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                        ABSTRACT.        We transform NP-complete Problem to the   

                        polynomial-time algorithm which would mean that P = NP. 
 

                  

1. Introduction. Despite  in  general,  Integer  Programming  is  NP-hard  or 

even incomputable (see, e.g., Hemmecke et al. [10]),  for some subclasses of 

target functions and constraints it can be computed in time polynomial.   

    A  fixed-dimensional polynomial minimization in integer variables, where 

the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial(see, e.g  

Khachiyan and Porkolab [11]), see Lenstra [13] as well. 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function is a quasiconvex polynomial with integer coeff- 

icients and where the constraints are inequalities with quasiconvex polynom- 

ials of degree at most  ≥ 2 with integer coefficients can be solved in time po- 

lynomial in the degrees and the binary encoding of the coefficients(see, e.g., 

Heinz [8], Hemmecke et al. [10], Lee [12]).  

    Minimizing a convex function over the integer points of a bounded   conv- 

ex set is polynomial in fixed dimension, according to Oertel et al. [15]. 

    Del Pia and Weismantel [4] showed that  Integer  Quadratic Programming 

can be solved in polynomial time in the plane.  

     It was further generalized for cubic and homogeneous polynomials in Del  

Pia et al. [5].    

     We are going to transform well-known NP-complete problem to the poly-  

nomial-time integer  minimization algorithm.  It would mean, that   P  =  NP, 

since  if there  is  a polynomial-time  algorithm for any NP-hard problem, th-  

en  there are polynomial-time  algorithms for all problems in  NP (see  Garey 

and  Johnson [7], Manders and Adleman [14], Cormen et al. [2]).  
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      Fortnow in [6] stated: "We call the very hardest  NP problems (which in- 

clude  Partition  Into Triangles,  Clique, Hamiltonian  Cycle and 3-Coloring) 

“NP-complete”,  i.e.  given an efficient algorithm for one of them, we can fi- 

nd efficient algorithm for all of them and in fact any problem in NP". 

        

 

2. Polynomial-time Algorithm. Sliding Tangent. 

 

Lemma 1 (De Loera et al. [3], Hemmecke et al. [10], Del Pia et al. [5]).         

    The problem of minimizing  a  degree-4  polynomial over the lattice points       

    of a convex polygon is NP-hard. 

 

Proof.   They use the NP-complete problem AN1 on page 249 of Garey  and 

Johnson  [7].  This problem states it is NP-complete to decide whether, given 

three positive integers a, b, c, there exists a positive integer x < c such that x
2 
 

is congruent with  a  modulo b.   This problem is clearly equivalent to asking 

whether the minimum of the quartic polynomial function  (x
2 
− a − by)

2
 over 

the lattice points of the rectangle:  

 

   { (x,y) | 1 ≤  x  ≤  c − 1, 1 − a  ≤  by  ≤  (c − 1)
2  

− a } is zero or not.           

 

     According to Del Pia and Weismantel [4], minimization problem, given in 

the above proof of Lemma 1 is equivalent to the following problem:   

 

    min { (x
2 
− a − by)    subject to 

               x
2 
− a − by ≥ 0,                                                                               (1) 

               1 ≤  x  ≤  c − 1, 1 − a  ≤  by ≤  (c − 1)
2  

− a,  x, y ∈ Z}. 

 

     If   L : = { (x, y) ∈ R
2

  |  x
2 
− a −  by ≥ 0,  x ≥ 0},                                     

           G : = { (x, y) ∈ R
2

  |  1 ≤  x  ≤  c − 1,  1 − a  ≤ by ≤  (c − 1)
2  

− a },   

                                   

problem (1) can be rewritten as follows: 

 

     µ  :=   min { (x
2 
− a − by)   |  (x, y) ∈ ( L ∩ G ) ∩ Z

2
 }.                          (2) 

 

     If  bymin  = 1 − a, bymax  = (c − 1)
2  

− a, then the above defined rectangle: 
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     G = { (x, y) ∈ R
2

  |  1 ≤  x  ≤  c − 1,   ymin  ≤  y  ≤  ymax }.                         

 

      Note that parabola:  by =  bf(x) =  x
2   

−  a,  x ≥ 0 is a part of the border of 

set L (the top) and we have: 

 

      bf(1) =  1 − a = bymin, bf(c − 1 ) =  (c − 1)
2  

− a = bymax,  

      f(1) =  ymin, f(c − 1 ) =  ymax.             

 

       Set L is not convex, as well as the set L ∩ G (see Boyd and Vandenberg- 

he [1], Osborne [16]). 

