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Annotation: This article is the third part of a scientific project under the general title "Geometrized vacuum physics based 

on the Algebra of Signatures". In the first two papers [1,2], the ideal (i.e., non-curved and immobile) local region of vacuum 

was studied and the foundations of the Algebra of Signatures were laid. This article considers the possibilities of describing 

the curved and moving state of the same vacuum region on the basis of the mathematical apparatus of the Algebra of Signa-

tures. The reasons for the multilateral consideration of vacuum and twisting of intra-vacuum processes into spiral bundles 

are disclosed. The 4-tensor is introduced for two-sided and 16-sided consideration of the curvature of the local vacuum region. 

On the basis of kinematic models, the following assumptions were made: about the inert properties of vacuum layers; about 

the possibility of displacement of vacuum layers relative to each other at a speed significantly exceeding the speed of light; 

about the possibility of "rupture" of the local region of vacuum. The proposed kinematic models of the movement of vacuum 

layers can be a theoretical basis for the development of "zero" (i.e., vacuum) technologies. 
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BACKGROUND AND INTRODUCTION 

 

This work is the third of a series of articles under the title "Geometric vacuum physics". In the previous two articles [1, 2], 

the foundations of the Algebra of Stignatures and the Algebra of Signatures were presented, which were obtained on the basis 

of the study of an ideal (i.e., non-curved and immobile) region of the vacuum. 

 

This article considers the possibility of expanding the capabilities of the Algebra of Signatures to describe the curvature of 

the same region of the vacuum. 

 

In §1 of the article [1], it was shown that as a result of probing an ideal region of vacuum with light rays with a wavelength 

m,n (from the subrange Δ = 10m  10n cm) from three mutually perpendicular directions makes it possible to obtain a light 

cubic lattice (see Figure 1 of the article [1]). Such a lattice illuminated from the void was called the m,n-vacuum (or                      

3Dm,n-landscape). 

 

It was also shown in [1] that if we similarly probe the area of ideal vacuum with light rays of other wavelengths, we will 

obtain an infinite number of m,n-vacuums (i.e., 3Dm,n-landscapes with an edge length cubic cell εm,n ~ 100m,n) which nested 

into each other like nesting dolls (see Figure 1, or Figure 2 in [1]). 

 

 
 

Fig. 1: Discrete set of nested m,n-vacuums of the same 

3-dimensional void (i.e., vacuum) volume, where m,n > m+1,n+1 > m+2,n+2 >m+3,n+3 
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As already noted in §2 of the article [1], if the area of vacuum under study is not curved, then all m,n-vacuums will be 

represented as ideal cubic 3Dm,n-lattices, which differ from each other only by the length of the edge of cubic cell εm,n ~ 102m,n 

(see Figure 1). 

 

However, if the region of vacuum under study is curved, then all m,n-vacuums will differ somewhat from each other due to 

the fact that light rays (i.e., eikonals) with different wavelengths have different thicknesses (i.e., circular cross section of the 

eikonal, see Figure 2, or Figure 3 in [1]), which leads to averaging of vacuum curvature within the beam thickness. 

 

 

 
                        

Fig. 2: Experimental data on the thickness of the laser beam depending on the length 

wave  of the corresponding monochromatic electromagnetic radiation.  

 

In this case, each m,n-vacuum (i.e., the light 3Dm,n-landscape) will be unique. That is, each m,n-vacuum is only one 3-dimen-

sional "slice" of the curved vacuum region. For a complete description of a curved region of vacuum, it is necessary to have 

an infinite set of curved m,n-vacuums nested in each other (see Figure 3 or Figure 4 in [1]). 

                       

            
Fig. 3: Illustration of a curved m,n-vacuum embedded in 

curved f,d-vacuum (where f,d  m,n) 

 

Thus, the local volume of a curved area of vacuum is an infinitely complex system consisting of an infinite number of               

m,n-vacuums nested in each other. 

 

However, the situation is simplified by the fact that in the entire studied range of electromagnetic wave lengths, all                                

m,n-vacuums obey the same physical and geometric laws. Therefore, the method of describing one curved area of the k,r-

vacuum is automatically extended to all other m,n-vacuums. 

 

The mathematical apparatus of the Algebra of Stignatures is developed below, designed to study the local volume of only one 

curved m,n-vacuum. But this mathematical apparatus is suitable for studying not only all m,n-vacuums, but also any other 

deformed continuous media in which wave disturbances propagate at a constant speed. 

 



Below, we develop the mathematical apparatus of the Algebra of Stignatures, designed to study the local volume of only one 

curved m,n-vacuum. But this mathematical apparatus is suitable for studying not only all m,n-vacuums, but also any other 

deformed continuous media in which wave disturbances propagate at a constant speed. 

 

MATERIALS AND METHOD 

 

1 Curved area of m,n-vacuum 

 

Let’s consider a curved area of vacuum. If the wavelength m,n of test monochromatic light rays is much smaller than the 

dimensions of the vacuum curvature, then in this area the cubic cell of m,n-vacuum (i.e., the cubic cell of the                               

3Dm,n-landscape, which limited by these rays) will be curved (see Figure 4a). 

 

                                       

                                                          а)                                                                           б)                   

 

Fig. 4: a) Curved cubic cell m,n-vacuum; 

b) One of the corners of a curved cubic cell m,n-vacuum 

 

We consider one of the eight vertices of the curved cube of the m,n-vacuum (see Figure 4a). Let’s replace the distorted edges 

emerging from this vertex with distorted axes of the curvilinear coordinate system x0(а), x1(а), x2(а), x3(а) (see Figure 4b).                  

We denote the same edges of the original, ideal cube by the pseudo-Cartesian coordinate system x0(а), x1(а), x2(а), x3(а). 

 

In the area of the vertex of the angle under consideration (see Figure 4b), its distortions can be decomposed into two compo-

nents: 1) changing the lengths (compression or expansion) of the axes x0(а), x1(а), x2(а), x3(а) while maintaining right angles 

between these axes; 2) deviations of the angles between the axes x0(а), x1(а), x2(а), x3(а)  from right angles (i.e., 90o) while 

preserving their lengths. 

 

Let's consider these distortions separately. 

 

1) Let only the lengths of the axes x0(а), x1(а), x2(а), x3(а) change near the vertex during the curvature, then these axes can be 

expressed through the axes of the original ideal x0(а), x1(а), x2(а), x3(а) using the corresponding coordinate transformations [3]: 

 

 x0(а) = α00
(а)x0(а) + α01

(а)x1(а) + α02
(а)x2(а) + α03

(а)x3(а);                 

 x1(а)  = α10
(а)x0(а) + α11

(а)x1(а) + α12
(а)x2(а) + α13

(а)x3(а);                                                                                                                                                                    (1) 

 x2(а) = α20
(а)x0(а) + α21

(а)x1(а) + α22
(а)x2(а) + α23

(а)x3(а);                          

 x3 (а) = α30
(а)x0(а) + α31

(а)x1(а) + α32
(а)x2(а) + α33

(а)x3(а) ,               

 

where αij
(a) =dxi(a)/dxj(a)                                                                                                                                                                                                                                          (2)        

is the Jacobian of the transformation, or the components of the elongation tensor. 

 

 



2) Now let the distortion near the vertex be associated only with a change in the angles between the axes of the coordinate 

system x0(а), x1(а), x2(а), x3(а), while the lengths of these axes remain unchanged. In this case, it is sufficient to consider only 

the change in the angles between the basis vectors e0(a), e1(a), e2(a), e3(a) of the distorted reference system. 

 

It is known from vector analysis that the basis vectors of the distorted 4-basis e0(a), e1(a), e2(a), e3(a) can be expressed in terms 

of the original basis vectors e0
(a), e1

(a), e2
(a), e3

(a) of an orthogonal 4-basis by means of the following system of the linear 

equations [3]: 

  

 e0(a) = β00(a) e0
(a) + β01(a) e1

(a) + β02(a) e2
(a) + β 

03(a) e3
(a);                            

               e1(a) = β10(a) e0
(a) + β11(a) e1

(a) + β12(a) e2
(a) + β13(a) e3

(a);                                                                                                                                                                     (3) 

               e2(a) = β20(a) e0
(a) + β21(a) e1

(a) + β22(a) e2
(a) + β23(a) e3

(a);                          

               e3(a) = β30(a) e0
(a) + β31(a) e1

(a) + β32(a) e2
(a) + β03(a) e3

(a),              

 

where  β pm(a) = (ep(a) em
(a)) = cos (ep(a) ^em

(a))                                                                                                                      (4) 

are the guiding cosines. 

 

The systems of Eqs. (1) and (3) can be represented in a compact form: 
 

xi (a) = αij
(a) x j(a) ,                                                                                                                                                                                                                                                         (5) 

ep(a) = β pm(a) em
(a) .                                                                                                                                                                                                                                                       (6)          

here and below, the "Einstein summation rule" is used. 

 

For example, we write the vector (48) in [1] 

 

ds (7) = ei(7)dx i (7).                                                                                                                                                                                                                                                   (7) 

 

in the distorted 4-basis, taking into account Exs. (5) and (6), vector (7) can be represented as 

 

ds (7) = β pm(7) em
(7)αpj

(7)dxj(7).                                                                                                                                                                                                                             (8) 

Distortions of the remaining 7 trihedral angles of the curved cube of the m,n-vacuum (see Figure 4) (i.e., the fifteen remaining 

4-bases shown in Figure 5, or Figure 7 in [1]) are described in a similar way. 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

   

 

 

 

  
Fig. 5: Sixteen 4-bases associated with eight corners of the m,n-vacuum cube (repeat of the Figure 7 in [1]) 



Thus, all sixteen 4-bases (see Figure 5) associated with the distorted trihedral angles of the m,n-vacuum cube (see Figure 4) 

can be represented by the vectors 

 

ds (a) = β pm(a) em
(a) αpj

(a)dxj(a),                                                                                                                                                                                                                               (9) 

 

where а = 1,2,…,16.                                          

 

2 Curved metric 4-spaces 

 

Consider two vectors (48) and (49) in [1], given in the 5th and 7th curved affine spaces 

 

 ds (5)= βln(5)en
(5)αlj

(5)dxj,                                                                                                                                                                                                                                         (10) 

 

 ds (7)= βpm(7)em
(7)αpi

(7)dxi.                                                                                                                                                                                                                                     (11) 

 

Let's find the scalar product of these vectors 

 

ds (7,5)2 = ds (7)ds (5) = βpm(7)em
(7)αpi

(7)βln(5)en
(5)αlj

(5)dxidxj = сij
(7,5)dxidx j ,                                                                                                                       (12) 

    

where  сij
(7,5)=  βpm(7)em

(7)αpi
(7)βln(5)en

(5)αlj
(5)                                                                                                                            (13) 

are the components of the metric tensor of the (7,5)-th metric 4-space. 

