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Abstract

The vertex cover problem is a famous combinatorial problem, and its

complexity has been heavily studied. While a 2-approximation can be

trivially obtained for it, researchers have not been able to approximate

it better than 2-o(1). In this paper, by introducing a new semidefinite

programming formulation that satisfies new properties, we introduce an

approximation algorithm for the vertex cover problem with a performance

ratio of 1.999999 on arbitrary graphs, en route to answering an open ques-

tion about the unique games conjecture.

Keywords: Combinatorial Optimization, Vertex Cover Problem, Unique

Games Conjecture, Complexity Theory.

1 Introduction

In complexity theory, the abbreviation NP refers to ”nondeterministic polyno-

mial”, where a problem is in NP if we can quickly (in polynomial time) test

whether a solution is correct. P and NP -complete problems are subsets of

NP problems. We can solve P problems in polynomial time while determining

whether or not it is possible to solve NP -complete problems quickly (called the

P vs NP problem) is one of the principal unsolved problems in Mathematics

and Computer science.

Here, we consider the vertex cover problem (VCP), a famous NP -complete

problem, which cannot be approximated within a factor of 1.36 [1], unless P =
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NP. In contrast, a 2-approximation factor can be trivially obtained by taking

all the vertices of a maximal matching in the graph. However, improving this

simple 2-approximation algorithm is hard [2, 3].

In this paper, we propose a new semidefinite programming (SDP) formula-

tion, and based on its solution, we introduce a VCP feasible solution with an

approximation ratio of 1.999999 on arbitrary graphs.

The rest of the paper is structured as follows. Section 2 is about the vertex

cover problem and introduces new conditions on its solution. In section 3, using

a new SDP model whose solution satisfies the introduced conditions, we propose

a solution algorithm for VCP with a performance ratio of 1.999999 on arbitrary

graphs. Finally, Section 4 concludes the paper.

2 Performance ratio based on VCP feasible so-

lutions

In the mathematical discipline of graph theory, a vertex cover of a graph is a set

of vertices such that each edge of the graph is incident to at least one vertex of

the set. The problem of finding a minimum vertex cover is a typical example of

an NP -complete optimization problem. In this section, we examine the ratio of

an arbitrary VCP feasible solution to its optimal value, in both the presence and

absence of a lower bound for the VCP optimal value. Then, in the next section,

we introduce a 1.999999-approximation ratio for the vertex cover problem on

arbitrary graphs.

Let G = (V,E) be an undirected graph on vertex set V and edge set E,

where |V|= n. Throughout this paper, z∗(G) is the optimal value for the vertex

cover problem on G, and VCP feasible solutions have been introduced by a

vertex partitioning V = V1 ∪ V0 with an objective value | V1 |. The integer

linear programming (ILP) model for VCP is as follows; i.e. z1∗ = z∗(G).

(1) mins.t. z1 =
∑
i∈V

xi

xi + xj ≥ 1 ij ∈ E

xi ∈ {0,+1} i ∈ V

Lemma 1. [4] Let x∗ be an extreme optimal solution to the linear programming

(LP) relaxation of the model (1). Then x∗
j ∈ {0, 0.5, 1} for j ∈ V . If we define

V 0 = {j ∈ V | x∗
j = 0}, V 0.5 = {j ∈ V | x∗

j = 0.5} and V 1 = {j ∈ V | x∗
j = 1},
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then there exists a VCP optimal solution which includes all of the vertices V 1,

and it is a subset of V 0.5 ∪ V 1.

Lemma 2. Let x∗ be an extreme optimal solution to the LP relaxation of

the model (1), and V 0 = {j ∈ V | x∗
j = 0}, V 0.5 = {j ∈ V | x∗

j = 0.5},
V 1 = {j ∈ V | x∗

j = 1}, and G0.5 be the induced graph on the vertices V 0.5.

