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I- Introduction 

Immerse yourself in the fascinating world of the Syracuse conjecture, more commonly known as 

the Collatz conjecture. Since its formulation in 1937 by mathematician Lothar Collatz, this 

captivating riddle continues to challenge the brightest minds in the mathematical community. 

Despite its apparent simplicity, this conjecture exposes enigmatic properties and deep mysteries 

that have piqued the interest and curiosity of researchers for decades. 

In this article, we will delve into the origins of this conjecture, exploring the first approaches 

that were attempted to solve this mathematical puzzle. We will also examine the various 

strategies and results obtained so far, while probing possible extensions of this conjecture to 

other areas of mathematics. Prepare to be taken on a fascinating journey through the depths of 

the Syracuse– Collatz Conjecture, where simplicity meets complexity and mysteries abound at 

every turn. 

   

II- Origins 

Collatz conjecture is as captivating as the problem itself. It all started in the 1930s, when Lothar 

Collatz, then a young student, delved into the mysterious world of iterations in integers. Armed 

with graphs and hypergraphs, he explored the depths of digital sequences, without suspecting 

that he would soon discover a sequence that would defy intuition and captivate the imagination 

of mathematicians around the world. 

During a visit to Hamburg in 1952, Collatz shared his enigma with Helmut Hasse, who spread it to 

Syracuse University in the United States. Thus, the sequence became known as the "Syracuse 

sequence", leaving an indelible mark on mathematical history. Meanwhile, Polish mathematician 

Stanislas Ulam was spreading it at Los Alamos National Laboratory, while Shizuo Kakutani 

broadcast it in classrooms at Yale and Chicago universities. 

In the 1960s, in the midst of the Cold War, the Collatz conjecture became a subject of intense 

fascination for mathematicians around the world. Some even joked that she was part of a Soviet 



plot to slow down American research. But beyond the conjectures and rumors, the real intrigue 

lay in the quest for a solution to this seemingly simple, yet incredibly complex, problem. 

Collatz 's conjecture continues to inspire curious minds and intrepid researchers. It is associated 

with an Erdös prize of 500 dollars, offered to anyone who manages to solve this mathematical 

mystery. This fascinating story and the challenges it pose inspire mathematicians around the 

world to embark on a never-ending intellectual adventure, searching for the truth hidden behind 

integers and infinite sequences. 

III- Collatz Conjecture 

Collatz conjecture, although simple to state, can be broken down into different variants or 

formulated in various ways. Below we'll explore a few of these variations, providing insight into 

the richness and complexity of this seemingly simple problem. 

 

➢ Non-Divergence Conjecture (Non-Divergent Trajectories Conjecture) 

All sequences generated by Collatz 's rules remain bounded, that is to say they do not move away 

from zero indefinitely. 

 

➢ Finite Stopping Time Conjecture 

Collatz 's rule eventually returns to values lower than its starting point, thus indicating a finite 

loop. 

 

➢ Conjecture Using Semi-Groups of Affine Functions 

This formulation of the conjecture involves the use of semigroups of affine functions to define 

sets of orbits. Using the composition of these functions, we seek to explore the trajectories 

generated by the iterations of the Collatz rule. 

 



➢ Predecessor Conjecture 

Focusing on a certain semigroup generated by specific affine functions, this conjecture asserts 

that the set of positive integers greater than 2 is contained in a particular orbit. 

Collatz conjecture illustrate the complexity and diversity of possible approaches to tackle this 

fascinating and notoriously difficult problem. 

IV- First approach to the conjecture 

➢ Syracuse Suite 

The Syracuse sequence of an integer N > 0 is defined by induction, as follows: 

-U 0 = N 

-and for any integer n, U n+1 = U n / 2 if U n is even or U n = 3U n + 1 if U n is odd 

➢ Statement of the conjecture 

The conjecture states that for every integer N > 0, there exists an index n such that U n = 1 

➢ Graphical representation and Vocabulary 

• Graphical representation of the sequence for N = 27 

 

 

 

 

 

 

 

 



By graphically examining the evolution of the sequence for N = 15 and N = 27, we can see that 

the sequence reaches high values before returning to lower levels. The graphic representations 

evoke the image of an irregular fall similar to that of descending hail or the sinuous trajectory of 

a leaf carried by the wind. This observation inspired the use of pictorial language, thus 

introducing the poetic concept of the 'flight' of the s 

We then introduce three parameters defined as follows: 

• Flight time: represented by the smallest index U n =1 . It is 17 for the Syracuse suite with N =15 

and 111 for the Syracuse suite with N =27. 