 

Thus, we have obtained the metric of the (7,5)-th metric 4-space 

 

ds (7,5)2 = сij
(7,5)dxidxj                                                                                                                                                                                                                                                 (14) 

with signature (53) in [1] (+ + + –) and metric tensor 
         

   𝑐𝑖𝑗
(7,5)

=

(

  
 

𝑐00
(7,5)

𝑐10
(7,5)

𝑐20
(7,5)

𝑐30
(7,5)

𝑐01
(7,5)

𝑐11
(7,5)

𝑐21
(7,5)

𝑐31
(7,5)

𝑐02
(7,5)

𝑐12
(7,5)

𝑐22
(7,5)

𝑐32
(7,5)

𝑐03
(7,5)

𝑐13
(7,5)

𝑐23
(7,5)

𝑐33
(7,5)

)

  
 

.                                                                                                                         (15)     

 

Similarly, the scalar pairwise product of any two of the 16 vectors (9) 

 

ds (a)= βpm(a)em
(а)αpi

(a)dxi,                                                                                                                                                                                                                                       (16)                                     

ds (b) = βln(b)en
(b)αlj

(b)dxj
                                                                                                                                                                                                                                           (17) 

 

leads to the formation of an atlas consisting of 16 × 16 = 256 possible curved 4-sheets (that is, metric 4-spaces) with metrics 

 

ds (a, b)2 = сij
(a, b)dxidxj,                                                                                                                                                                                                                                               (18) 

 

where a = 1,2,3,…,16; b = 1,2,3,…,16, with corresponding signatures (11) in [2] and metric tensors 
                      

𝑐𝑖𝑗
(𝑎,𝑏)

=

(

  
 

𝑐00
(𝑎,𝑏)

𝑐10
(𝑎,𝑏)

𝑐20
(𝑎,𝑏)

𝑐30
(𝑎,𝑏)

𝑐01
(𝑎,𝑏)

𝑐11
(𝑎,𝑏)

𝑐21
(𝑎,𝑏)

𝑐31
(𝑎,𝑏)

𝑐02
(𝑎,𝑏)

𝑐12
(𝑎,𝑏)

𝑐22
(𝑎,𝑏)

𝑐32
(𝑎,𝑏)

𝑐03
(𝑎,𝑏)

𝑐13
(𝑎,𝑏)

𝑐23
(𝑎,𝑏)

𝑐33
(𝑎,𝑏)

)

  
 
,                                                                                                                           (19)  

 

where  сij
(a, b)=  βpm(a)em

(a)αpi
(a)βln(b)en

(b)αlj
(b)                                                                                                                            (20) 

are the components of the metric tensor of the (a,b)-th curved metric 4-space. 



3 The first stage of compactification of curved measurements 

 

Just as it was done in §2.3 in [2], at the first stage of the compactification of additional curved mathematical dimensions in 

the Algebra of Signatures, metric 4-spaces with the same signature are averaged. 

 

For example, for metrics with signature (– + – +), we have the following averaged metric tensor 

 

с𝑖𝑗
(р)
=

(

  
 

с00
(р)

с10
(р)

с20
(р)

с30
(р)

с01
(р)

с11
(р)

с21
(р)

с31
(р)

с02
(р)

с12
(р)

с22
(р)

с32
(р)

с03
(р)

с13
(р)

с23
(р)

с33
(р)
)

  
 
=

1

16

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(

  
 

𝑐00
(14,2)

𝑐10
(14,2)

𝑐20
(14,2)

𝑐30
(14,2)

𝑐01
(14,2)

𝑐11
(14,2)

𝑐21
(14,2)

𝑐31
(14,2)

𝑐02
(14,2)

𝑐12
(14,2)

𝑐22
(14,2)

𝑐32
(14,2)

𝑐03
(14,2)

𝑐13
(14,2)

𝑐23
(14,2)

𝑐33
(14,2)

)

  
 
+

+

(

  
 

𝑐00
(13,1)

𝑐10
(13,1)

𝑐20
(13,1)

𝑐30
(13,1)

𝑐01
(13,1)

𝑐11
(13,1)

𝑐21
(13,1)

𝑐31
(13,1)

𝑐02
(13,1)

𝑐12
(13,1)

𝑐22
(13,1)

𝑐32
(13,1)

𝑐03
(13,1)

𝑐13
(13,1)

𝑐23
(13,1)

𝑐33
(13,1)

)

  
 
+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+

(

  
 

𝑐00
(1,13)

𝑐10
(1,13)

𝑐20
(1,13)

𝑐30
(1,13)

𝑐01
(1,13)

𝑐11
(1,13)

𝑐21
(1,13)

𝑐31
(1,13)

𝑐02
(1,13)

𝑐12
(1,13)

𝑐22
(1,13)

𝑐32
(1,13)

𝑐03
(1,13)

𝑐13
(1,13)

𝑐23
(1,13)

𝑐33
(1,13)

)

  
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

,                                                                            (21)     

 

where p corresponds to the 14-th signature (– + – +), according to the following conditional numbering of signatures: 

 

𝑠𝑖𝑔𝑛(с𝑖𝑗
(р)
) =

(+ + ++)1 (+ + + −)5 (− + + −)9 (+ + − +)13

(− − − +)2 (− + + +)6 (− − + +)10 (− + − +)14

(+ − − +)3 (+ + − −)7 (+ − − −)11 (+ − + +)15

(− − + −)4 (+ − + −)8 (− + − −)12 (− − −−)16.

                                                                         (22)         

 

This matrix with numbered signatures corresponds to the matrix of signatures (32) in [2]. 

 

As a result of operation (21), the averaged metric is obtained 

 

<ds(– + – +) 2> = сij
(14)dxi

 dxj ,  with signature (– + – +).                                                                                                          (23)            

 

Similarly, as a result of averaging type (21) – (23) out of 256 metrics (18) of curved metric 4-spaces, we can obtain                  

256 : 16 = 16 averaged metrics with 16 possible signatures 

        

<ds(+– – –)2>      <ds(+ + + +)2>      <ds(– – – +)2>      <ds(+ –  – +)2 >                                                                                                 (24)            

<ds(– – + –)2>     <ds(+ + – –)2>       <ds(– + – –)2>       <ds(+ –  + –)2>                 

<ds(– + + +)2>       <ds(– – – – )2>     <ds(+ + +  –)2>        <ds (– + + –)2>   

<ds(+ + – +)2>       <ds(– – + +)2>       <ds(+ – + +)2>      <ds(– +  – +)2>,    

 

where ‹  › means averaging. 

 

If the additive superposition (or averaging) of all these 16 averaged metrics (24) is equal to zero 

 

 



𝑑𝑠𝛴
2 =

1

16
∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗 =

1

16
 [с𝑖𝑗

(1)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(2)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(3)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(4)𝑑𝑥𝑖𝑑𝑥𝑗16

р=1 +                                              (25)                      

                                                + с𝑖𝑗
(5)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(6)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(7)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(8)
𝑑𝑥𝑖𝑑𝑥𝑗 + 

                                                + с𝑖𝑗
(9)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(10)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(11)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(12)
𝑑𝑥𝑖𝑑𝑥𝑗 + 

                                               + с𝑖𝑗
(13)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(14)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(15)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(16)

𝑑𝑥𝑖𝑑𝑥𝑗] = 0,      

then this Expression can be used for an average flat m,n-vacuum. At the same time, it is a condition for maintaining the                   

m,n-vacuum balance. 

 

Recall that the “vacuum balance condition” was formulated in the introduction of the article [1], and this is the basic state-

ment that, in particular, no matter what convex-concave curvatures (fluctuations) occur with the local area of the m,n-vacuum, 

on average over the entire area they are equal to zero. 

 

In this case, all 16 × 16 = 256 components of 16 averaged metric tensors сij
(p) can be random functions of time. But, according 

to the condition of m,n-vacuum balance, these metric-dynamic fluctuations should overflow into each other so that the total 

metric (25) on average remains equal to zero. 

 

Based on the metric (25), m,n-vacuum thermodynamics can be developed, which considers the most complex, near-zero 

“transfusions” of the local m,n-vacuum curvatures. Concepts about m,n-vacuum entropy and temperature (i.e., the essence of 

chaoticity and intensity of local m,n-vacuum fluctuations) can be introduced. We can talk about the “cooling” of the                           

m,n-vacuum to “freezing”, its “heating“ to “evaporation” and many other effects similar to the processes occurring in atomistic 

continuous media. 

 

Features of m,n-vacuum thermodynamics are associated with processes when the gradients of m,n-vacuum fluctuations ap-

proach the speed of light (dсij
(p)/dxa ~ c) or zero (dсij

(p)/dxa ~ 0). A detailed consideration of m,n-vacuum thermodynamics and 

torsion fields is beyond the scope of this article. However, some aspects of this area of research are considered in [3,4,5]. 

 

4 The second stage of compactification of curved mathematical measurements 

 

Just as it was done in §7.2 in [2], Ex. (25) can be reduced to two terms 

 

 
1

2
(〈𝑑𝑠(+)2〉  + 〈𝑑𝑠(–)2〉) =

1

2
(〈𝑔𝑖𝑗

(+)〉𝑑𝑥𝑖𝑑𝑥𝑗  +  〈𝑔𝑖𝑗
(−)〉𝑑𝑥𝑖𝑑𝑥𝑗) =  0,                                                                               (26)              

    

where  ⟨𝑔𝑖𝑗
(+)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(+−−−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
 ∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗7

р=1 ,   with signature (+ – – –)                                            (27)       

is the quadratic form, which is the result of averaging seven metrics from the list (24) with signatures included in the numer-

ator of the left rank (43) in [2] or (29); 

 

⟨𝑔𝑖𝑗
(−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(−+++)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
∑ с𝑖𝑗

(𝑞)
𝑑𝑥𝑖𝑑𝑥𝑗,14

𝑞=8    with signature (– + + +)                                                        (28)               

 

is the quadratic form, which is the result of averaging seven averaged metrics from the list (24) with signatures included in 

the numerator of the right rank (43) in [2] or (29). 

