Langenscheidt’s Pocket Chinese Dictionary and The Graphical Law

Anindya Kumar Biswas

Department of Physics;
North-Eastern Hill University,
Mawkynroh-Umshing, Shillong-793022.
(Dated: March 1, 2024)

Abstract

We study the Chinese head entries of the Langenscheidt’s Pocket Chinese Dictionary written in Pinyin, a Romanized pronunciation system. We draw the natural logarithm of the number of head entries, normalised, starting with a letter vs the natural logarithm of the rank of the letter, normalised (unnormalised). We find that the head entries underlie a magnetisation curve of a Spin-Glass in the presence of little external magnetic field.
TABLE I. Chinese head entries of Langenscheidt’s Pocket Chinese Dictionary, [2]

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 132 | 1057 | 1164 | 1201 | 66 | 717 | 904 | 1476 | 466 | 736 | 604 | 378 | 15 | 445 | 672 | 273 | 1566 | 860 | 0 | 621 | 1124 | 1343 | 1540 |

FIG. 1. The vertical axis is number of head entries in the Langenscheidt’s Pocket Chinese Dictionary, [2]. The horizontal axis is the letters of the English alphabet. Letters are represented by the sequence number in the alphabet.

I. INTRODUCTION

China and Japan are two neighbouring countries. In our previous paper, [1], we have found that the Japanese language underlies the Onsager’s solution, in a Romanised Pronunciation system. What about the Chinese language? Answer to it is that the Chinese language does not underlie the Onsager’s solution, in a Romanised Pronunciation system called Pinyin. Rather the Chinese language underlies a Spin-Glass magnetisation curve. The rest of the paper is along the details.

We count all the Chinese head entries, [2], one by one, beginning with each letter. The result is the table, table I. To visualise we plot the number of head entries, [2], against the letters of the English alphabet, in the adjoining figure, fig. 1.

Looking for the Graphical Law in this dictionary, we proceed narrating the development. We have started considering magnetic field pattern in [3], in the languages we converse with. We have studied there, a set of natural languages, [3] and have found existence of a magnetisation
curve under each language. We have termed this phenomenon as the Graphical Law. Then, we moved on to investigate into, [1], dictionaries of five disciplines of knowledge and found existence of a curve magnetisation under each discipline. This was followed by finding of the graphical law in references from [5] to [10]. The latest one is the reference, [11].

The planning of the paper is as follows. We give an introduction to the standard curves of magnetisation of Ising model in the section II. In the section III, we describe the Graphical Law analysis of the Chinese head entries of the Langenscheidt’s Pocket Chinese Dictionary, [2]. Section IV is Acknowledgment. The last section is Bibliography.

II. MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is half i.e. we will get head and tale equal number of times. If we attach value one to head, minus one to tale, the average value we obtain, after many tossing is zero. Instead let us consider a one-sided loaded coin, say on the head side. The probability of getting head is more than one half, getting tale is less than one-half. Average value, in this case, after many tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin is like ferromagnet, the unloaded coin is like para magnet, at zero external magnetic field. Average value we obtain is like magnetisation, loading is like coupling among the spins of the ferromagnetic units. Outcome of single coin toss is random, but average value we get after long sequence of tossing is fixed. This is long-range order. But if we take a small sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed, can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up or, down. Assume there is a long-range order with probability to get a spin up is two third. That would mean when we consider a long sequence of spins, two third of those are with spin up. Moreover, assign with each up spin a value one and a down spin a value minus one. Then total spin we obtain is one third. This value is referred to as the value of long-range order parameter. Now consider a short-range order existing which is identical with the long-range order. That would mean if we pick up any three consecutive spins, two will
be up, one down. Bragg-Williams approximation means short-range order is identical with long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down spin a value minus one, with an unspecified long-range order parameter defined as above by

\[L = \frac{1}{N} \sum_i \sigma_i, \]

where \(\sigma_i \) is i-th spin, \(N \) being total number of spins. \(L \) can vary from minus one to one. \(N = N_+ + N_- \), where \(N_+ \) is the number of up spins, \(N_- \) is the number of down spins. \(L = \frac{1}{N} (N_+ - N_-) \). As a result, \(N_+ = \frac{N}{2} (1 + L) \) and \(N_- = \frac{N}{2} (1 - L) \). Magnetisation or, net magnetic moment, \(M \) is \(\mu \Sigma_i \sigma_i \) or, \(\mu (N_+ - N_-) \) or, \(\mu NL \), \(M_{\text{max}} = \mu N \). \(\frac{M}{M_{\text{max}}} = L \). \(\frac{M}{M_{\text{max}}} \) is referred to as reduced magnetisation. Moreover, the Ising Hamiltonian, [71], for the lattice of spins, setting \(\mu \) to one, is

\[\epsilon_{n.n} \] or, \(\epsilon_{n.n} \) or, \(NL \), \(M_{\max} = N \).