• Flight time at altitude: defined as the smallest index n such that U n < U 0 . It is 11 for the 

Syracuse suite with N =15 and 96 for the Syracuse suite with N =27. 

• Maximum altitude: corresponds to the maximum value reached subsequently. It is 160 for the 

Syracuse suite with N =15 and 9,232 for the Syracuse suite with N =27. 

V- Approaches to the conjecture and results 

Over the years, various approaches have been explored to attempt to resolve the Syracuse– 

Collatz conjecture . Among the most notable, we can cite: 

➢ Binary approach 

The binary approach to exploring the Syracuse Conjecture immerses us in a fascinating world 

where odd numbers are subject to an enigmatic and elegant transformation. Imagine a 

machine, a kind of mathematical genius, which operates according to simple but mysterious 

rules. This machine, called the Syracuse function, is a true architect of odd numbers, tirelessly 

guiding them towards the mystical “1”. 

The operation of this machine is both simple and complex. First, it takes an odd number and 

magically transforms it into a new number, shifting it one notch to the left and adding a "1" at 

the end. Then, it adds the original number to this new creation, resulting in a result three times 

larger, from which it subtracts any unnecessary "0" until the result is odd. 



It's a delicate dance between binary and arithmetic, where each iteration of the machine 

reveals new mysteries and new challenges to overcome. The sequence of operations unfolds 

like a cascade of mathematical steps, taking us on a captivating journey through the depths of 

number, revealing the hidden secrets of its intrinsic nature. 

Let’s take a concrete example to illustrate this approach. If we choose 7 as a starting number, its 

binary writing is 111 (because 7 = 2 2 + 2 1 + 2 0 ). The resulting sequence goes as follows: 

111 

1111 

10110 

10111 

100010 

100011 

110100 

11011 

101000 

1011 

10000 

11 

100 

Each step in this sequence offers a fascinating insight into how the Syracuse machine 

manipulates odd numbers through the prism of binary. It's an exciting journey into the world of 

numbers, where the simplicity of the rules hides the infinite wealth of possibilities. 

➢ Probabilistic approach 



The probabilistic approach has been adopted by some researchers to explore the behavior of the 

Syracuse sequence, a problem that has fascinated mathematicians for decades. This conjecture 

proposes a simple iterative sequence, but its properties remain largely mysterious. 

Here is a more in-depth analysis of this approach: 

1. Statistical methods : Researchers have used statistical methods to study the Syracuse 

sequence on large sets of numbers. They examined the probabilistic trends and behaviors 

of the terms in the sequence. This made it possible to obtain information on the growth of 

values and to identify possible patterns. 

2. Heuristic arguments : Heuristic arguments are based on intuitive reasoning and 

empirical observations. They suggest that the terms of the sequence cannot grow 

indefinitely. For example, if a term reaches a high value, it is likely to go back down at 

some point. However, these arguments do not constitute rigorous proof. 

3. Recent work : Terence Tao, a renowned mathematician, shed new light on the Syracuse 

Conjecture in 2019. His research helped to better understand the properties of the 

sequence and explore avenues to solve the enigma. Despite these advances, the 

conjecture continues to challenge researchers, and no formal proof has yet been 

established. 

In short, the probabilistic approach offers interesting perspectives for understanding the outcome 

of Syracuse, but it still leaves many questions unanswered. Mathematicians continue to explore 

this enigma with passion and determination. 

  

➢ Calculative approach 

Passionate researchers also delved into intensive computational calculations to explore the 

behavior of the famous Syracuse sequence over extended ranges of numbers. Their goal was to 

detect patterns or trends that could shed light on the validity of the conjecture. 

