leading uncorrectable
loss error. Figure IV-C1 summarizes differences between
the codes.

Fig. 2. Figure from [1] comparing single-mode cat codes to pair-cat
codes

2) χ(2) Binomial Codes: The drive to develop new
codes, such as pair-cat codes, stems from the fact that
the universal gate set of single-mode cat codes relies
on induced four-wave mixing interactions in Josephson
junctions, which are significantly stronger than optical
four-wave mixing in Kerr media. Thus, χ(2) codes,
encompassing a broader scope than the χ(2) binomial
codes we’re focusing on here, aim to advance quantum
computation by exclusively employing χ(2) interactions
for coherent photon conversion, alongside linear-optics
transformations [24]. This is because χ(2) is a lower-
order nonlinearity, potentially stronger than four-wave
mixing.

To construct these codes, Niu et al. establish a
symmetry-operator framework that harnesses the sym-
metry inherent in the physical subspace supporting
logical codewords, as well as the symmetry of the
measurable syndromes. This framework demonstrates
that the χ(2) binomial code represents the first Fock-
basis bosonic quantum error correcting code capable of
rectifying N photon-loss errors using O(N) photons
for encoding. In contrast, all previously discussed codes
necessitate encoding with O(N2) photons to correct N
photon-loss errors. However, this new code involves the
utilization of channel-monitoring resources, unlike the
other examined codes, which are employed to determine
the number of photons lost or gained. This emphasizes
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the significance of channel monitoring for its potential
to enhance error-correction capabilities.

Next, let’s delve into the concept of ”symmetry op-
erators.” We begin by considering an N -pump-photon
3-mode subspace HN . Within this subspace, all states
|ψ⟩ =

∑N
n=0 cn |n, n,N − n⟩ ∈ HN adhere to the

following relations:

(n̂s + n̂p) |ψ⟩ = N |ψ⟩
(n̂i + n̂p) |ψ⟩ = N |ψ⟩
(n̂s − n̂i) |ψ⟩ = 0 |ψ⟩

(9)

Here, n̂k ≡ â†kâk for each of the three modes, denoted
as k = s, i, p. Consequently, the photon number parity
vector can be expressed as:

P = [n̂s + n̂i, n̂s + n̂p, ˆni + np] (mod 2)

= [2N,N,N ] (mod 2)

is constant and is maintained for all |ψ⟩. Drawing
inspiration from this observation, we define symmetry
operators:

Ẑ(N+1)
s,p = exp(i2π/(N + 1))Ẑ(N+1)

s ⊗ Ẑ(N+1)
p

Ẑ(N+1)
s,p = exp(i2π/(N + 1))Ẑ(N+1)

s ⊗ Ẑ(N+1)
p

Here,

Ẑ
(N+1)
k ≡

N∑
n=0

exp(i2πn/(N + 1)) |n⟩k ⟨n|k

where |n⟩k , n ∈ 0, 1, · · · , N represents an n-photon
Fock state of mode k (where k = s, i, p).

To redundantly encode a lower-dimensional logical
basis into a higher-dimensional physical basis, additional
symmetry operators are required to stabilize the logical
state. Specifically, within the code’s physical subspace,
only the eigenstates of all symmetry operators in the
provided set with a unity eigenvalue are chosen as
logical-basis states.

In the context of the χ(2) binomial code, the physical-
subspace symmetry characterized by {Ẑ(2N)

s,p , Ẑ
(2N)
s,p }

as defined above is enforced to confine logical basis
states to the subspace HN . Furthermore, to leverage
binomial symmetry that safeguards the code subspace
against distortion from photon loss or gain errors, an
additional symmetry is introduced involving the con-
jugation of the photon-number inversion operator with
the pseudo-beam-splitter operator. For a more detailed

understanding of this process, the original source [24] is
recommended.

What is crucial to highlight here is that this symmetry-
operator framework establishes a systematic methodol-
ogy for discovering novel quantum error correcting codes
aligned with available measurement schemes and choices
of physical subspace.

For instance, Niu et al. demonstrate that by completing
the set of symmetry operators, the simplest scenario
yields logical states:

|B↑⟩ ∼ |0, 0, 3⟩+
√
3 |2, 2, 1⟩

|B↓⟩ ∼ |3, 3, 0⟩+
√
3 |1, 1, 2⟩

It can be verified using (1) that this code is resilient
against up to second-order loss or gain, as well as first-
order dephasing across all modes.