                                                                                                                                                                                             (29) 

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –  –  –) 

(+  +  + –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 



 

 

 

 

 

 

 

 

 

Thus, from the complex m,n-vacuum fluctuations, two averaged sides can be distinguished: 

 

1)  the averaged “outer” side of the 23-m,n-vacuum (or subcont, see §2.7 in [2]) with the averaged metric 

 

〈𝑑𝑠(±−−−)2〉 =  〈𝑑𝑠(+)2〉 =  〈𝑔𝑖𝑗
(+)〉𝑑𝑥𝑖𝑑𝑥𝑗 ,    with signature (+ – – –),                                                                                                                          (30)                         

 

where  ⟨𝑔𝑖𝑗
(+)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(+−−−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
 ∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗7

р=1 ,                                                                                      (31)        

 

здесь  𝑔𝑖𝑗
(+)

=

(

  
 

𝑔00
(+)

𝑔10
(+)

𝑔20
(+)

𝑔30
(+)

𝑔01
(+)

𝑔11
(+)

𝑔21
(+)

𝑔31
(+)

𝑔02
(+)

𝑔12
(+)

𝑔22
(+)

𝑔31
(+)

𝑔03
(+)

𝑔13
(+)

𝑔23
(+)

𝑔33
(+)
)

  
 
 

                         

                                                                                                    (32)           

 

are components of the metric tensor of the subcont (i.e., the "outer" side of the 23-m,n-vacuum). 

 

2) the averaged “inner” side of the 23-m,n-vacuum (or antisubcont, see §2.7 in [2]) with the averaged metric 

 

〈𝑑𝑠(−+++)2〉 =  〈𝑑𝑠(−)2〉 =  〈𝑔𝑖𝑗
(−)〉𝑑𝑥𝑖𝑑𝑥𝑗 ,   with signature (– + + +),                                                                                                                         (33)               

 

where  ⟨𝑔𝑖𝑗
(−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(−+++)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
∑ с𝑖𝑗

(𝑞)
𝑑𝑥𝑖𝑑𝑥𝑗14

𝑞=8 ,                                                                                     (34)       

 

here   𝑔𝑖𝑗
(−)

=

(

  
 

𝑔00
(−)

𝑔10
(−)

𝑔20
(−)

𝑔30
(−)

𝑔01
(−)

𝑔11
(−)

𝑔21
(−)

𝑔31
(−)

𝑔02
(−)

𝑔12
(−)

𝑔22
(−)

𝑔31
(−)

𝑔03
(−)

𝑔13
(−)

𝑔23
(−)

𝑔33
(−)
)

  
 

 .                                                                                                                                          (35)             

 

are the components of the metric tensor of the antisubcont (i.e., the “inner” side of the 23-m,n-vacuum). 

 

Recall that the two-sided model of m,n-vacuum, that is, the result of averaging complex metric-dynamic fluctuations of                

m,n-vacuum to a two-sided level of consideration, is called in §2.7 in [2] “23-m,n-vacuum”, because in this case, only                  

4 + 4 = 8 = 23 mathematical measurements remain within the framework of consideration. 

 

To shorten the notation, the averaging signs < > of the components of the metric tensors (32) and (35) are omitted. 

 

Once again, we note that two concepts were formally introduced in [1]: 

- subcont (i.e., the substantial continuum or the outer side of the 23-m,n-vacuum with the averaged metric (30) and 

  with the signature (+ – – –) of the Minkowski space); 

- antisubcont (i.e., antisubstantial continuum or inner side of 23-m,n-vacuum with averaged metric (33) and signature 

  (– + + +) of Minkowski antispace). 

 

 (+ –  –  –)+ + (–  +  +  +)+ =0 . 



The fictitious concepts of subcont and antisubcont are introduced to simplify and facilitate our perception of the complex 

intra-vacuum processes. 

 

Thus, from the complexly fluctuating m,n-vacuum (see Figure 6), due to simplification and averaging, we singled out only 

one averaged 23-m,n-vacuum with two mutually opposite 4-dimensional sides: subcont and antisubcont (see Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6: Fractal illustration of complex intra-vacuum processes 

 

On Figure 7 conditionally shows the average section of the two-sided 23-m,n-vacuum, the outer side of which (subcont) is 

described by the averaged metric 〈𝑑𝑠(±−−−)2〉 (30), and the inner side (antisubcont) is described by the averaged metric  

〈𝑑𝑠(−+++)2〉 (33).  



 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Simplified illustration of a two-sided section of the 23-mn-vacuum, the outer side of which (subcont) is described by the averaged 

metric 〈𝑑𝑠(+−−−)2〉 (30) with the signature (+ – – –), and its inner side (antisubcont) is described by the metric 〈𝑑𝑠(−+++)2〉 (33) with the 

opposite signature (– + + +), as ε → 0 

 

Let’s explain the importance of at least two-sided consideration with a simple example. Let's take a sheet of paper and draw 

lines (segments) of the same length on its two sides in the same place (see Figure 8 a,b) 

 

                            
   

                                                   a)                                                     b)                                             c) 

                              The outer side of the sheet                The inner side of the sheet 

                                   with stignature {+ +}                       with stignature {– +} 

                                                                        

Fig. 8: Two sides of one sheet of paper 

 

 

Reference systems ХУ or Х′У′ on two opposite sides of a sheet of paper have different stignatures, respectively {+ +} and                

{+ –}. To understand this, take a sheet of paper and draw on it the XY reference system (as in Figure 8a). Then turn the sheet 

over, and on its reverse side depict the Х′У′ reference system in the same way in the same place. If you compare these reference 

systems, you will find that the X and X′ axes are directed in different directions, so their stignatures are different. 

 

4-dimensional inner side 

of the 23-m,n-vacuum 

(antisubcont) with metric 

〈𝑑𝑠(−+++)2〉 = 〈𝑔𝑖𝑗
(−)〉 𝑑𝑥𝑖𝑑𝑥𝑗  

with signature (– + + +) 

    

 

4-dimensional outside 

of  the 23-m,n-vacuum 

(subcont) with metric 

〈𝑑𝑠(+−−−)2〉 =  〈𝑔𝑖𝑗
(+)〉 𝑑𝑥𝑖𝑑𝑥𝑗, 

with signature (+ – – –) 

 

{+ +}                           {– +}                           



If the given sheet of paper is not curved, then the reference system with stignatures {+ +} and {+ –} are alike, i.e., any of 

them can set the coordinates of the drawn lines. 

 

However, if this sheet is bent (see Figure 8c), then the line on the outer side of the sheet (see Figure 8a) will slightly expand, 

and the line on the inner side of the sheet (Figure 8b) will shrink by almost the same amount. In other words, the expansion 

of one line inevitably leads to the compression of another line drawn on the opposite side of the sheet. 

 

Therefore, at least a two-sided consideration of the process of curvature of a sheet of paper is inevitable. Otherwise, one-sided 

consideration will lead not only to the loss of information about the process under study, but also in some cases to paradoxical 

and erroneous conclusions. In addition, the two-pronged approach immediately takes into account the vacuum balance con-

dition, which states that any action is accompanied by a reaction. In the considered case, the expansion of one line is inevitably 

accompanied by compression of the other line, therefore, if we neglect the thickness of the sheet, then its average deformation 

of these lines tends to zero. 

 

In fact, a sheet of paper has a thickness ε (see Figure 7). Therefore, in its thickness, one can always distinguish a cube with an 

edge length ε (see Figures 7 and 9). 

 

 
 

Fig. 9: A cube isolated in the thickness of a sheet of paper (or in some other continuous medium, including vacuum) 

 

 

If the sheet is bent, all sixteen 3-bases associated with the trihedral angles of such a deformed cube will be distorted in different 

ways (see Figure 4). Therefore, the Algebra of Signatures develops a mathematical apparatus that initially takes into account 

the distortions of all sixteen 3-bases at once, shown in Figure 9. 

 

Only in the case when the thickness of a sheet of paper is so small that it can be neglected, it is permissible to simplify the 

problem to a two-sided consideration. 

 

Unilateral consideration, i.e. the study of the curvature of only one side of a sheet of paper is possible, but will inevitably lead 

to a fundamental incompleteness of the mathematical model of the process under study. 

 

In relation to vacuum physics, we are forced to state that the void (i.e., vacuum), which plays the role of the space surrounding 

us, has at least two sides: 1) external, i.e. Minkowski space with signature (+ – – –) and  2) internal, i.e. Minkowski antispace 

with signature (– + + +) (see Figure 7). One-sided consideration will inevitably lead to dead-ends and unfinished areas of 

scientific research. 

 

For example, a metric that is a solution to the equations of the general theory of relativity (GR) of A. Einstein with the 

signature (+ – – –) can only describe a one-sided cosmological model of the Universe, which, in principle, cannot be completed. 

We also need, at a minimum, a metric-solution of the same equations with the opposite signature (– + + +). A more complete 

cosmological model should take into account all 16 metric-solutions of GR equations with signatures (29). Only such a cos-

mological model can claim logical completeness. The project of the cosmological model taking into account metric-solutions 

with all 16 possible signatures will be presented in subsequent articles of this project. 

 

 

 



5 Four-strain tensor of 23-m,n-vacuum in the case of a simplified two-sided consideration 

 

5.1 Four-strain tensors of two sides of 23-m,n-vacuum 

 

Let‘s assume that the simplified two-sided model of the 23-m,n-vacuum presented in the previous paragraph (see Figure 7) 

satisfies the given consideration accuracy. 

 

Let the initial uncurved state of the studied area of the outer side of the 23-m,n-vacuum (i.e., subcont) be characterized by a 

zero averaged metric (30) 

 

𝑑𝑠0
(+−−−)2 = 𝑑𝑠0

(+)2 = 𝑔𝑖𝑗0
(+)𝑑𝑥𝑖𝑑𝑥𝑗,  with signature (+ – – –).                                                                                                                                           (36)    

 

Here and below, to shorten the entries, the averaging sign < > is removed, while it is conditionally assumed that 

 

  𝑑𝑠(+−−−)2 = 〈𝑑𝑠(+−−−)2〉,    𝑑𝑠(+)2 = 〈𝑑𝑠(+)2〉  и   𝑔𝑖𝑗
(+) = 〈𝑔𝑖𝑗

(+)〉.  

 

In the Cartesian coordinate system, metric (36) takes the form 

𝑑𝑠0
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,                                                                                                                               (36a)    

 

wherein 

 

𝑔𝑖𝑗0
(+)

= (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) .