If we can introduce a vertex cover feasible partitioning V 0.5 = V 0.5
1 ∪ V 0.5

0 with

an approximation ratio of 1 ≤ ρ < 2, for the VCP on G0.5, then the vertex

cover feasible partitioning V = (V1 ∪ V0) = (V 0.5
1 ∪ V 1) ∪ (V 0.5

0 ∪ V 0), has an

approximation ratio of 1 ≤ ρ < 2, for the VCP on G.

Proof. Based on the approximation ratio of
|V 0.5

1 |
z∗(G0.5)

≤ ρ, we have,

| V 0.5
1 | + | V 1 |≤ ρz∗(G0.5) + ρ | V 1 |

Therefore, |V1|
z∗(G) =

|V 0.5
1 |+|V 1|

z∗(G0.5)+|V 1| ≤ ρ ⋄

Based on the Lemma (2), it is sufficient to produce an approximation ratio

of 1 ≤ ρ < 2, on G0.5. Moreover, z∗(G0.5) ≥ |V 0.5|
2 . Then, it is sufficient to

focus on graphs G where z∗(G) ≥ n
2 .

We know that we can efficiently solve the following SDP formulation, as a

relaxation of the VCP model (1).

(2) mins.t. z2 =
∑
i∈V

Xoi

Xoi +Xoj −Xij = 1 ij ∈ E

Xii = 1, 0 ≤ Xij ≤ +1 i, j ∈ V ∪ {o}

X ⪰ 0

Moreover, by introducing the unit vectors vo, v1, ..., vn, the SDP model (2) can

be written as follows, where vTi vj = Xij , and V1 = {i ∈ V | vi = vo} is a feasible

vertex cover, and Vo = V − V1 is the set of orthogonal vectors to vo.

(3) mins.t. z3 =
∑
i∈V

vTo vi

vTo vi + vTo vj − vTi vj = 1 ij ∈ E

vTi vi = 1, 0 ≤ vTi vj ≤ +1 i, j ∈ V ∪ {o}
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Figure 1. A VCP feasible solution

Lemma 3. Let z∗(G) ≥ n
2 + n

k = (k+2)n
2k be a lower bound on VCP optimal

value. Then, all vertex cover feasible partitioning V = V1 ∪ V0 satisfy the

approximation ratio |V1|
z∗(G) ≤

2k
k+2 < 2.

Proof. If z∗(G) ≥ (k+2)n
2k , then n

z∗(G) ≤
2k
k+2 . Therefore,

| V1 |
z∗(G)

≤ n

z∗(G)
≤ 2k

k + 2
< 2

and this completes the Proof ⋄

Lemma 4. Let z∗(G) ≥ n
2 , and V = V1 ∪ V0 is a VCP feasible partition-

ing, where | V1 |≤ kn
k+1 and | V0 |≥ n

k+1 (or | V1 |≤ k | V0 |). Based on such a

solution, we have an approximation ratio |V1|
z∗(G) ≤

2k
k+1 < 2.

Proof. If | V1 |≤ kn
k+1 , then n ≥ k+1

k | V1 |. Hence, z∗(G) ≥ n
2 ≥ k+1

2k | V1 | and
|V1|

z∗(G) ≤
2k
k+1 < 2 ⋄

In the next section, we will introduce a new SDP model to find a suitable

lower bound or feasible solution and apply Lemma (3) or Lemma (4).

3 A (1.999999)-approximation algorithm on ar-

bitrary graphs

To find a suitable lower bound or feasible solution, we introduce the following

conditions concerning the optimal solution of the SDP model (3).

Condition a) | {j ∈ V : v∗To v∗j < 0.5} |< 0.000001n.

Condition b) | {j ∈ V : v∗To v∗j > 0.5004} |< 0.01n.
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Lemma 5. If z∗(G) ≥ n
2 and the optimal solution of the SDP model (3) does

not satisfy Conditions (a) and (b), then, based on such a solution, we can pro-

duce a VCP feasible solution with a performance ratio of 1.999999.