3) Comparisons: Let’s proceed to compare the two
multi-mode codes discussed above.

One fundamental distinction lies in the composition of
pair-cat codes, which encompass infinite superpositions
of Fock states, whereas χ(2) codes are characterized by
finite dimensions. Consequently, χ(2) codes can only
tolerate the loss of a finite number of photons, whereas
pair-cat codes hold a non-zero, albeit exponentially di-
minishing, probability of experiencing the loss of any
arbitrary number of photons.

It was previously noted that χ(2) binomial codes can
rectify more than one loss if the total count of lost
photons is known (achieved through channel monitor-
ing). On the other hand, generalized pair-cat codes can
incorporate a concept of ”spacing” denoted as S (details
can be found in Section V of [1]), enabling the mitigation
of up to S loss errors in each mode solely through the
information gleaned from error syndromes. Moreover, it
has been revealed that pair-cat codes with a spacing of
S = 0 possess the ability to detect all loss and gain
errors, even when considering three or more modes [1].
This capability is beyond the reach of χ(2) codes.

Nevertheless, in terms of error correction, the two-
mode χ(2) binomial codes can precisely rectify dephas-
ing errors nl, where l ≤ N , whereas pair-cat codes offer
approximate dephasing error correction.

V. CONCLUSION

A. Importance of Bosonic Systems

There are many potential advantages to bosonic sys-
tems. A clear one is that with each added qubit, several
new decoherence channels are added, and this multiplies
the number of possible errors and requires measuring
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more error syndromes. Therefore, it may be simpler to
add physical degrees of freedom using bosonic con-
tinuous variable systems. Practically, too, it still seems
extremely challenging to build a register of more than
on the order of 10 qubits. Overall, then, bosonic systems
may have strong use improving lifetimes of quantum
memories.

Past quantum memory, bosonic mode quantum error
correction is also useful for quantum teleportation and
quantum communication [19], which consists of quan-
tum state transfer and generation of high-fidelity entan-
gled pairs of quantum bits between two distant nodes
in a quantum network. In [19] Michael et al. consider
a ’pitch-and-catch’ scenario for quantum state transfer
which can be used for quantum repeaters. They show that
simple bosonic codes can greatly increase the fidelity
of quantum communication and remote entanglement
between hardware modules by being utilized to protect
errors from this protocol.

B. Future Developments

Significant advancements remain imperative to com-
prehensively assess the performance of bosonic error-
correcting codes. It is crucial to recall the stringent
assumptions made during the comparison of single-
mode codes in Section IV-B: the perfection of encod-
ing, recovery, and decoding processes, along with the
grouping of codes based on mean photon occupation
number. Furthermore, this performance analysis can be
extended to various other multi-mode codes, and an
intriguing avenue involves the expansion of this analysis
to two modes. This extension could unveil the potential
performance of pair-cat codes and χ(2) binomial codes
against photon loss, presenting a valuable exploration.

Moreover, the framework of symmetry operators, as
described, furnishes a systematic approach for construct-
ing bosonic QEC codes by leveraging the characteristics
of the underlying system dynamics. This framework not
only offers a smooth transition from qubit-basis three-
mode encoding to qudit-basis multi-mode encoding but
also holds promise for future endeavors that tap into this
formalism.

Furthermore, χ(2) binomial codes exhibit particular
promise due to their efficient utilization of photon num-
bers (with an O(N) dependence to rectify N photon
loss). However, these codes require ”channel monitor-
ing” to discern the number of loss errors at each time
step. Thus, the efficient execution of this monitoring
within the hardware emerges as a crucial prerequisite
for the viability of these codes.

Nevertheless, the ultimate challenge lies in estab-
lishing hardware that is adept at efficiently carrying
out these error correction procedures. The breakthrough
achievement of achieving high-fidelity quantum non-
demolition measurements of photon number parity, as
demonstrated in [26], is noteworthy. The transition from
single-mode codes like cat codes, which relied on mi-
crowave cavities coupled to Josephson junctions, to
multi-mode codes represents a pivotal shift. Multi-mode
codes leverage lower-order nonlinearities, potentially
amendable by near-term realizable reservoir-engineered
microwave cavities [1] or facilitated through linear optics
and χ(2) interactions, thereby addressing the hardware
challenge more effectively. The ongoing progress in this
direction is indeed promising.
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