                         

                                                                                                                       (37)                                                                                                

                                                                                          

In the case of curvature of the same section of the subcont, its metric-dynamic state is determined by the averaged metric 

 

𝑑𝑠(+−−−)2 = 𝑑𝑠(+)2 = 𝑔𝑖𝑗
(+)𝑑𝑥𝑖𝑑𝑥𝑗,  with signature (+ – – –).                                                                                          (38)       

 

The difference between the curved state of the studied section of the subcont and its non-curved state is determined by the 

Expression [3] 

 

𝑑𝑠(+)2 − 𝑑𝑠0
(+)2 = (𝑔𝑖𝑗

(+) − 𝑔𝑖𝑗0
(+)) 𝑑𝑥𝑖𝑑𝑥𝑗 = 2𝑖𝑗

(+)𝑑𝑥𝑖𝑑𝑥𝑗 ,                                                                                               (39)   

 

where 𝑖𝑗
(+) =  ½(𝑔𝑖𝑗

(+) − 𝑔𝑖𝑗0
(+))                                                                                                                                            (40)     

  

is the 4-deformation tensor of the local section of the subcont. 

 

The relative elongation (or contraction) of the curved section of the subcont is [3] 

 

𝑙(+) =
𝑑𝑠(+)−𝑑𝑠0

(+)

𝑑𝑠0
(+) =

𝑑𝑠(+)

𝑑𝑠0
(+) − 1.                                                                                                                                   (41)         

 

Whence it follows 

 

𝑑𝑠(+)2 = (1 + 𝑙(+))2𝑑𝑠0
(+)2.                                                                                                                                                (42) 

                                                   

Substituting (42) into (39), taking into account (40), we obtain [3]    

 



ij
(+) = ½ [(1 + l(+))2 – 1] 𝑔𝑖𝑗0

(+),                                                                                                                                           (43)        

 

or expanded 

 

ij
(+) = ½ [(1 + li

(+))(1 + lj
(+)) cosij

(+) – cosij0
(+)] 𝑔𝑖𝑗0

(+),                                                                                                 (44)     

 

where 

ij0
(+) is the angle between the axes xi and xj

 of the reference system, "frozen" into the initial uncurved state of the subcont 

section under study; 

ij
(+) is the angle between the axes xiand xj of the distorted reference system “frozen” into the distorted state of the same 

section of the subcont. 

 

When ij0
(+) = /2, Ex. (44) takes the form 

 

ij
(+) = ½ [(1 + li

(+))(1 + lj
(+)) cosij

(+) – 1] 𝑔𝑖𝑗0
(+).                                                                                                             (45)     

 

For the diagonal components of the 4-strain tensor ii
(+), Ex. (45) is simplified 

ii 
(+) = ½ [(1 + li

(+))2 – 1] 𝑔𝑖𝑗0
(+),                                                                                                                                        (46)      

 

whence follows [3] 

 

𝑙𝑖
(+)

= √1 +
2𝜀
𝑖𝑖
(+)

𝑔
𝑖𝑖0
(+) − 1 = √1 +

𝑔
𝑖𝑖
(+)
−𝑔𝑖𝑖0

(+)

𝑔
𝑖𝑖0
(+) − 1 = √

𝑔
𝑖𝑖
(+)

𝑔
𝑖𝑖0
(+) − 1.                                                                                      (47)        

 

If deformations of the subcont section ij
(+) are small, then, expanding Ex. (47) into a series, and, confining ourselves to the 

first member of this series, we obtain the relative elongation of the local subcont section [3] 

 

  𝑙𝑖
(+)

≈
𝜀𝑖𝑖
(+)

𝑔𝑖𝑖0
(+).                                                                                                                                                       (48)     

 

Similarly, the deformation of the local section of the inner side of the 23-m,n-vacuum (antisubcont) is determined by the 

Expression 

 

𝑑𝑠(−)2 − 𝑑𝑠0
(−)2 = (𝑔𝑖𝑗

(−) − 𝑔𝑖𝑗0
(−))𝑑𝑥𝑖𝑑𝑥𝑗 = 2𝑖𝑗

(−)𝑑𝑥𝑖𝑑𝑥𝑗,                                                                                               (49)          

 

where  𝑖𝑗
(−) =  ½(𝑔𝑖𝑗

(−) − 𝑔𝑖𝑗0
(−))                                                                                                                                          (50)        

 

is the 4-deformation tensor of the local section of the antisubcont; 

 

𝑑𝑠0
(− + + +)2 = 𝑑𝑠0

(−)2 = 𝑔𝑖𝑗0
(−)𝑑𝑥𝑖𝑑𝑥𝑗 ,  с сигнатурой (– + + +)                                                                                         (51)   

                                                                                                                                                                             

is the metric of the uncurved state of the local section of the antisubcont. In the Cartesian coordinate system, metric (51) takes 

the form 

 

𝑑𝑠0
(−)2 = – 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,                                                                                                                             (51a)    

 



where   𝑔𝑖𝑗0
(−)

= (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) ; 

                       

                                                                                                                 (51b)                                  

 

in its turn 

 

𝑑𝑠(− + + +)2 =  𝑑𝑠(−)2 = 𝑔𝑖𝑗
(−)𝑑𝑥𝑖𝑑𝑥𝑗,  with the same signature (– + + +)                                                                         (52)  

           

is the metric of the curved local section of the antisubcont. 

 

The relative elongation (or contraction) of the local section of the antisubcont is determined by the Expression 

 

𝑙(−) =
𝑑𝑠(−)−𝑑𝑠0

(−)

𝑑𝑠0
(−) =

𝑑𝑠(−)

𝑑𝑠0
(−) − 1.                                                                                                                                   (53)      

 

 

5.2 The 4-strain tensor of 23-m,n-vacuum in the case of two-sided consideration 

 

We define the 4-strain tensor of a local section of a two-sided 23-m,n-vacuum as the average value of the deformations of its 

two sides 

 

ij
(±) = ½ (ij

(+) + ij
(–)) = ½ (ij

(– + + +) + ij
(+ – – –)),                                                                                                                  (54)   

 

or, taking into account Exs. (40) and (50), we obtain 

 

ij
(±) =  ½ (𝑔ij

(+) + 𝑔ij
(–)) – ½ (𝑔ij0

(+)  + 𝑔ij0
(–)) = ½ (𝑔ij

(+) + 𝑔ij
(–)),                                                                                         (55)      

 

because from the condition of 23-m,n-vacuum balance (48) in [2] ds(+ – – –)2 + ds(– + + +)2 = 0 follows: 

 

𝑔ij0
(+) + 𝑔ij0

(–) = 𝑔ij0
(– + + +) + 𝑔ij0

(+ – – –) = 0.                                                                                                                           (56)                        

 

The relative elongation (or contraction) li
(±) of the local section of the two-sided 23-m,n-vacuum is determined by the                  

Expression        

 

𝑙𝑖
(±)

= 1 2⁄ (𝑙𝑖
(+)
+ 𝑙𝑖

(−)
),                                                                                                                                                     (57)        

 

where  𝑙𝑖
(+)

= √1 +
2𝜀
𝑖𝑖
(±)

𝑔
𝑖𝑖0
(+) − 1 = √1 +

𝑔
𝑖𝑖
(+)

+𝑔
𝑖𝑖
(−)

𝑔
𝑖𝑖0
(+) − 1,                                                                                                         (58)      

     

 𝑙𝑖
(−)

= √1 +
2𝜀
𝑖𝑖
(±)

𝑔
𝑖𝑖0
(−) − 1 = √1 +

𝑔𝑖𝑖
(+)

+𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(−) − 1 = √1 −

𝑔𝑖𝑖
(+)

+𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+) − 1,                                                                                (59)             

 

because according to the condition of the m,n-vacuum balance (56) 𝑔ij0
(–) = – 𝑔ij0

(+). 

 

Substituting Exs. (58) and (59) into Ex. (57), we obtain 

 

𝑙𝑖
(±)

= 1 2⁄ (√1 +
𝑔
𝑖𝑖
(+)

+𝑔
𝑖𝑖
(−)

𝑔
𝑖𝑖0
(+) + √1 −

𝑔𝑖𝑖
(+)

+𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+) ) − 1.                                                                                                         (60)        



 

It can be seen from this Expression that the relative elongation (or contraction) of the local section of the two-sided                        

23-m,n-vacuum, li
(±)  can be a complex number. 

 

In this regard, we note the following important circumstance. If both sides of Ex. (55) are multiplied by dxidxj, then we obtain 

the averaged quadratic form 

 

ds(±)2 = 
2

1 (ds(+)2+ ds(–)2) = 2
1 (ds(– + + +) 2+ ds(– + + +) 2),                                                                                                         (61)    

 

which resembles the Pythagorean theorem c2 = a2 + b2. 

 

This means that the line segments ( 2
1 )1/2ds(–)

 and  ( 2
1 )1/2ds(+), which lie on two mutually opposite sides of the two-sided           

23-m,n-vacuum, are always mutually perpendicular to each other, i.e. ds (–)⊥ ds (+) (see Figure 10a). In this case, two lines 

directed in the same direction can always be mutually perpendicular only if they form a double helix (Figures 10b and 12). 

 

        

 

    

 

 

 

 

        

 
                                                                                 a)                                                 b)                   

 

Fig. 10: a) Mutually perpendicular segments ( 2
1 )1/2ds(+)

 and  ( 2
1 )1/2ds(–); b) If you project a double helix onto a plane, then at the intersection 

of its lines ds(–)
 and  ds(+) are always mutually perpendicular 

 

 

Thus, the averaged metric (61) corresponds to a “braid” segment consisting of two mutually perpendicular spirals s(+)
 and  s(–). 

In this case, just like the relative elongation of the local section of the two-sided 23-m,n-vacuum li
(±) (60), such a section of the 

“double helix” can be described by a complex number 

 

ds (±) = 1
√2
⁄  (ds (–)+ids (+)),      

                                                                                                                                                                                                                                 

the square of whose modulus is equal to Ex. (61).  

 

Below, a k-braid is the result of averaging metrics with different signatures (where k is the number of averaged metrics, i.e., 

the number of “threads” in the “braid”). For example, the averaged metric (61) is called a 2-braid, since it is “twisted” from 

2 lines (“threads”): ds(+)
 = ds (+ – – –)

  and   ds(–) = ds(– + + +).  

 

Here is another augment in favor of the mutual perpendicularity of the segments ds(+)
  and   ds(–);     

 

Figure 8 showed that the reference systems XY or X'Y' on two opposite sides of a sheet of paper have different stignatures 

{+ +} and {+ –}. In order to get a completely opposite stignature {– –}, it is necessary first to depict the reference system XY 

on the sheet, then turn this sheet 90 degrees clockwise, then turn it to the other side and similarly draw the reference system 

X'Y' on the same place where the reference system XY (see Figure 11). The result will be a reference system Y'X' with a 

completely opposite stignature {– –} in relation to the XY system. 