Proof. If the optimal solution of the SDP model (3) does not satisfy Condition

(a), then we can introduce V0 = {j ∈ V | v∗To v∗j < 0.5} and V1 = V − V0, to

have a VCP feasible solution with | V0 |≥ 0.000001n and | V1 |≤ 0.999999n ≤
999999 | V0 |. Therefore, for such a solution and based on the Lemma (4), we

have an approximation ratio of |V1|
z∗(G) <

2(999999)
999999+1 = 1.999998 < 1.999999.

Otherwise, if the optimal solution of the SDP model (3) satisfies Condition

(a) but does not satisfy Condition (b), then there exists the following lower

bound on z∗(G) value.

z∗(G) ≥ z3∗ ≥ (0)(0.000001n){s.t. v∗T
o v∗

j
<0.5}

+(0.5)(0.989999n){s.t. v∗T
o v∗

j
≥0.5} + (0.5004)(0.01n){s.t. v∗T

o v∗
j
>0.5004}

=
n

2
+ 0.0000035n

Note that, Condition (a) has been satisfied and as a result, we have less

than 0.000001n of vertices j ∈ V with v∗To v∗j < 0.5. Condition (b) has not been

satisfied and we have more than 0.01n of vertices j ∈ V with v∗To v∗j > 0.5004.

Therefore, in the above inequality, the first summation is the lower bound on

the vertices j ∈ V with v∗To v∗j < 0.5, and the third summation is the lower

bound on only 0.01n of the vertices j ∈ V with v∗To v∗j > 0.5004, and beyond the

0.01n of such vertices are considered in the second summation. Moreover, the

second summation is the lower bound on the other vertices (the vertices j ∈ V

with 0.5 ≤ v∗ov
∗
j ≤ 0.5004, and the vertices j ∈ V with v∗To v∗j > 0.5004 beyond

the 0.01n of such vertices considered in the third summation).

Therefore, based on the above lower bound on z∗(G) value and the Lemma

(3), all VCP feasible solutions V = V1 ∪ V0 satisfy the approximation ratio
|V1|

z∗(G) ≤
2( 1

0.0000035 )
1

0.0000035+2
< 1.999999 ⋄

Definition 1. Let ε=0.0004, and Vε = {j ∈ V | 0.5 ≤ v∗To v∗j ≤ 0.5 + ε},
and Eε = {ij ∈ E | i, j ∈ Vε}.

Note that, after solving the SDP model (3) on problems with z∗(G) ≥ n
2 ,

- If the solution does not satisfy Conditions (a) and (b), we can produce a VCP

feasible solution with a ratio factor 1.999999.
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- Otherwise, | Vε |≥ 0.989999n, and 0 ≤ v∗Ti v∗j ≤ 2ε (ij ∈ Eε); i.e. the corre-

sponding vectors of the edges in Eε are almost orthogonal to each other.

Therefore, to produce a VCP performance ratio of 1.999999 for problems

with z∗(G) ≥ n
2 , we need a solution for the SDP model (3) that does not satisfy

Conditions (a) or (b). To do this, we will introduce a new SDP model, whose

optimal solution does not satisfy Conditions (a) and (b) unless the induced

graph on Vε is bipartite. In other words, we want to approximately satisfy the

conditions of the following theorem while still being able to use the result of the

theorem.

Theorem 1. For any positive integer t, there does not exist 2t+1 unit vectors

v1, ..., v2t+1 such that vTj vj+1 = 0, and vj +vj+1 = v2t+1+v1 (j = 1, ..., 2t), and

vT2t+1v1 = 0.

Proof. Let u = v2t+1 + v1. Then | u |=
√
2, and uT vj = 1 (j = 1, ..., 2t + 1).

Moreover,

(v1 + v2) + (v2 + v3) + ...+ (v2t + v2t+1) + (v2t+1 + v1) = (2t+ 1)U

Hence,

2(v1 + ...+ v2t + v2t+1) = (2t+ 1)u

and

(v1 + v2) + (v3 + v4) + ...+ (v2t−1 + v2t) + v2t+1 = (t+ 0.5)u

Therefore, tu+ v2t+1 = (t+ 0.5)u, and this concludes that v2t+1 = 0.5u which

is a contradiction ⋄

Clime 1. For any positive integer t, there does not exist 2t + 1 unit vec-

tors v1, ..., v2t+1 such that all consecutive vectors vj , vj+1 (j = 1, ..., 2t), and

v2t+1, v1 are almost orthogonal to each other, and vj + vj+1 (j = 1, ..., 2t)

and v2t+1 + v1 are almost equal to a vector u with | u |=
√
2, and uT vj = 1

(j = 1, ..., 2t+ 1).