Here is a more in-depth analysis of this IT approach: 

1. Exhaustive calculations: Researchers used powerful computers to iterate through huge 

sets of numbers. They applied the Syracuse sequence algorithm to each number, carefully 

observing the successive values generated. These calculations made it possible to explore 

gigantic digital territories and collect data on the behavior of the suite. 

2. Identifying Patterns: When examining the results, the researchers looked for recurring 

patterns. For example, they observed whether certain numbers seemed to converge into a 

cycle, whether values repeated themselves, or whether peaks and troughs appeared 

regularly. These observations could provide clues to the validity of the conjecture. 

3. Algorithmic complexity: The Syracuse suite is simple to define, but its behavior remains 

complex. The researchers studied term growth, sequence lengths, and variations in 

behavior. They looked for correlations between the properties of numbers and the 

characteristics of the sequence. 



4. Limitations of calculations: Despite advances in computing, researchers have not yet 

succeeded in rigorously proving the Syracuse conjecture. Calculations can show trends, 

but they do not guarantee that the guess is valid for all numbers. However, these efforts 

continue to enrich our understanding of this mathematical conundrum. 

In short, the computer exploration of the Syracuse suite is a fascinating field where the rigor of 

calculations blends with the beauty of numbers. Researchers persevere, hoping to one day 

unravel the mystery of this intriguing sequence. 

➢ An undecidable statement? 

Despite the considerable efforts made by mathematicians to solve the Syracuse conjecture, the 

results remain limited. This situation has raised questions about the very nature of the problem: 

is it possible that the Syracuse conjecture is undecidable within the framework of commonly 

accepted mathematical axioms, such as ZFC? In 1972, John Conway shed interesting light on this 

question by establishing algorithmic undecidability for a class of problems which naturally 

includes the Syracuse problem. Although this discovery does not directly solve the Syracuse 

problem, it suggests that some aspects of this problem may be inherently intractable. This 

underlines the enormous complexity of this conjecture and the fascination it continues to exert 

on the mathematical community. 

**Extension to negative numbers, real numbers and complex numbers** 

Besides its application to positive integers, the Syracuse– Collatz conjecture has also been 

extended to other sets of numbers such as negative numbers, real numbers and even complex 

numbers. However, the results of these extensions are still largely unknown and are the subject 

of ongoing research. 

 

VI- Demonstration 

1- Observation 

The Syracuse sequence is defined by a simple iterative rule where each term is obtained by 

applying a specific operation from the previous term. This operation depends on the parity of 

the previous term, leading to an apparently chaotic behavior despite the simplicity of the rule. 



2-  Let us demonstrate that the Syracuse sequence reaches a finiteness of terms 

Since the Syracuse sequence begins with a positive integer N , by The framing theorem for 

integers we prove that there exists an m such that all the terms of the sequence will be in the 

interval [1, 𝟐𝟐𝒎], that is to say for there to be a n term of the Syracuse sequence, there exists a 

natural number m ≥ 2 / 1 ≤ U n ≤ 𝟐𝟐𝒎. 

In addition, we know by theorem that it there are a finite number of natural numbers in any 

given interval       So the Syracuse sequence is bounded and it has a finite number of terms 

3- Demonstrating that the Syracuse sequence inevitably converges towards a cycle 

a) Let us show that:         

               ∀ m ≥ 1, m ∈ N, ∃ I ∈ [1, 𝟐𝟐𝒎], I odd integer / 3I+1=𝟐𝟐𝒎 

 

 - m=1 we have interval [1, 22] and 1 ∈ [1, 22] and 3x1 + 1 = 4 = 22therefore 1 versify our 

hypothesis 

- m=2 we have interval [1, 24] and 5 ∈ [1, 24] 'a 3x5 + 1 = 16 = 24therefore 5 versify our 

hypothesis 

We assume that ( ∀ m ≥ 1, m ∈ N), ∃ I ∈ [1, 𝟐𝟐𝒎], I odd integer / 3I+1= 𝟐𝟐𝒎and let's show that it 

is true for (m+1) 