   



 
 

Fig. 11: Two sides of the space with completely opposite stignatures {+ +} and {– –} 

 
If, on one side of the sheet, draw a line ds(+)

 along the X axis (see Figure 11), and on 

the other completely opposite side, draw the same line ds(–)  along the X ′ axis, then 

it turns out that the lines ds(+) and  ds(–) are mutually perpendicular. Such a crossing 

of the ds(+) and  ds(–)  lines takes place in each local area of the sheet, which resembles 

the crossing of fabric threads (see Figure 12a). 

                                                                                 

If a hypothetical sheet with two completely opposite sides (i.e., with opposite stig-

natures {+ +} and {– –}) is bent as shown in Figure 8c, then the line ds(+) will stretch, 

and the corresponding line ds(–)  on the other side of such a sheet will remain the 

same (i.e., not deformed). In this case, the line will shrink on the perpendicular axis 

Y ′. This ultimately leads to the twisting of the ds(+) and ds(–)  lines into spiral bundles 

(see Figures 10 and 12a). 

 
As applied to the model of the two-sided section of the 23-m,n-vacuum with com-

pletely opposite sides, i.e. with signatures (+ – – –) and (– + + +) (Figure 7), we 

conclude that the intertwined lines ds (+ – – –)
  and  ds(– + + +) form a fabric of 3 - dimen-

sional extent. In other words, the 23-m,n-vacuum is not just a two-sided 8-dimen-

sional space, but is the result of the interlacing of its two sides, like the threads of a 

fabric (see Figure 12b). 

 

Deformation of one side of such length inevitably leads to a perpendicular counter - 

response on its other side. This is the reason for the folding of local sections of such 

a two-sided space into double helixes (see Figure 10 a,b and Figure 12b). 

 

It is difficult to imagine a 3-dimensional tissue structure of a two-sided 8-dimensional 23-mn-vacuum, but the mathematics 

of the Algebra of Signatures takes into account the ubiquitous interweaving of the lines ds (+ – – –)
  and   ds(– + + +)  automatically, 

since not summed these lines themselves, but their quadratic forms ds (+ – – –)2
 and  ds(– + + +)2 (61), which define the metrics of 

these extensions. 

 

5.3 The 4-strain tensor of a curved 26-m,n-vacuum in the case of sixteen-sided consideration 

                  

At the next deeper 16-sided level of consideration, the number of mathematical dimensions is 16 × 4 = 64 = 26, so at this level 

the subject of consideration is the 26-m,n-vacuum. 

. 

 
а) 

    
                            b) 
Fig. 12: Woven threads of the fabric 

 

 

 

 



The metric-dynamic properties of the local region of the 26-m,n--vacuum are characterized by a superposition (i.e., additive 

superposition or averaging) of sixteen metrics with all 16 possible signatures (29), i.e. 16-braid (according to the definition of 

k-braid after Ex. (61)): 

 

ds2 = 1/16 (ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2  + ds(+ – – +)2 +  

                 + ds(– – + –)2  + ds(+ + – –)2  + ds(– + – –)2  + ds(+ – + –)2 +                                                                                                (62)      

                 + ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2  + ds(– + + –)2 + 

                 + ds(+ + – +)2  + ds(– – + +)2  + ds(+ – + +)2  +  ds(– + – +)2). 

In this case, we have 16 4-deformation tensors of all 16 types of curved 4-spaces with different signatures (or topologies, see 

§2.4 in [2]) 

𝜀𝑖𝑗
(𝑝)

=

(

 
 
 

𝜀𝑖𝑗
(1)

𝜀𝑖𝑗
(2)

𝜀𝑖𝑗
(3)

𝜀𝑖𝑗
(4)

𝜀𝑖𝑗
(5)

𝜀𝑖𝑗
(6)

𝜀𝑖𝑗
(7)

𝜀𝑖𝑗
(8)

𝜀𝑖𝑗
(9)

𝜀𝑖𝑗
(10)

𝜀𝑖𝑗
(11)

𝜀𝑖𝑗
(12)

𝜀𝑖𝑗
(13)

𝜀𝑖𝑗
(14)

𝜀𝑖𝑗
(15)

𝜀𝑖𝑗
(16)

)

 
 
 

,                                                                                                                                        (63)          

 

where according to Ex. (25) 

 

ij
(p) =  ½ (сij

(p)  – сij0
(p))                                                                                                                                                         (64)    

 

is the 4-deformation tensor of the p-th 4-space, p =1, 2,…,16, where: 

сij0
(p)  is the metric tensor of the non-curved region of the p-th 4-space with the corresponding signature; 

сij
(p)  is the metric tensor of the same but curved region of the p-th 4-space with the same signature. 

 

By analogy with Ex. (54), at the 16-sided level of consideration, the general tensor of 4-deformations 𝜀𝑖𝑗 Σ
(16)

 of the local curved 

region of the 26-m,n-vacuum is defined as the average value 

 

𝜀𝑖𝑗 Σ
(16) =

1

16
(𝑖𝑗
(1)
+ 𝑖𝑗

(2)
+ 𝑖𝑗

(3)
+⋯+ 𝑖𝑗

(16)
)  =

1

16
∑ 𝑖𝑗

(𝑝)16
𝑝=1 .                                                                                                (65)     

 

In this case, the relative elongation of the local region of the 26-m,n-vacuum 𝑙𝑖 Σ
(16)

 in this case is given by the average hyper-

complex number of the 16-th rank 

 

𝑙𝑖 Σ
(16)

= 1/√16 (η1 li
 (1) + η2 li

 (2) + η3 li
 (3) +…+ η16 li

 (16)),                                                                                                            (66)    

 

where 𝑙𝑖
(𝑝)
= √1 +

2𝜀
𝑖𝑖
(𝑝)

𝑐
𝑖𝑖
0(𝑝) − 1,                                                                                                                                              (67)        

ηm is an orthonormal basis of 16 unit objects (m = 1,2,3,…,16) satisfying the anticommutation relation of the Clifford algebra 

                                      

ηmηn + ηnηm = 2δmn ,                                                                                                                                                             (68)     
 

where δnm is the identity 1616-matrix. 

In this case, the curved section of the 16-braid consists of sixteen intertwined "colored" lines (threads): 

 



ds 
(16)

 = 1/√16 ( η1 ds(+– – –)   +  η2 ds(+ + + +)   +  η3 ds(– – – +) + η4 ds(+ –  – +) +     (69)                  

                     + η5 ds(– – + –)  + η6 ds(+ + – –)   +  η7 ds(– + – –)  + η8 ds(+ –  + –)+        

                     +η9 ds(– + + +) + η10
  ds(– – – –) + η11 ds(+ + +  –) + η12 ds (– + + –)+ 

                     +η13 ds(+ + – +) + η14
  ds(– – + +) + η15 ds(+ – + +) + η16 ds(– +  – +)).    

 

The colors of these lines conditionally correspond to the colors of the signa-

tures (i.e., the types of topologies of these 4-dimensional spaces), which are 

formally assigned to these spaces in the framework of vacuum chromody-

namics: 

 

Formal coloring of 16 lines (or threads) ds(+– – –),  ds(– + + +), ds(+ + + +), ds(+ + – +), 

… , ds(– +  – +) makes it possible to represent the “fabric” of 26-m,n-vacuum 

woven from them in color form (see Figure 6 and 13). 

 

Each “colored” 4-space with the corresponding signature (i.e., topology) (70) can be formally represented as a continuous 

plastic-elastic medium of the corresponding color. Such 4-spaces, which have elastoplastic properties, can be interpreted as 

"colored" ethers. But unlike the ether theory, in the geometrized vacuum physics based on the Algebra of Signatures (Alsigna), 

there is not one ether, but depending on the level of consideration, there can be 2 such ethers (“white” and “black ”) or              

24 = 16 (with “colors” (70)) or 28 = 256 (with different shades of colors (70)) etc. to infinity. At the same time, all these formal 

“colored” ethers of Alsigna are intertwined into a single 3-dimensional “carpet” (see Figures 6 and 14), i.e. form a single 

intertwined and seething 3-dimensional space. Such a 3-dimensional, mean-flat (i.e., "zero") space in each local area resem-

bles a multi-dimensional Calabi-Yau manifold. In addition, the “colored” ethers of Alsigna are illusory in nature and are 

intended only to facilitate the perception and awareness of the most complex intra-vacuum processes. 

 

If all curved linear forms ds(+– – –),  ds(– + + +),   ds(+ + – +), … , ds(– +  – +) can be represented in a diagonal form, then in accordance 

with (65) and (66) in [2], Ex. (69) can be represented in the spintensor form 
 

 ds (16) =  
1

√16
[ √𝑔00

(1)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(1)
𝑑𝑥1 (

0 −𝑖
𝑖 0

) + √𝑔22
(1)
𝑑𝑥2 (

0 −1
1 0
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Fig. 13: Fractal illustration of a warped 26-m,n-vacuum 

fabric woven from 16 "color" lines (threads) 
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Within the framework of the Algebra of Signatures, much deeper 2n-sided levels of consideration of the metric-dynamic 

properties of the curved region of the m,n-vacuum are possible, while the number of components of the metric tensor charac-

terizing its metric-dynamic properties can increase to infinity (see §2.9 in [2]). 

 

6. Physical meaning of the components of the metric tensor 

 

6.1 Nonzero components of the metric tensor 

 

Let the averaged metric-dynamic states of two 4-dimensional sides of the local region of the 23-m,n-vacuum be given by 

metrics (30) and (33) (see Figure 7). Consider the nonzero components of the metric tensors (32) and (35) of these metrics 
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 ,                                                                                  (72)       

 

here the Greek alphabet indices α, β correspond to the 3-dimensional consideration (i.e., α, β = 1,2,3). 

 

The scalar curvature of the local two-sided region of the 23-m,n-vacuum in the framework of the Algebra of Signatures is 

determined by the complex number 

 

𝑅(±) = 𝑅(+) + 𝑖𝑅(−),                                                                                                                                                            (73) 

                                                                                                                                                   

⌊𝑅(±)⌋ = √𝑅(+)2 + 𝑅(−)2,                                                                                                                                                    (74) 

 𝜑 = 𝑎𝑟𝑐𝑡𝑔 (
𝑅(−)

𝑅(+)
),                                                                                                                                                               (75) 

where the scalar curvature of each of the two sides of the 23-m,n-vacuum is defined in the same way as in general relativity 

(GR) 

                       

𝑅(+) = 𝑔𝛼𝛽(+)𝑅𝛼𝛽
(+)

   и   𝑅(−) = 𝑔𝛼𝛽(−)𝑅𝛼𝛽
(−)

,                                                                                                                       (76) 

where    

𝑅𝛼𝛽
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Г𝑙𝑚
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− Г𝛼𝑙
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Г𝑚𝛽
𝑙(+)

                                                                                                                

(77)    

 

is the Ricci tensor of the outer side of the local section of the 23-m,n-vacuum (i.e., the subcont); 
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(78)

                                                                                                                   

is the Ricci tensor of the inner side of the local section of the 23-m,n-vacuum (i.e., the antisubcont); ; 

   

Г𝛼𝛽
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=
1

2
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+
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𝜕𝑥𝛽
−

𝜕𝑔𝛼𝛽
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𝜕𝑥𝜇
)                                                                                                                             (79) 

 

are the Christoffel symbols of the local section of the subcont; 

  

Г𝛼𝛽
𝜆(−)

=
1

2
𝑔𝜆𝜇(−) (

𝜕𝑔𝜇𝛽
(−)

𝜕𝑥𝛼
+

𝜕𝑔𝛼𝜇
(−)

𝜕𝑥𝛽
−
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𝜕𝑥𝜇
)                                                                                                                             (80) 

 

are the Christoffel symbols of the antisubcont. 