Proof. Read the rest ⋄

Let G2 = (Vnew, Enew) be a new graph, where we add two adjacent vertices

a and b to the graph G, and connect all vertices of G to them; i.e. Vnew =

V ∪ {va, vb}. Then, based on the SDP model (3), and by introducing the unit

vectors vo, v1, ..., vn, va, vb, we introduce a new SDP model as follows, where
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V1new = V1 = {i ∈ Vnew | vi = vo} corresponds to a feasible vertex cover on

graph G, and V0new = V0 = V − V1 corresponds to orthogonal vectors to vo.

(4) mins.t. z4 =
∑
i∈V

vTo vi

SDP (3) constraints on G

vTo vi + vTo vj − vTi vj = 1 i ∈ V, j ∈ {a, b}

−0.5 ≤ vTi vj ≤ +0.5 i ∈ V, j ∈ {a, b}

vTi vi = 1, vTo vi = +0.5 i ∈ {a, b}

vTa vb = 0

Lemma 6. Due to the additional constraints, we have z4∗ ≥ z3∗. More-

over, to produce a feasible solution for the SDP model (4) on G2, we can

add suitable vectors va and vb to each VCP feasible partitioning V = V1 ∪ V0

on G, where vTi vj = +0.5 for i ∈ V1, j ∈ {a, b}, and vTi vj = −0.5 for

i ∈ V0, j ∈ {a, b} (For example, for vo = vi = [0.5, 0.5, 0.5, 0.5]t ∈ V1 and

vi = [−0.5,−0.5, 0.5, 0.5]t ∈ V0, we can introduce va = e1 = [1, 0, 0, 0]t, and

vb = e2 = [0, 1, 0, 0]t). Therefore, z4∗ ≤ z∗(G).

We are going to prove that, there does not exist an optimal SDP (4) solution

such that satisfies Conditions (a) and (b) on G, unless the induced graph on Vε

is bipartite.

Theorem 2. For four unit vectors v1, v2, v3, v4 which are orthogonal to each

other, there exists exactly one unit vector v with vT vi = 0.5 (i = 1, 2, 3, 4).

Such a vector v satisfies the equation v = 0.5(v1 + v2 + v3 + v4).

Proof.

Due to vT1 v2 = 0, we have | v1 + v2 |=
√
| v1 |2 + | v2 |2 =

√
2.

Due to vT3 v4 = 0, we have | v3 + v4 |=
√
| v3 |2 + | v4 |2 =

√
2.

Due to (v1 + v2)
T (v3 + v4) = 0, we have

| v1 + v2 + v3 + v4 |=
√
| v1 + v2 |2 + | v3 + v4 |2 = 2

Moreover, we have (v1 + v2 + v3 + v4)
T v = 2. Therefore,

| v1 + v2 + v3 + v4 || v | cos(θ) = 2
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and this concludes that θ = 0 and v = 0.5(v1 + v2 + v3 + v4) ⋄

proposition 1. Let w = 0.5(v1+v2+v3+v4), for four unit vectors v1, v2, v3, v4

which are almost orthogonal to each other. Then, a unit vector v with 0.5 ≤
vT vi ≤ 0.5 + ε (i = 1, 2, 3, 4) is almost equal to w. In other words, there ex-

ists a vector r with w + r = v, where −ε ≤| w | − | v |≤ ε, | r |≤ ε, and

cos(v, w) ≥ 1− ε.