We have ; 3I + 1 = =𝟐𝟐𝒎   ⇒ (3I + 1) x 𝟐𝟐= = 𝟐𝟐𝒎x𝟐𝟐  ⇒ 3x(4I) + 4 = =𝟐𝟐𝒎+𝟐                                                                   

⇒ 3x(4I) + 3+1 = =𝟐𝟐(𝒎+𝟏)    ⇒ 3x(4I + 1)+1 = 𝟐𝟐(𝒎+𝟏)and I odd therefore 4I is even therefore 

(4I+1) is odd and 1 ≤ 4I +1 ≤𝟐𝟐(𝒎+𝟏)     

SO  ∃ (I'= 4I+1) ∈ [1, 𝟐𝟐(𝒎+𝟏)] / 3I' + 1 =𝟐𝟐(𝒎+𝟏) 

Therefore, we have shown that for any integer m ≥ 1, m ∈ ℕ , 

    ∀ (m ≥ 1, m ∈ N ) , ∃ I ∈ [1, 𝟐𝟐𝒎],I odd integer / 3I+1=𝟐𝟐𝒎 



b- Example: U 1 (1) = 16, U 2 (3) = 16, U 1 (5) = 16, U 12 (7) = 16, U 15 (9) = 16, U 3 

(10) = 16, U 10 (11) = 16, U 5 (12) = 16, U 5 (13) = 16, U 13 (14) = 16, U 13 (15) = 

16 

By studying all the Syracuse sequences which take their initial values in the interval [3,16] - 

{8,16} admits the term 16 which is the upper bound, we can therefore conclude that any 

Syracuse sequence which takes its initial value in the interval [1, 𝟐𝟐𝒎] admits the upper bound 

as one of these terms, 

c- Let us demonstrate that:                                                                                                                       

∀ m ≥ 1, m ∈ N : ∀ U n (I) Syracuse sequence with I ∈ [1, 𝟐𝟐𝒎], there exists an 

index i ∈ N such that: 

                                   U I (I) odd, U i+1 (I) = 3 U I (I) + 1= 𝟐𝟐𝒎 

 

 Proof by absurdity: 

Suppose that for each Syracuse sequence Un ( I ) with I ∈ [1, 22m], there is no index i such that 

3Ui(I)+1 reaches22m 

However, we have already shown previously (see above) that: ∀ (m ≥ 1, m ∈ N ) , ∃ I ∈ [1, 22𝑚],I 

odd integer / 3I+1=22𝑚 

We construct the Syracuse sequence Un ( I ) which has as its initial value this specific odd 

integer that we have shown to exist, 

So: U 0 (I) = I which is odd therefore U 1 (I) = 3 I + 1 = 22𝑚 

Therefore, our initial assumption that there is no index i such that ( 3 Ui ( I )+1= 22𝑚 ) for any 

Syracuse sequence Un ( I ) with I ∈ [1, 22𝑚] is false therefore for all m ≥1, there exists an index i 

such that (3 Ui ( I )+1= 22𝑚)for any Syracuse sequence Un ( I ) with I ∈ [1, 22𝑚] . 

 

 



d- Recapitulation 

➢ For there to be U n term of the Syracuse sequence, there exists a natural number m ≥ 

2 / 1 ≤ U n ≤ 22𝑚. 

➢  ∀ m ≥ 1, m ∈ N : ∀ U n (I) Syracuse sequence with I ∈ [1, 22𝑚], there exists an index i 

∈ N such that: U I (I) odd, U i+1 (I) = 3 U I (I) + 1= 22𝑚  

SO; U i+1 (I) = 3 U I (I) + 1= 22𝑚 

U i+2 (I) = =  22𝑚/ 2 =22𝑚−1 

…………………………………. 

…………………………………. 

U i+2m (I) = 2 

U i+2m+1 = 2/2 =1 

So we have demonstrated that any Syracuse sequence inevitably converges towards one (1) 

which will then call out the cycle (4, 2, 1). 

