
A BOUND FOR THE ISOTROPIC CONSTANT

JOHAN ASPEGREN

Abstract. We obtain a dimension independent bound for the isotropic con-

stants for the convex bodies.
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1. Introduction

The isotropic conjecture or the Bourgain’s slicing problem asks the existence of
a following universal constant c.

Theorem 1.1. There exists an affine hyperplane H and an universal constant c
such that

mn−1(H ∩K) > c,

for convex bodies K of unit volume.

A classic reference for these kind of questions is [9]. More recently the claim is
already proved up to a polylog with very modern methods [6].Those methods very
introduced in the groundbreaking work by Chen [5]. The entries of the covariance
matrix of a convex body K are defined as

(aij) =

∫
K
xixj

|K|
−

∫
K
xi

|K|

∫
K
xj

|K|
.

We define the isotropic constant of any convex body K in scaling invariant way
using

L2n
K :=

Det(CovK)

|K|2
.

The isotropic position is a position, when the covariance matrix is diagonal and
all the diagonal entries are the same. Moreover, it is assumed that the volume
is unit. This kind of position exists [9]. An another position that always exists
is the John’s position. It is the position of a convex body, where the minimal
circumscribed ellipsoid is the unit ball. We prove the Bourgain’s slicing conjecture
by proving an universal upper bound for the isotropic constant.
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2. Previously known results

For any measurable set A we let |A| be the n-dimensional Lebesque measure.The
inner volume ratio for a convex body K is defined as

ivr(K) := min
T

(|K|/|T (Bn)|)1/n,

where T is an affine map, Bn the standard unit ball and T (Bn) ⊂ K. The outer
volume ratio for a convex body K is defined as

(2.1) ovr(K) := min
T

(|T (Bn)|/|K|)1/n,

where T is an affine map, Bn the standard unit ball and K ⊂ T (Bn). Ball [2] and
Barthe [4] proved using the Braschamb-lieb [8] and reversed Braschamb-Lieb [4]
inequalities, respectively, that in the non-symmetric case ivr(K) and ovr(K) are
maximized when the convex body K is the standard simplex Sn. Moreover, in
the symmetric case ivr(K) is maximized when K is the cube Cn and ovr(K) is
maximized when K is the crosspolytope CPn. The extended Khinchine inequality
says that for any convex bodies

(2.2) (
1

|K|

∫
K

|xi|2dx)1/2 ≤ C
1

|K|

∫
K

|xi|dx.

A proof can be found in [7].

3. The proof

First we show a key fact.

Theorem 3.1. Let K be a convex body of unit diameter in a scaled John’s position.
Then

|K|1/n ≥ c′(n!)−1/n > cn−1.

Proof. For K ′ in John’s position we have that K ′ ⊂ B(0, 1). So for the diameter d
we have that

1 ≤ d ≤ 2.

Moreover, via (2.1) we have that

|B(0, 1)|
|Sn|

≥ |B(0, 1)|
|K ′|

.

So
1

|Sn|
≥ 1

|K ′|
.

Thus,
|Sn| ≤ |K ′|.

Now, the diameter of K was the unit. So we have

|Sn| ≤ 2n|K|.
Thus,

(3.1) |Sn|1/n ≤ 2|K|1/n.
Now, we just need to calculate the volume of the standard simplex Sn in John’s
position. We have that

(3.2) |S|1/n > Cn−1,
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where C is an universal constant. So combining (3.1) and (3.2) gives us the claim.
□

We will also need the lemma showing the essential monotonicity of the means.

Lemma 3.2. Let K be a convex body. If ||x||2 ≤ a then∫
K

∑n
i=1 |xi|dx
n|K|

≤ C

∫
B(0,a)

|xi|dx
|B(0, a)|

.

Proof. We have ∫
K

∑n
i=1 |xi|dx
n|K|

≤
∫
K

√
n||x||2dx
n|K|

≤ a√
n
.

On the other hand we have∫
B(0,a)

|xi|2dx
|B(0, a)|

=

∫
B(0,a)

||x||2dx√
n|B(0, a)|

=
an

(n+ 2)
√
n
.

□

The following theorem is the key theorem.

Theorem 3.3. Let K be a convex body in a scaled John’s position such that

(3.3)

∫
K

||x||1dx = |K|.

Then it holds in a scaled John’s position that

(3.4)

∫
K

1
n

∑n
i=1 |xi|dx

|K|1+1/n
≤ C.

Proof. We notice that the diameter ofK must be greater than a constant. Assuming
that ||x||2 ≤ a we have from the essential monotonicity of the means (3.2), Jensen
and from the Pythagoras that

1

n2
= (

∫
K

∑
i=1 |xi|dx
n|K|

)2 ≤
C
∫
B(0,a)

|xi|2dx
n|B(0, a)|

=
Ca2

(n+ 2)n
.

Then little algebra gives us

a > c.

Remark 3.4. It’s clear that the position (3.3) exists because the average can be the
unit.

So we have from theorem 3.1 that

(3.5) |K|1/n ≥ c′n−1.

Thus, we have ∫
K

1
n

∑n
i=1 |xi|

|K|1+1/n
dx

≤ cn

∫
K

1
n

∑n
i=1 |xi|
|K|

dx

= c,

where we used the inequality (3.5) and the asumption (3.3). □
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We can assume that the covariance matrix is diagonal, because it is real and
symmetric. So it can be diagonalized by an orthogonal matrix. Because K is
centralized, we have

(aij) =

∫
K
xixj

|K|
.

Moreover, we assume K is in a John’s position. We have

Ln
K = (

n∏
i=1

∫
K

xixidx

|K|1+2/n
)1/2

=

n∏
i=1

(

∫
K

|xi|2dx
|K|1+2/n

)1/2

≤
n∏

i=1

C

∫
K

|xi|dx
|K|1+1/n

,

where we used the extended Khinchine’s inequality (2.2). Now, after taking the
nth root we have

LK = (

n∏
i=1

C

∫
K

|xi|dx
|K|1+1/n

)1/n

≤ C

n

n∑
i=1

∫
K

|xi|dx
|K|n+1

≤ C,

where we used the GM-AM inequality and the theorem 3.3. It’s clear that the
inequality (3.4) is scaling invariant. This ends the proof of the theorem 1.1.
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