Theorem 3. Let θ(v, w) = cos−1( vTw
|v||w| ). For n + 1 vectors vo, v1, ..., vn with

0o ≤ θ(vi, vj) ≤ 90o (i, j = o, 1, ..., n), we have

θ(vo,

n∑
i=1

vi) ≤ max{θ(vo, vi) : i = 1, ..., n}

In other words, the angle between the vectors vo and w =
∑n

i=1 vi is smaller

than the maximum angle between the pair of vectors vo and vi (i = 1, ..., n).

Proof. We give proof by induction on n. For n = 3 vectors vo, v1, v2, if

θ(vo, v1 + v2) > max{θ(vo, v1), θ(vo, v2)} then θ(vo, v1 + v2) > θ(vo, v1) and

θ(vo, v1 + v2) > θ(vo, v2). Hence, cos(vo, v1 + v2) < cos(vo, v1) and cos(vo, v1 +

v2) < cos(vo, v2). Therefore,

vTo (v1 + v2)

| v1 + v2 |
<

vTo v1
| v1 |

and
vTo (v1 + v2)

| v1 + v2 |
<

vTo v2
| v2 |

which conclude

2(
vTo (v1 + v2)

| v1 + v2 |
) <

vTo v1 | v2 | +vTo v2 | v1 |
| v1 || v2 |

and

2vTo v1 | v1 || v2 | +2vTo v2 | v1 || v2 | <

vTo v1 | v2 || v1 + v2 | +vTo v2 | v1 || v1 + v2 |

and

vTo v1 | v2 | (2 | v1 | − | v1 + v2 |) + vTo v2 | v1 | (2 | v2 | − | v1 + v2 |) < 0

However,

0 > vTo v1 | v2 | (2 | v1 | − | v1 + v2 |) + vTo v2 | v1 | (2 | v2 | − | v1 + v2 |)

≥ (min{vTo v1 | v2 |, vTo v2 | v1 |})× 2(| v1 | + | v2 | − | v1 + v2 |) ≥ 0
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which is a contradiction. Therefore, it is true for n = 3. Suppose it is true

for n = k − 1, and we want to prove it for n = k. For t < k, our inductive

hypothesis implies that

θ(vo, w1 =

t∑
i=1

vi) ≤ max{θ(vo, vi) : i = 1, ..., t}

θ(vo, w2 =

k∑
i=t+1

vi) ≤ max{θ(vo, vi) : i = t+ 1, ..., k}

Therefore,

θ(vo,

k∑
i=1

vi) ≤ max{θ(vo, wi) : i = 1, 2} ≤ max{θ(vo, vi) : i = 1, ..., k}

and this completes the proof ⋄

Lemma 7. Based on the optimal solution of the SDP model (4), and by

introducing u = 2v∗o − v∗a − v∗b , we have

| u |=
√
2, and ∀j ∈ Vε : uT v∗j = 1

Proof.

| u |=
√
uTu =

√
4− 1− 1− 1 + 1 + 0− 1 + 0 + 1 =

√
2

Moreover, for each vertex j in Vε, we have

v∗To v∗c + v∗To v∗j − v∗Tc v∗j = 1 c ∈ {a, b}, j ∈ Vε

Therefore, we obtain

v∗Tc v∗j = −0.5 + v∗To v∗j c ∈ {a, b}, j ∈ Vε

which concludes that uT v∗j = 2v∗To v∗j − v∗Ta v∗j − v∗Tb v∗j = 2v∗To v∗j +0.5− v∗To v∗j +

0.5 − v∗To v∗j = 1, and the angle between two vectors u and v∗j is 45 degrees for

j ∈ Vε ⋄

Now we can prove our main result.
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Theorem 4. There does not exist an optimal solution for the SDP model

(4) on G2 such that satisfies Conditions (a) and (b) on G, unless the induced

graph on Vε is bipartite.

Proof. Suppose that the optimal solution of the SDP model (4) satisfies Con-

ditions (a) and (b) on G. Therefore, for each edge ij ∈ Eε, unit vectors

v∗i , v
∗
j , v

∗
a, v

∗
b are almost orthogonal to each other, and the unit vector v∗o is

almost equal to 0.5(v∗i +v∗j +v∗a+v∗b ), where 0.5 ≤ v∗To vl ≤ 0.5+ε (l = i, j, a, b).