In summary, the nature of the operations in the Syracuse sequence leads the sequence to 

inevitably converge towards one (1), i.e. towards the cycle (4,2,1) 

VII- Conclusion 

The conclusion of this article on the Syracuse - Collatz conjecture highlights the 
fundamental importance of the convergence of the Syracuse sequence to the cycle 
(4, 2, 1). This convergence not only demonstrates a recurring pattern in the 
behaviour of integers, but it also offers valuable insights into the nature of integers 
themselves. By understanding how this sequence inevitably converges to a cycle for 
any initial positive integer, we enrich our understanding of the underlying structures 
of integers and their arithmetic properties. This observation is not only a 
mathematical curiosity, but it reveals a profound aspect of the regularity hidden in 
integers. Thus, the convergence of the Syracuse sequence to the cycle (4, 2, 1) plays 
an essential role in the exploration and understanding of integers, opening the way 
to new questions and new discoveries in this fascinating field mathematics 



Applications of the Syracuse-Collatz Conjecture 

1. Cryptography 

The Syracuse– Collatz conjecture has links to cryptography, particularly to integer factorization 

problems. Studying the properties of Collatz sequences can help to better understand the 

behaviors of prime numbers and to develop more robust encryption algorithms. 

2. Algorithmic Complexity 

The Syracuse- Collatz conjecture is an excellent example of a problem that is simple to state but 

difficult to solve. Its chaotic and unpredictable behavior makes it an interesting subject of study 

for the analysis of algorithmic complexity. Research into the limits of conjecture resolution can 

lead to advances in complexity theory. 

3. Graph Theory 

The Syracuse sequence can be represented as a graph, where each number is a node and the 

transitions between numbers are edges. Studying the properties of this graph can provide insights 

into connectivity, cycles, and underlying structures. Concepts from graph theory, such as trees 

and cycles, can be applied to the Syracuse conjecture. 

4. System Dynamics 

System dynamics studies the behavior of complex systems over time. The Syracuse suite is an 

example of a simple but nonlinear dynamical system. Its chaotic behavior and its properties of 

convergence towards the (4, 2, 1) cycle are subjects of interest to researchers in system 

dynamics. 

5. Mathematics Education 

The Syracuse- Collatz conjecture can be used as an educational tool to teach mathematical 

concepts such as recurrence, sequences, functions, proofs and logic. It can capture students' 

interest and encourage them to explore mathematics further. 
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**Notes: * * 

- Note 1: The original article by Collatz, published in German, presents for the first time the conjecture 
which today bears his name. 

- Note 2: The annotated bibliography of Lagarias provides an excellent compilation of published work on 
the Syracuse - Collatz conjecture over the last decades. 

- Note 3: Terras' book offers an interesting perspective on zeta functions associated with graphs, an area 
related to the study of the Syracuse conjecture. 

- Note 4: Wirsching examines in detail the dynamical system generated by the function \ (3n + 1\), 
providing an in-depth analysis of the properties of the conjecture. 

Shallit 's book explores automatic sequences, a related topic that has links to the Syracuse– Collatz 
conjecture. 

- Note 6: Conway discusses unpredictable and chaotic iterations, illustrating how simple rules can give 
rise to complex behaviors. 

- Note 7: The framing theorem, also known as the police theorem, is a fundamental result in 
mathematics concerning sequences. The framing theorem tells us that if a sequence (( u_n )) is 
“trapped” between two other sequences (( s_n )) and (( r_n )) whose limits are identical (i.e. they both 
converge to the same real ℓ), then the sequence (( u_n )) also converges to ℓ. 

-Note 8: The theorem states that there exists a finite number of natural numbers in any given interval. 
Here are the key points: 

• Dirichlet's theorem: Also called the drawer principle, it states that if you distribute n+1 objects 
into n drawers, then at least one drawer will contain at least two objects. 

• Application to intervals: If you consider an interval of natural numbers, there are a finite 
number of integers in that interval, because you can distribute them into a finite number of 
drawers (or smaller intervals). 

• Consequence: This means that there is no infinite interval of natural numbers, and therefore, 
there is always a finite number of integers in any given interval. 



These references and notes have been used to further our understanding of the Syracuse– Collatz 

conjecture and to ensure the accuracy and reliability of the information presented in this article. 

   

  

 

 

 

 

  