      The  equation of the tangent to the  parabola: by =  bf(x) =  x
2   

−  a, at the 

point i: 1  ≤  i  ≤  c − 1, i ∈ Z, x ∈ R is given by:   

 

        byi (x) = 2i ( x − i ) + i
 2

  − a.                                                                 (3) 

 

      The segment of this tangent (hypotenuse), which is inside  G  and having 

one end Di = (d1i, d2i ) on the horizontal line by = 1 − a, and another end Hi  = 

(h1i, h2i ) on the vertical line  x = c  − 1, together with two other segments: on 

the horizontal line by = 1 − a  and on the vertical line  x = c − 1, both segme- 

nts intersected at point E = (e1, e2 ):  e1 = c − 1, be2 = 1 − a (cathetuses), form 

some right triangle DiHiE: 

 

         DiHiE := Si  := { (x, y) ∈ G  |  y ≤  yi (x) },                                           

         d1i ∈ R, d2i ∈ R, h1i ∈ R, h2i∈ R,  e1, e2,  1 ≤  i  ≤  c − 1, i ∈ Z.                                                                       

 

Proposition 1.    2id1i = i
2 
+ 1, bd2i = 1 − a,  

                            h1i = c − 1, bh2i  = 2i(c − 1) − i
2

  − a, 

                            1  ≤  i  ≤  c − 1, i ∈ Z. 

 

Proof.      It  follows from the definition of points Di, Hi  and (3): considering 

points Di and Hi  as intersections of the tangent (3) and the corresponding ho- 

rizontal and vertical lines, described above, we have for the points Di:  

yi(d1i) = d2i = ymin, and for the points Hi: h2i = yi (h1i) = yi (c − 1).                   

 

Lemma 2.        ( L ∩ G ) ∩ Z
2
  =  ∪ (Si ∩ Z

2
), 1 ≤  i  ≤  c − 1, i ∈ Z.  

 

Proof.       It  follows from the above given  definitions and properties of sets 
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L, G, Si, (1 ≤  i  ≤  c − 1, i ∈ Z) and due to continuity, differentiability, conv- 

exity and monotonicity of function f(x), (x ≥ 0).  

 

        In particular, it is well-known that a differentiable function of one  vari- 

able is convex on an interval Ω if and only if its graph lies above all of its ta- 

ngents: f(x) ≥ f(y) + f 
'
 (y) (x − y), x, y ∈ Ω  (see, e.g., Boyd and Vandenber- 

ghe [1, section 3.1.3]).                                                                                     

 

        Thus, instead of non-convex set L ∩ G, we can consider a collection of  

right triangles: { Si }, so that search space of the problem (2): ( L ∩ G ) ∩ Z
2
  

is identical to the union:  ∪ (Si ∩ Z
2
), 1 ≤  i  ≤  c − 1, i ∈ Z.       

 

         Let us denote: 

 

         µi  :=  min { (x
2 
− a − by)   |  (x, y) ∈ Si ∩ Z

2
 },                                   (4) 

         1 ≤  i  ≤  c − 1, i ∈ Z.       

 

Theorem 1.  µ  = min  { µi  | 1 ≤  i  ≤  c − 1, i ∈ Z }. 

 

Proof.     It  follows from the above given definitions of µ, µi  and Lemma 2. 

                       

     Each problem  (4)  is  Integer Quadratic Programming problem in the pla-  

ne. According to  Del Pia and Weismantel [4, Theorem 1.1], they can be sol- 

ved in polynomial time. 

 

     Recall that polynomial-time algorithms are closed under union, composi- 

tion, concatenation, intersection, complementation and some other operatio- 

ns: see, e.g., Hopcroft et al. [9, pp. 425−426]. 

     That is why,  due to  Theorem 1,  our  original  NP-complete  problem (2) 

can be solved in polynomial time as well. 

      As a result, since due to the above algorithm,  NP-complete problem  can 

be solved in polynomial time, we can conclude that P = NP, since, as we me- 

ntioned above, if there is a polynomial-time algorithm for any NP-hard prob- 

lem  then  there are polynomial-time algorithms for all problems in NP. 

 

       Since the original NP-complete problem is asking whether the correspo- 
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nding minimum is zero or not, we can,  finally,  give the following algorithm 

(polynomial-time) for its solution: 

 

        Input: positive integers a, b, c. 

        Output: Zero_Or_Not. 

 

         Set Zero_Or_Not = "Not_Zero" . 

 

         for i = 1, ... , c − 1 do  

              if    min { (x
2 
− a − by)   |  (x, y) ∈ Si ∩ Z

2
 } = 0  

              then  Set Zero_Or_Not = "Zero" 

              exit 

              end 

          end 

       

3. Conclusion.   We  reduced  NP-complete  problem to the polynomial-time   

algorithm, Thus, we can conclude that P = NP, since if there is a polynomial- 

time algorithm for any  NP-hard  problem then there are polynomial-time al- 

gorithms for all problems in NP.   
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