In other words, v∗i + v∗j is almost equal to u = 2v∗o − v∗a − v∗b and there exists a

vector ri,j with v∗i + v∗j + ri,j = u, where −ε ≤| v∗i + v∗j | − | u |≤ ε, | ri,j |≤ ε,

and cos(u, v∗i + v∗j ) ≥ 1− ε.

For any positive integer t, if we have an odd cycle on 2t + 1 vertices in

Gε = (Vε, Eε), then, by addition of the vectors in this cycle and introducing

w = (v1 + v2) + (v2 + v3) + ...+(v2t + v2t+1) + (v2t+1 + v1), we have

uTw = 2(2t+ 1) =| u || w | cos(u,w)

Where, θ(u,w) ≤ max{θ(u, v1 + v2), ..., θ(u, v2t + v2t+1), θ(u, v2t+1 + v1)} ≤
cos−1(1− ε) ≤ 1o.

By introducing w′ =
∑2t+1

i=1 vi = 0.5w, the above summation can be written

as follows,

uTw = 2uTw′ = 2 | u || w′ | cos(u,w′) = 2(2t+ 1)

Where, θ(u,w′) = θ(u,w) ≤ cos−1(1− ε) ≤ 1o, and

(t+ 0.5)
√
2

1
≤| w′ |= (t+ 0.5)

√
2

cos(u,w′)

By introducing wi = w′− vi, for i = 1, ..., 2t+1, the following properties are

satisfied:

| vi |2=| w′ |2 + | wi |2 −2w′Twi (I)

| w′ |≤| wi | + | vi |=| wi | +1 (II)

2t+1∑
i=1

wi = (2t+ 1)w′ −
2t+1∑
i=1

vi = 2tw′ (III)

uTwi = 2t =| u || wi | cos(u,wi) (IV )

Where, θ(u,wi) ≤ max{θ(u, vi+1+vi+2), ..., θ(u, vi−2+vi−1)} ≤ cos−1(1−ε) ≤
1o, and

t
√
2

1
≤| wi |=

t
√
2

cos(u,wi)

10



By addition of the equation (I) in this cycle, we have

2t+1∑
i=1

| vi |2=
2t+1∑
i=1

| w′ |2 +

2t+1∑
i=1

| wi |2 −2

2t+1∑
i=1

w′Twi

Hence,

2t+ 1 = (2t+ 1) | w′ |2 +

2t+1∑
i=1

| wi |2 −2w′T
2t+1∑
i=1

wi

= (2t+ 1) | w′ |2 +

2t+1∑
i=1

| wi |2 −2w′T (2tw′)

= (−2t+ 1) | w′ |2 +

2t+1∑
i=1

| wi |2 (V )

Let | wj |= max{| wi | : i = 1, ..., 2t+ 1}. Then, based on the right side of

the equation (V) we have

(−2t+ 1) | w′ |2 +

2t+1∑
i=1

| wi |2

≤ (−2t+ 1)(| wj | +1)2 + (2t+ 1) | wj |2

= 2 | wj |2 −4t | wj | +2 | wj | −2t+ 1

=
4t2

cos2(u,wj)
− 4

√
2t2

cos(u,wj)
+

2
√
2t

cos(u,wj)
− 2t+ 1

≤ 4t2

cos2(1o)
− 4

√
2t2

cos(0o)
+

2
√
2t

cos(1o)
− 2t+ 1

≤ −1.6556t2 + 0.8288t+ 1

However, −1.6556t2 + 0.8288t + 1 is less than 2t + 1, and this contradicts the

equation (V).

Therefore, there does not exist an odd cycle in Gε, and Gε is bipartite ⋄

proposition 2. To produce a performance ratio of 1.999999 for problems with

z∗V CP ≥ n
2 , we should solve the SDP model (4) on G2, and if the solution satis-

fies Conditions (a) and (b), we should solve the VCP problem on the bipartite

graph Gε, where | Vε |≥ 0.989999n.