A feature of the geometrized vacuum physics developed here is to ensure the vacuum balance condition 

 

𝑆 =∭
1

2
(𝑅(+) + 𝑅(−))𝑑𝑥𝑑𝑦𝑑𝑧 = 0,                                                                                                                                  (81) 

 

it means that “convexity” and “concavity” (or compression and tension) over the entire 3-dimensional deformed region of the 

23-m,n-vacuum, on average, completely compensate each other (see Figure 14). 

 

 

 
 
Fig. 14: 2D-illustration of a convex-concave two-sided surface with stignatures {+ +} and {– +}. This curved surface is such that it is, on 

average, flat. At the same time, the deformation that looks like a convexity from the outside, from the inside it looks like a concavity. At 

the same time, it should be taken into account that if the stignatures of the sides of such a two-sided surface are completely opposite {+ +} 

and {– –}, then the deformations on its two sides are not only mutually opposite, but also mutually perpendicular (see §5.2) 

 

So, in two-sided consideration, the non-zero components of the metric tensors (72) 𝑔𝛼𝛽
(+)

 and  𝑔𝛼𝛽
(−)

) are interconnected and 

describe the curvature of the 3-dimensional extension of the two-sided 23-m,n-vacuum. 

 

 

6.2 Zero components of the metric tensor 

 

To clarify the physical meaning of the zero components of the metric tensors (32) and (35) 
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,                                                                 (82)        

 

let’s use the kinematics of the layers of the two-sided 23-m,n-vacuum. 

 



Under the kinematics of vacuum layers is meant such a section of geometrized vacuum physics based on the Algebra of 

Signatures (Alsigna), in which the displacements (movements) of different sides of the m,n-vacuum are considered inde-

pendently of their deformations. With a more consistent approach, i.e. during the development of the dynamics of vacuum 

layers in subsequent articles of this cycle, it turns out that any displacement of the local region of one layer of m,n-vacuum is 

inevitably accompanied by its curvature. This, in turn, sets in motion the curvature of other adjacent layers of the m,n-vacuum. 

At the same time, and vice versa, the curvature of the local region of one layer of the m,n-vacuum is necessarily accompanied 

by its displacement (i.e., flow), which leads to a disturbance of all adjacent layers. In what follows, interconnected flows and 

curvatures of local sections of different layers of the m,n-vacuum are considered as multidimensional 4-deformations using 

the mathematical apparatus of the general theory of relativity. 

 

Despite the above shortcomings, kinematic models of the motion of various layers of the 23-m,n-vacuum make it possible to 

elucidate the physical meaning of the zero components of metric tensors and theoretically predict a number of previously 

unknown vacuum effects that can be tested in practice. 

 

Let the initial (stationary and non-curved) state of the two-sided 23-m,n-vacuum be given by a set of pseudo-Euclidean metrics 

(36a) and (51a) 

{
𝑑𝑠0

(+)2 =  𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = 𝑑𝑠(+)𝑑𝑠(+) =   c𝑑𝑡c𝑑𝑡− 𝑑𝑥𝑑𝑥 − 𝑑𝑦𝑑𝑦 − 𝑑𝑧𝑑𝑧;

𝑑𝑠0
(−)2 = – 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑠(−)𝑑𝑠(−) = −c𝑑𝑡c𝑑𝑡+ 𝑑𝑥𝑑𝑥 + 𝑑𝑦𝑑𝑦 + 𝑑𝑧𝑑𝑧,

                        (83)                  

 

where the symbols are introduced 

 

ds(+) =   с dt + idx+ jdy+ kdz        is mask of the subcont;                                                                                             (84)         

ds(+) =   с dt+ idx+ jdy+ kdz    is interior of the subcont;                                                                                          (85)           

ds(–) = – с dt+ idx+ jdy+ kdz        is mask of the antisubcont;                                                                                       (86)                      

ds(–) =   с dt– idx– jdy– kdz     is interior of the antisubcont,                                                                                    (87)                      

                                                                                   

is affine aggregates, in particular, quaternions with a multiplication table of imaginary units, for example, 

 

                                                                                                                                           (88)      

               

 

 

We consider three kinematic cases: 

 

1). In the first case, let the mask and the interior of the outer and inner sides of the 23-m,n-vacuum move relative to the ini-

tial stationary state along the x axis with the same velocity vx,, but in different directions. This is formally described by the 

transformation of coordinates [7]: 

 

 ct  = ct,     x = x + vx t,     y=  y,     z= z    – for the mask;                                                                                              (89)              

 ct = ct,     x = x – vxt,     y= y,     z= z   – for the interior.                                                                                          (90)      

 

The equality of the modules of the speeds of movement vx of the mask and the interior is due to the condition of 23-m,n-

vacuum balance, which requires that each movement in the 23-m,n-vacuum corresponds to a similar anti-motion. 

   

We differentiate Exs. (89) and (90) taking into account that x is a function of two variables x(x,t) and vx = const, and substitute 

the results of differentiation into metrics (83), as a result we obtain a set of metrics 

 

 i j k 

i –1 k –j 

j –k –1 i 

k j –i –1 



{
𝑑𝑠(+)2 =   (1 +

𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,

𝑑𝑠(−)2 = – (1 +
𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,

                                                                                                             (91)                  

  

which describe the kinematics of the joint motion of the outer side of the 23-m,n-vacuum (i.e. subcont) and its inner side 

(antisubcont), subject to the vacuum balance condition 

        

ds(–)2 + ds(+)2 = 0.                                                                                                                                                                 (92)                                                                                               

 

The zero components of the metric tensors (82) in this case are equal to 

 

𝑔0𝑗
(+)

= (

1 + 𝑣𝑥
2/с2 0 0 0
0 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) ,         𝑔𝑖0
(−)

= (

−1 − 𝑣𝑥
2/с2 0 0 0

0 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) .                                                        (93) 

      

the mask and the interior of the outer and inner sides of the 23-m,n-vacuum. 

2). In the second case, let the mask and the interior of the outer and inner sides of the 23-m,n-vacuum (i.e., of the subcont and 

antisubcont) move relative to their initial stationary state in the same direction - along the x axis with the same speed vx. This 

is formally described by the coordinate transformations: 
 

ct = ct,  x = x – vx t,     y=  y,     z= z       – for the mask;                                                                                                (94)   

ct = ct,    x = x – vxt,     y= y,    z= z    – for the interior.                                                                                            (95)  

We differentiate Exs. (94) and (95) taking into account that x is a function of two variables x(x,t) and vx = const, and substitute 

the results of differentiation into metrics (83), as a result we obtain a set of metrics 

 

{
𝑑𝑠(+)2 = (1 −

𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 + 𝑣𝑥𝑑𝑥𝑐𝑑𝑡 + 𝑣𝑥𝑐𝑑𝑡𝑑𝑥 − 𝑑𝑥

2 − 𝑑𝑦2 − 𝑑𝑧2,

𝑑𝑠(−)2 = – (1 −
𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑣𝑥𝑑𝑥𝑐𝑑𝑡 − 𝑣𝑥𝑐𝑑𝑡𝑑𝑥 + 𝑑𝑥

2 + 𝑑𝑦2 + 𝑑𝑧2.
                                                                  (96)                  

 

In this case, 23-m,n-vacuum balance is also observed, because ds(–)2 + ds(+)2 = 0, but additional cross terms vxdxdt are appear. 

In this case, the zero components of the metric tensors (82) are equal to 

 

𝑔0𝑗
(+)

= (

1 − 𝑣𝑥
2/с2 𝑣𝑥 0 0

𝑣𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) ,     𝑔𝑖0
(−)

= (

−1 + 𝑣𝑥
2/с2 −𝑣𝑥 0 0

−𝑣𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) .                                                       (97)    

  

3) In the third case, let the mask and the interior of the outer and inner sides of the 23-m,n-vacuum (i.e., of the subcont and 

antisubcont) rotate around the z-axis in the same direction with the angular velocity . These processes are described by the 

coordinate transformations [7]: 

 

ct = ct,    x = x cos t – y sin t,   z = z,    y= x sin t + y cos t,                                                                           (98)        

ct = ct,    x = x cos t – y sin t,  z = z,    y = x sin t + y cos t.   

We differentiate Exs. (89) and substitute the results of differentiation into metrics (83), as a result we obtain the metrics [7] 

 

{
𝑑𝑠(+)2 = [1– 

 2

𝑐2
(𝑥2 + 𝑦2)] 𝑐2𝑑𝑡2 + 2 𝑦𝑑𝑥𝑐𝑑𝑡 − 2 𝑥𝑑𝑦𝑐𝑑𝑡 − 𝑑𝑥2 − 𝑑𝑥2 − 𝑑𝑧2,

𝑑𝑠(−)2 = − [1– 
 2

𝑐2
(𝑥2 + 𝑦2)] 𝑐2𝑑𝑡2 − 2 𝑦𝑑𝑥𝑐𝑑𝑡 + 2 𝑥𝑑𝑦𝑐𝑑𝑡 + 𝑑𝑥2 + 𝑑𝑥2 + 𝑑𝑧2.

                                        (99)  

. 



In this case, the 23-m,n-vacuum balance ds(+)2 + ds(–)2 = 0 is observed, and the zero components of the metric tensors (82) are 

equal to 

 

  

𝑔0𝑗
(+)

=

(

 
 
1– 

2

𝑐2
(𝑥2 + 𝑦2) 2 𝑦 0 0

−2 𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .)

 
 
 ,    

 

𝑔0𝑖
(−)

=

(

 
 
−1 + 

2

𝑐2
(𝑥2 + 𝑦2) −2 𝑦 0 0

2 𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .)