\(M_{\max} = L \).

\(M_{\max} \) is referred to as reduced magnetisation. Moreover, the Ising Hamiltonian, [71], for the lattice of spins, setting \(\mu \) to one, is

\[-\epsilon \Sigma_{n,n} \sigma_i \sigma_j - H \Sigma_i \sigma_i, \]

where \(n \) refers to nearest neighbour pairs.

The difference \(\Delta E \) of energy if we flip an up spin to down spin is, [72], \(2\epsilon\gamma \bar{\sigma} + 2H \), where \(\gamma \) is the number of nearest neighbours of a spin. According to Boltzmann principle, \(\frac{N}{N_+} \) equals \(\exp(-\frac{\Delta E}{k_B T}) \), [73]. In the Bragg-Williams approximation, [74], \(\bar{\sigma} = L \), considered in the thermal average sense. Consequently,

\[\ln \frac{1 + L}{1 - L} = 2 \frac{\gamma \epsilon L + H}{k_B T} = 2 \frac{L + \frac{H}{\gamma \epsilon}}{T} = 2 \frac{T}{T_c} \]

\(1 \)

where, \(c = \frac{H}{\gamma \epsilon}, T_c = \gamma \epsilon / k_B \), [75]. \(\frac{T}{T_c} \) is referred to as reduced temperature.

Plot of \(L \) vs \(\frac{T}{T_c} \) or, reduced magnetisation vs. reduced temperature is used as reference curve. In the presence of magnetic field, \(c \neq 0 \), the curve bulges outward. Bragg-Williams is a Mean Field approximation. This approximation holds when number of neighbours interacting with a site is very large, reducing the importance of local fluctuation or, local order, making the long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising model prediction one can refer to FIG.12.12 of [72]. W. L. Bragg was a professor of Hans Bethe. Rudolf Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudolf Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical method.
FIG. 2. Reduced magnetisation vs reduced temperature curves for Bragg-Williams approximation, in absence (dark) of and presence (inner in the top) of magnetic field, \(c \frac{H}{\kappa} = 0.01 \), and Bethe-Peierls approximation in absence of magnetic field, for four nearest neighbours (outer in the top).

B. Bethe-Peierls approximation in presence of four nearest neighbours, in absence of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, \([71],[72],[73],[74],[75]\), due to Bethe-Peierls, \([76]\), reduced magnetisation varies with reduced temperature, for \(\gamma \) neighbours, in absence of external magnetic field, as

\[
\frac{\ln \frac{\gamma}{\gamma-2}}{\ln \frac{\text{factor}}{\gamma-\text{factor}}} = \frac{T}{T_c}; \text{factor} = \frac{M}{M_{\text{max}}} + 1 \frac{1 - \frac{M}{M_{\text{max}}}}. \tag{2}
\]

\(ln \frac{\gamma}{\gamma-2} \) for four nearest neighbours i.e. for \(\gamma = 4 \) is 0.693. For a snapshot of different kind of magnetisation curves for magnetic materials the reader is urged to give a google search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe data s generated from the equation(2) and the equation(1) in the table, II, and curves of magnetisation plotted on the basis of those data s. BW stands for reduced temperature in Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed from the equation(2). The data set is used to plot fig.\(\text{A} \). Empty spaces in the table, II, mean corresponding point pairs were not used for plotting a line.
TABLE II. Reduced magnetisation vs reduced temperature data for Bragg-Williams approximation, in absence of and in presence of magnetic field, $c = \frac{H}{\gamma} = 0.01$, and Bethe-Peierls approximation in absence of magnetic field, for four nearest neighbours.