Moreover, based on the lemma (2) and the Proposition (2), to produce a

performance ratio of 1.999999 for problems with z∗V CP < n
2 , it is sufficient to
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produce an extreme optimal solution for the LP relaxation of the model (1) and

introducing G2 based on G0.5.

Theorem 5. The Optimal solution of the following LP model corresponds

to an extreme optimal solution of the LP relaxation of the model (1).

(5) mins.t.z5 =

n∑
i=1

(0.1)ixi

xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗LP relaxation of the model (1)

0 ≤ xi ≤ +1 i ∈ V

Proof. The feasible region of the model (5) is an optimal face of the feasible

region of the LP relaxation of the model (1), and its optimal solution corresponds

to the solution of the following algorithm, based on the priority weights of the

decision variables.

Step 0. Let z∗ be the optimal value of the LP relaxation of the model (1), and

k=1.

Step k. Solve the following LP model.

(6) mins.t.z(k) = xk

xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗

xi = x∗
i = z(k)∗ i = 1, · · · , k − 1

0 ≤ xi ≤ +1 i ∈ V

Let k=k+1. If k < n repeat this step, otherwise, the solution x∗ is an extreme

optimal solution of the LP relaxation of the model (1) ⋄

Therefore, our algorithm to produce an approximation ratio of 1.999999, for

arbitrary vertex cover problems, is as follows:
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Mahdis Algorithm (To produce a vertex cover solution on graph G with

a ratio factor ρ ≤ 1.999999)

Step 1. Let z∗ be the optimal value of the LP relaxation of the model (1) on

G, and V 1 = V 0 = {}
Step 2. If z∗ ≥ n

2 , then go to Step 3. Otherwise, solve the LP model (5) to

produce an extreme optimal solution of the LP relaxation of the model (1), and

based on the solution (x∗
j ∈ {0, 0.5, 1} j ∈ V ), introduce V 0 = {j ∈ V | x∗

j = 0},
V 0.5 = {j ∈ V | x∗

j = 0.5}, V 1 = {j ∈ V | x∗
j = 1}, and let G = G0.5 as the

induced graph on the vertex set V 0.5.

Step 3. Produce G2 based on G and solve the SDP (4) model.

Step 4. If | {j ∈ V : v∗To v∗j < 0.5} |> 0.000001n (the solution does not satisfy

Condition (a)), then introduce V0 = {j ∈ V | v∗To v∗j < 0.5} and V1 = V − V0 to

produce a suitable solution V1 ∪ V0 which satisfies |V1|
z∗(G) ≤ 1.999999. Then, go

to Step 7. Otherwise, go to Step 5.

Step 5. If | {j ∈ V : v∗To v∗j > 0.5004} |> 0.01n, then it is sufficient to produce

an arbitrary VCP feasible solution V = V1 ∪ V0 to have |V1|
z∗(G) ≤ 1.999999 and

go to Step 7. Otherwise, go to Step 6.

Step 6. The solution satisfies Conditions (a) and (b). Hence, based on the

Theorem (4), graph Gε is bipartite, and | Vε |≥ 0.989999n. Therefore, solve the

VCP problem on bipartite subgraph Gε and add all vertices of V − Vε to the

solution to produce a feasible solution V1 ∪ V0 which satisfies |V1|
z∗(G) ≤ 1.999999.

Then, go to Step 7.

Step 7. The partitioning (V1∪V 1)∪(V0∪V 0) produces a VCP feasible solution

on the original graph G with an approximation ratio factor ρ ≤ 1.999999.

proposition 3. Based on the proposed 1.999999-approximation algorithm for

the vertex cover problem, the unique games conjecture is not true.

4 Conclusions

One of the open problems regarding the vertex cover problem is the possibility of

introducing an approximation algorithm within any constant factor better than

2. Here, we propose a new algorithm to produce a 1.999999-approximation ratio

for the vertex cover problem on arbitrary graphs, which leads to the conclusion

that the unique games conjecture is not true.
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