A pair of natural numbers a and b that satisfy $\quad\left\lceil\alpha_{\mathrm{N}}-3^{a}\right\rceil=2^{b}$ exist for all natural numbers N However, $\alpha \mathrm{N}$ is a real number that satisfies $\mathrm{N} \leq \alpha_{\mathrm{N}}<\mathrm{N}+1$.

Now to modify the Collatz conjecture, 3 is multiplied a certain natural N, the exponentiating factor of maximum 2 of N is added. When repeated, this is perfectly equal to all natural numbers becoming 2^{n}.
Let's see an example Consider $\mathrm{N}=9$.
Naturally, it will progress in the Following sequence $9 \begin{array}{lllllll}9 & 28 & 72 & 11 & 34 & 17\end{array}$
5213405161 . Here, instead of dividing by 2^{k}, adding 2^{k} leads to the following correspondence:
$\begin{array}{lllllllllllll}9 & 28 & 7 & 22 & 11 & 34 & 17 & 52 & 13 & 40 & 5 & 16 & 1\end{array}$
$92828 \quad 88882722728328322560256081928192$
Naturally, 28 should be divided by 4 , multiplied by 3 , and added by 1 ; however, 88 , which is the value obtained by multiplying 28 by 3 and then adding 4 , is taken here. Here, 4 becomes the exponentiating factor of maximum 2 of 28.

Next, 22 should be divided by 2, multiplied by 3 , and added by 1 ; however, it is substituted by 272 , which is obtained by multiplying 88 by 3 and then adding 8 (the maximum factor of 88). Thus, the exponentiating factor of maximum 2 of 272 is 16.

Thus, $272 * 3+16=832,832 * 3+16=2560$, and $2560 * 3+16=8192$.
Further, since $8192=213$, the Collatz conjecture is satisfied.

Again,
A pair of natural numbers a and b that satisfy $\left\lceil\alpha_{N}-3^{a}\right\rceil=$ 2^{b} exist for all natural numbers. However, α_{N} is a real number that satisfies $\mathrm{N} \leq \alpha_{\mathrm{N}}<\mathrm{N}+1$. Let's assume that minimum a and b
that satisfy this for a certain N are a_{0} and b_{0}.
However, multiplying a certain N by 3 and adding 1 and then adding the exponential factor of maximum 2 of N is a monotonously increasing function; at the same time, each term obtains an increasingly larger exponentiate of 2 as a factor. Moreover, among the numbers up to that value, the largest exponentiate of 2 is obtained as the factor.

Therefore, after conducting this process a_{0} times, $2^{b_{0}}$ is obtained as the factor and having a factor other than 2 in $\quad \mathrm{N} \leq \alpha_{\mathrm{N}}<\mathrm{N}+1$ constitutes a contradiction.
When stating the value of multiplying a certain natural number N by 3 , adding 1 , and then adding the exponential factor of maximum 2 of N as is $\mathrm{N}_{b}, 3 \mathrm{~N}_{b}<\mathrm{N}_{b}+1<5 \mathrm{~N}_{b}$ established. Further, N_{b+1} needs to have an exponentiate of 2 that is larger than 2^{b} as a factor, which is satisfied only by

$$
\mathrm{N}_{b}=\quad 2^{b}, \mathrm{~N}_{b+1}=2^{b+2} .
$$

Thus, when multiplying N by 3 , adding 1 , and then adding the exponential factor of maximum 2 of $\mathrm{N} a_{0}$ times or less, the outcome becomes an exponential form of 2 that is $2^{b_{0}}$ or lower.
Let's put this into the form of the original conjecture: for every natural number, multiplication by 3 and addition of 1 a0 times when N is odd and dividing it by 2 b0 times when N is even results in 1 .
Therefore, the Collatz conjecture is true.