 
 
 .                        (100)      

 

It can be seen from the considered kinematic examples that the zero components of the metric tensors (82) are associated not 

with deformations, but with the translational and/or rotational motion of various layers of the 23-m,n-vacuum. 

 

 

7 Predictions of the kinetics of vacuum layers 

 

7.1 The limiting speed of movement of 23-m,n-vacuum layers 

 

Let’s consider one of the metrics (96) 

 

ds(+)2 = (1– vx
2/с2)c2dt2 + 2vxdxdt – dx2 – dy2– dz2.                                                                                                             (101)       

                         

We single out in the metric (101) the full square [7,8] 

 

𝑑𝑠(−)2 = 𝑑𝑡2 [с√1 −
𝑣𝑥
2

𝑐2
−

𝑣𝑥

с𝑑𝑡

𝑑𝑥

√1−
𝑣𝑥
2

𝑐2

]

2

−
𝑑𝑥2

1−
𝑣𝑥
2

𝑐2

− 𝑑𝑦2 − 𝑑𝑧2,

                                                                                            

(102)      

       

  

 

and introduce the notation 

 

с′ = с√1 −
𝑣𝑥
2

𝑐2
−

𝑣𝑥

𝑐𝑑𝑡

𝑥

√1−
𝑣𝑥
2

𝑐2

,     𝑡′ = 𝑡, 𝑥′ =
х

√1−
𝑣𝑥
2

𝑐2

,      𝑦′ = 𝑦,     𝑧′ = 𝑧.                                                              (103) 

 

In these notations, metric (102) takes the form [7] 

 

𝑑𝑠(−)
2
= 𝑐′ 2𝑑𝑡′ 2 − 𝑑𝑥′ 2 − 𝑑𝑦′ 2 − 𝑑𝑧′ 2,                                                                                                                        (104)      

       

  

 

corresponding to the propagation of a beam of light in the reference system of the observer, which moves together with the 

moving side of the 23-m,n-vacuum. 

 

In this case, the metric (102) describes the propagation of a light beam in a layer of vacuum, which moves with a constant 

speed vx relative to the reference system of a stationary observer. This is similar to how a stationary observer measures the 

speed of waves propagating along a moving surface of water (for example, a river). Such an observer will find that the speed 

of propagation of wave disturbances depends on the speed of the river flow, while relative to the water itself, the speed of 

wave propagation remains unchanged, and depends only on the properties of the water itself (its density, temperature, impu-

rities, etc.). 

 

From the first Ex. (103) 

 

с′ = с√1 −
𝑣𝑥
2

𝑐2
−

𝑣𝑥

𝑐𝑑𝑡

𝑥

√1−
𝑣𝑥
2

𝑐2

 .

  

                                                                                                                                       (105)      

       

   



 

it can be seen that in the case of (94) – (96) the speed vx of the outer side of the 23-m,n-vacuum (subcont) and its inner side 

(antisubcontact) cannot exceed the speed of light c (the velocity of propagation of wave disturbances along these sides), i.e. 

vx < c. 

 

However, for the case (89) – (91) the situation is different. Let’s consider this variant of intravacuum processes using the 

example of subcont movement described by the metric (91) 

 

ds(–)2 = (1+ vx
2/с2)c2dt2– dx2 – dy2 – dz2.                                                                                                                        (106)      

       

              

 

In this case, the introduction of the notation 

 

с′ = с√1 +
𝑣𝑥
2

𝑐2
,  .,,,' zzyyxxtt ====                                                                                                      (107)      

       

       

 

reduces the metric (106) to the form (104). At the same time, it can be seen from Еxs. (107) that there are no restrictions on 

the speeds vx of the mask and the interior of the subcont. This circumstance requires a separate detailed consideration, since 

it allows the possibility of organizing superluminal intra-vacuum communication channels by controlling the movement of 

vacuum layers. This is one of the possible theoretical predictions of the kinetics of the 23-m,n-vacuum layers. 

 

 

7.2 Inert properties of layers of 23-m,n-vacuum 

 

Let's return to the consideration of metrics (83) 

 

ds(+ – – –)2 = ds(+)2 =    c2dt2 – dx2 – dy2 – dz2 ,                                                                                                                        (108)      

       

              

 ds(– + + +)2 = ds(–)2 = – c2dt2 + dx2 + dy2 + dz2 .                                                                                                                      (109)      

       

                  

Let us take out the value с2dt2 on the right-hand sides of these metrics [7] 

 

𝑑𝑠(+)
2
= 𝑐2𝑑𝑡2(1 −

𝑣2

𝑐2
),

                                                                                                                            
(110)      

𝑑𝑠(−)
2
= −𝑐2𝑑𝑡2(1 −

𝑣2

𝑐2
),

  

                                                                                                                                                (111)            

 

where v = (dx2 +dy2 +dz2)1/2/dt = dl/dt  is the 3-dimensional velocity. 

 

We extract the root of the two sides of Exs. (110) and (111). As a result, according to the symbols (84) – (87), we get 

 

𝑑𝑠(+)' = 𝑐𝑑𝑡√1 −
𝑣2

𝑐2

      

– for mask of the subcont;                                                                                                          (112)            

 

𝑑𝑠(+)'' = −𝑐𝑑𝑡√1 −
𝑣2

𝑐2
   – for interior of the subcont;                                                                                                      (113)             

𝑑𝑠(−)
′
= 𝑖𝑐𝑑𝑡√1 −

𝑣2

𝑐2
      –  for mask of the antisubcont;                                                                                                  (114)           

𝑑𝑠(−)′ = −𝑖𝑐𝑑𝑡√1 −
𝑣2

𝑐2
   –  for interior of the antisubcont.                                                                                               (115)              

 

For example, consider the 4-dimensional velocity vector of the mask of the subcont 

 

ui
(+) = dxi /ds(+)′.                                                                                                                                                                   (116)                   

                                                                                                                                                                        



We substitute the linear form (112) into Ex. (116), as a result, we obtain the components of the 4-velocity of the mask of the 

subcont [7,8] 

                                                                                       

 𝑢𝑖
(+)

= [
1

√1−
𝑣2

𝑐2

,
𝑣𝑥

𝑐√1−
𝑣2

𝑐2

,
𝑣𝑦

𝑐√1−
𝑣2

𝑐2

,
𝑣𝑧

𝑐√1−
𝑣2

𝑐2

].                                                                                                             (117)                   

 

Let the mask of the subcont move only in the direction of the x-axis, then its 4-velocity has components 

 

𝑢𝑖
(−)

= [
1

√1−
𝑣х
2

𝑐2

,
𝑣𝑥

𝑐√1−
𝑣х
2

𝑐2

, 0,0].                                                                                                                (118)                

 

Let’s now define the 4-acceleration of the mask of the subcont [8] 

 

𝑑𝑢𝑖
(+)

с𝑑𝑡
= [

𝑑

с𝑑𝑡
(

1

√1−
𝑣х
2

𝑐2

) ,
𝑑

с𝑑𝑡
(

𝑣𝑥

𝑐√1−
𝑣х
2

𝑐2

) , 0,0]                                                                                                                 (119)    

                   

and to simplify, consider only its x-component 4-velocity 

 

𝑑𝑢𝑥
(+)

с𝑑𝑡
=

𝑑

с𝑑𝑡
(

𝑣𝑥

с√1−
𝑣𝑥
2

𝑐2

),                                                                                                                          (120)   

                       

where the value 

 

  
𝑑

𝑑𝑡
(

𝑣𝑥

√1−
𝑣𝑥
2

𝑐2

) = 𝑎𝑥
(+)

                                                                                                                                                     (121)   

 

has the dimension of the x-component of the 3-dimensional acceleration of the local section of the mask of the subcont. 

On the left side of Ex. (121), we perform the differentiation operation [8] 

𝑎𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)
𝑑𝑣𝑥

𝑑𝑡
 ,                                                                                                                             (122)    

         

and introduce the notation 

 

dvx/dt = аx
(+)'.                                                                                                                                                           (123)  

 

In this case, Ex. (122) takes the form 

 

 𝑎𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)𝑎𝑥
(+)
′,                                                                                                                 (124)      

 



where  

ax
(+) is the actual acceleration section of the mask of the subcont, taking into account its inert properties; 

аx
(+)' is the ideal acceleration of the same section of the mask of the subcont, without taking into account its inert properties. 

 

Let’s represent Ex. (124) in the following form 

 

𝑎𝑥
(+)

= 𝜇𝑥
(+)
𝑎𝑥
(+)
′,                                                                                                                                                               (125)               

 

where   𝜇𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)                                                                                                                        (126)       

is the dimensionless kinematic coefficient of inertia of the local area of the mask of the subcont, which relates the actual and 

ideal accelerations of this 23-m,n-vacuum layer. This coefficient shows, within the framework of the kinematic approach, how 

the inertness (i.e., resistance to a change in the state of movement) of this section of the mask of the subcont changes with a 

change in the speed of its movement. 

 

It follows from Ex. (126) that at vх = 0 the kinematic inertia coefficient х
(+)

 = 1 and  𝑎𝑥
(+)

= 𝑎𝑥
(+)
′. This means that the section 

of the mask of the subcont does not exert any resistance to the beginning of its movement (or displacement). As vх approaches 

the speed of light c, the kinematic inertia coefficient х
(+) tends to infinity, while further acceleration of this 23-m,n-vacuum 

layer becomes impossible. 

 

Ex. (126) is a massless analog of Newton's second law 

 

Fx = max,                                                                                                                                                                             (127)        

 

where Fx is the x-component of the force vector; m is body weight; ax is the x-component of its ideal acceleration. 

 

Comparing Exs. (125) and (127), we find that the dimensionless coefficient of inertia х
(–) of the local area of the mask of 

the subcont is a dimensionless analogue of the density of the inertial mass of a continuous medium. 

 

Sequentially performing actions (116) – (126) with metrics (113) – (115), we obtain the kinematic inertia coefficients х
(+), 

х
(–), х

(–)  for three the remaining layers of the two-sided 23-m,n-vacuum. The overall kinetic inertia coefficient of the lo-

cal two-sided section of the 23-m,n-vacuum is a function of all four inertia coefficients 

 

х
(±) = f (х

(+) , х
(–), х

(–), х
(–) ).                                                                                                                                    (128)           

                                                 

The explicit form of this function is determined when describing the dynamics of 23-m,n-vacuum, which will be presented in 

subsequent articles of this project. 

 

7.3 Kinematics of the rupture of the local section of the 23-m,n-vacuum 

 
  "For in much wisdom is much vexation, and he 

   who increases knowledge increases sorrow." 

                                                  Kohelet (Ecclesiastes 1:18) 

 

Let’s consider the kinematic aspects of the possibility of a "rupture" of the of the local section of the two-sided 23-m,n-vacuum. 

We integrate Ex. (121) [8] 

 

 
𝑣𝑥

√1−
𝑣𝑥
2

𝑐2

= 𝑎𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡.                                                                                                                                                    (129)              

 



Integrating Ex. (129) once more and setting x0 = 0 at t = 0, we obtain the following change in the length of the mask of the 

subcont of the 23-m,n-vacuum along the x axis during its accelerated motion [8]: 

                      

 𝑥 − 𝑥0 = 𝛥𝑥 =
𝑐2

𝑎х
(√1 +

𝑎х
2𝑡2

𝑐2
− 1) .                                                                                                                        (130)            

  

Let the initial (i.e., immobile) state of the local section of the subcont be given by the metric (108)                        

                                                                        

222222)( zdydxdtdcds −−−=−
.                                                                                                                           (131)                  

 

The uniformly accelerated motion of this section along the x axis is formally specified by the coordinate transformation [8]: 

 

 𝑡′ = 𝑡,      𝑥′ = 𝑥 + 𝛥𝑥 = 𝑥 +
𝑐2

𝑎х
(√1 +

𝑎𝑥
2𝑡2

𝑐2
− 1) , 𝑦′ = 𝑦,     𝑧′ = 𝑧.                                                                          (132)   

 

Differentiating the coordinates (132) and substituting the results of differentiation into the metric (131), we obtain the follow-

ing metric [8] 

 

𝑑𝑠а
(+)2

=
𝑐2𝑑𝑡2

1+ 
𝑎𝑥
2𝑡2

𝑐2

−
2𝑎𝑥𝑡𝑑𝑡𝑑𝑥

√1+ 
𝑎𝑥
2𝑡2

𝑐2

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,                                                                                                   (133)   

which describes the uniformly accelerated motion of the local section of the subcont (i.e., the outer side of the 23-m,n-vacuum) 

in the direction of the x axis. 

 

If, in the same area of the subcont, an additional flow with uniformly slow motion (i.e., with negative acceleration) is created,  

 

    
𝑑

𝑑𝑡
(

𝑣𝑥

√1− 
𝑣𝑥
2

𝑐2

) = −𝑎𝑥,                                                                                                                                                    (134)    

 

then, doing mathematical calculations similar to (130) – (133), we get the metric 

 

𝑑𝑠𝑏
(+)2

=
𝑐2𝑑𝑡2

1− 
𝑎х
2𝑡2

𝑐2

−
2𝑎х𝑡𝑑𝑡𝑑𝑥

√1− 
𝑎х
2𝑡2

𝑐2

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2.                                                                                                       (135)   

 

In this case, the average metric-dynamic state of the local section of the subcont will be characterized by the averaged metric 

 

< 𝑑𝑠(+) >2=
1

2
(𝑑𝑠а

(+)2
+ 𝑑𝑠𝑏

(+)2
) =

𝑐2𝑑𝑡2

1− 
𝑎𝑥
4𝑡4

𝑐4

−
𝑎𝑥𝑡(√1− 

𝑎𝑥
2𝑡2

𝑐2
+√1+ 

𝑎𝑥
2𝑡2

𝑐2
)𝑑𝑡𝑑𝑥

√1− 
𝑎𝑥
4𝑡4

𝑐4

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2                     (136)  

 

with signature (+ – – –).  

It can be seen from the metric (106) that in the case 

 

  
𝑎х
4𝑡4

𝑐4
= 1,  or   |ах|t = c  or  |ах| = c /t,                                                                                                                              (137)        

 

the first and second terms in the averaged metric (136) go to infinity. This singularity can be interpreted as a "rupture" of the 

subcont area under study (i.e., a "rupture" of the local region of the 23-m,n-vacuum outer side). 

 



Breaking a subcont is an incomplete action. For a complete "rupture" of the local section of the 23-m,n-vacuum, it is necessary 

to “break” its inner side, described by the metric (109) with the signature (– + + +). To do this, it is necessary to create similar 

uniformly accelerated and uniformly retarded flows in the same region of space in the antisubcont (i.e., in the inner side of 

the 23-m,n-vacuum), so that its average state is determined by the averaged metric 

 

< 𝑑𝑠(−) >2=
1

2
(𝑑𝑠𝑎

(−)2
+ 𝑑𝑠𝑏

(−)2
) = −

𝑐2𝑑𝑡2

1− 
𝑎𝑥
4𝑡4

𝑐4

+
𝑎𝑥𝑡(√1− 

𝑎𝑥
2𝑡2

𝑐2
+√1+ 

𝑎𝑥
2𝑡2

𝑐2
)𝑑𝑡𝑑𝑥

√1− 
 𝑎𝑥
4𝑡4

𝑐4

+ 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,                (138)      

 

with a signature (– + + +), which "breaks" under the same conditions 

 
𝑎х
4𝑡4

𝑐4
= 1, or   |ах|t = c,   or   |ах| = c /t.                                                                                                              (139)    

Averaging metrics (136) and (138) leads to the fulfillment of the vacuum condition 

 

<< 𝑑𝑠 >>𝟐= 1 2⁄ (< 𝑑𝑠(+) >2 +< 𝑑𝑠(−) >2) = 0,                                                                                                       (140)       

which in this situation is equivalent to Newton's third law: – "Action is equal to reaction": 

                      

Fx
(+) – Fx

(–)  =  max
(+) – max

(–) =  ax
(+) – ax

(–).                                                                                                                        (141)   

 

That is, the process of "rupture" of the local region of the m,n-vacuum is similar to the rupture of an ordinary (atomistic) solid 

body, to which sufficiently large equal forces (more precisely, accelerations) are applied from its two sides. 

 

It is not excluded that the conditions of "rupture" described above -11,-13 -vacuum are formed in the collision of oncoming 

flows of elementary particles accelerated on the collider. It is possible that a strong collision of particles leads to the emergence 

of a web of vacuum "cracks", while the closed cracks scatter in the form of many new "particles" and "antiparticles". 

 

To obtain "rupture" of the vacuum of large scales, it is necessary to initiate accelerated flows of different sides of the                   

2,3 -vacuum (see §1 in the article [1]). 

 

Apparently, "ruptures" of vacuum of various scales occur in the nature around us, for example, when new particles are born 

from the void during the collision of atmospheric molecules with cosmic radiation, or during lightning flashes in rain clouds. 

We are here only trying to describe these phenomena on the basis of a geometrized vacuum physics based on the Algebra of 

Signatures. However, the development of “zero” (vacuum) technologies is fraught with great dangers. Therefore, in parallel 

with the development of vacuum physics (in particular, the kinetics of vacuum layers), it is necessary to rethink the religious 

and philosophical aspects of modern science, to develop "Vacuum Ethics", "Vacuum Aesthetics" and "Vacuum Psychology". 

Otherwise, this knowledge will not benefit our civilization [5,9]. 

 

             

CONCLUSIONS 
“Whoever fights monsters, you yourself do not be-

come a monster. And when you gaze long into an 

Abyss, the Abyss also gazes into you.” 
                                                                                                                                                                                                Friedrich W. Nietzsche 

                                                                                                                                                        “Jenseits Gut und Böse” (Beyond Good and Evil) 
                                                                                                                                                                                                                   

This article is the third part of a unified study under the general title "Geometrized vacuum physics based on the Algebra of 

Signatures". 

 

In the first two parts of this study, presented in the author's articles [1,2], a method was proposed for studying an ideal (i.e., 

non-curved and stationary) vacuum region by probing it with mutually perpendicular light rays with different wavelengths 

m,n. This method made it possible in the first two articles [1,2] to lay the foundations first of the Algebra of Stignatures, and 

then of the Algebra of Signatures. 



 

This article considers the possibilities of describing the curved state of the same region of the vacuum on the basis of further 

development of the mathematical apparatus of the Algebra of Signatures. 

 

We list the main results obtained in this article: 

1) On the example of one of the m,n-vacuums, it is shown that many levels of consideration of its curvatures are possible. 

The simplest of them is at least double-sided. This level of consideration implies that the empty space (vacuum) surrounding 

us has at least two 4-dimensional sides, which can be conditionally called: the outer side with the Minkowski space signature 

(+ – – –), and the inner side with the completely opposite signature of anti-Minkowski space (– + + +). In this case, to describe 

the curvature of the local region of the two-sided 23-m,n-vacuum, not 16 components of the metric tensor are required, as in 

a one-sided theory, for example, in general relativity, but 16 + 16 = 32 = 25 components of the metric tensor. The next level 

of consideration is the m,n-vacuum with 16 sides. At this level of consideration, to describe the curvature of the local region 

of the sixteen-sided 26-m,n-vacuum, already 16 × 16 = 256 = 28 components of the metric tensor are required. In this case, the 

description of the curvature is much more accurate than with a two-sided description. The mathematical apparatus of of the 

Algebra of Stignatures provides for the possibility of increasing the number of metric tensor components describing the cur-

vature of the local region of the m,n-vacuum to infinity (see §2.9 in [2]). 

 

2) It is shown that a length element on one side of a two-sided space with completely opposite signatures corresponds to a 

perpendicular element on its other side (see §5.2 of this article). This, at first glance, simple observation entails very significant 

consequences. This circumstance is the reason why many intra-vacuum and macroscopic processes turn into spirals. 

 

3) The physical meaning of the zero and non-zero components of the metric tensor is revealed in the framework of the pro-

posed "Geometrized vacuum physics" (see §6 of this article). 

 

4) The 4-strain tensor and the components of the relative elongation vector are introduced for two-sided and 16-sided consid-

eration of the m,n-vacuum curvatures (see §§ 5.2 and 5.3 of this article). 

 

5) Some aspects of the kinematics of the layers of m,n-vacuum are considered (see §7 of this article). This made it possible 

to analyze the inert properties of the m,n-vacuum (see §7.1), and to predict the possibility of displacement of vacuum layers 

at a speed much higher than the speed of light (see §7.2). At the same time, it is shown that the longitudinal displacement of 

the outer and inner sides of the m,n-vacuum relative to each other inevitably leads to their twisting into a spiral bundle. 

 

6) A kinematic model of the possibility of a local “rupture” of m,n-vacuum is considered (see §7.3). 

 

The "Geometrized vacuum physics based on the Algebra of Signatures" proposed in articles [1,2] and in this article is far from 

being completed, but already now, within the framework of this research program, the possibility of developing “zero” (i.e., 

vacuum) technologies. At the same time, it is obvious that the development of these technologies requires a significant in-

crease in the responsibility of mankind to the Universe [5,9]. 
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