<table>
<thead>
<tr>
<th>BW</th>
<th>BW($c=0.01$)</th>
<th>BP($4,\beta H = 0$)</th>
<th>reduced magnetisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.435</td>
<td>0.439</td>
<td>0.563</td>
<td>0.978</td>
</tr>
<tr>
<td>0.439</td>
<td>0.443</td>
<td>0.568</td>
<td>0.977</td>
</tr>
<tr>
<td>0.491</td>
<td>0.495</td>
<td>0.624</td>
<td>0.961</td>
</tr>
<tr>
<td>0.501</td>
<td>0.507</td>
<td>0.630</td>
<td>0.957</td>
</tr>
<tr>
<td>0.514</td>
<td>0.519</td>
<td>0.648</td>
<td>0.952</td>
</tr>
<tr>
<td>0.559</td>
<td>0.566</td>
<td>0.654</td>
<td>0.931</td>
</tr>
<tr>
<td>0.566</td>
<td>0.573</td>
<td>0.7</td>
<td>0.927</td>
</tr>
<tr>
<td>0.584</td>
<td>0.590</td>
<td>0.7</td>
<td>0.917</td>
</tr>
<tr>
<td>0.601</td>
<td>0.607</td>
<td>0.722</td>
<td>0.907</td>
</tr>
<tr>
<td>0.607</td>
<td>0.613</td>
<td>0.729</td>
<td>0.903</td>
</tr>
<tr>
<td>0.653</td>
<td>0.661</td>
<td>0.770</td>
<td>0.869</td>
</tr>
<tr>
<td>0.659</td>
<td>0.668</td>
<td>0.773</td>
<td>0.865</td>
</tr>
<tr>
<td>0.669</td>
<td>0.676</td>
<td>0.784</td>
<td>0.856</td>
</tr>
<tr>
<td>0.679</td>
<td>0.688</td>
<td>0.792</td>
<td>0.847</td>
</tr>
<tr>
<td>0.701</td>
<td>0.710</td>
<td>0.807</td>
<td>0.828</td>
</tr>
<tr>
<td>0.723</td>
<td>0.731</td>
<td>0.828</td>
<td>0.805</td>
</tr>
<tr>
<td>0.732</td>
<td>0.743</td>
<td>0.832</td>
<td>0.796</td>
</tr>
<tr>
<td>0.756</td>
<td>0.766</td>
<td>0.845</td>
<td>0.772</td>
</tr>
<tr>
<td>0.779</td>
<td>0.788</td>
<td>0.864</td>
<td>0.740</td>
</tr>
<tr>
<td>0.838</td>
<td>0.853</td>
<td>0.911</td>
<td>0.651</td>
</tr>
<tr>
<td>0.850</td>
<td>0.861</td>
<td>0.911</td>
<td>0.628</td>
</tr>
<tr>
<td>0.870</td>
<td>0.885</td>
<td>0.923</td>
<td>0.592</td>
</tr>
<tr>
<td>0.883</td>
<td>0.895</td>
<td>0.928</td>
<td>0.564</td>
</tr>
<tr>
<td>0.899</td>
<td>0.918</td>
<td>0.941</td>
<td>0.527</td>
</tr>
<tr>
<td>0.904</td>
<td>0.926</td>
<td>0.941</td>
<td>0.513</td>
</tr>
<tr>
<td>0.946</td>
<td>0.968</td>
<td>0.965</td>
<td>0.400</td>
</tr>
<tr>
<td>0.967</td>
<td>0.998</td>
<td>0.965</td>
<td>0.300</td>
</tr>
<tr>
<td>0.987</td>
<td>1</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>0.997</td>
<td>1</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

C. Bethe-peierls approximation in presence of four nearest neighbours, in presence of external magnetic field

In the Bethe-Peierls approximation scheme, reduced magnetisation varies with reduced temperature, for γ neighbours, in presence of external magnetic field, as

$$\frac{\ln \gamma}{\gamma - 2} \frac{1}{e^\frac{H}{\gamma} \text{factor} - 1} = \frac{T}{T_c}; \text{factor} = \frac{M}{M_{\text{max}}} + 1 \frac{1}{1 - \frac{M}{M_{\text{max}}}}.$$ \hspace{1cm} (3)

Derivation of this formula Ala [10] is given in the appendix of [8].

$\ln \frac{\gamma}{\gamma - 2}$ for four nearest neighbours i.e. for $\gamma = 4$ is 0.693. For four neighbours,

$$\frac{0.693}{\ln \frac{4H}{\gamma} \text{factor} - 1} = \frac{T}{T_c}; \text{factor} = \frac{M}{M_{\text{max}}} + 1 \frac{1}{1 - \frac{M}{M_{\text{max}}}}.$$ \hspace{1cm} (4)
FIG. 3. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in presence of little external magnetic fields, for four nearest neighbours, with $\beta H = 2m$.

In the following, we describe data s in the table, generated from the equation and curves of magnetisation plotted on the basis of those data s. BP(m=0.03) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.06$. calculated from the equation. BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.05$. calculated from the equation. BP(m=0.02) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.04$. calculated from the equation. BP(m=0.01) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.02$. calculated from the equation. BP(m=0.005) stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external magnetic field, H, such that $\beta H = 0.01$. calculated from the equation. The data set is used to plot fig. Similarly, we plot fig. Empty spaces in the table, mean corresponding point pairs were not used for plotting a line.
TABLE III. Bethe-Peierls approx. in presence of little external magnetic fields

<table>
<thead>
<tr>
<th>Reduced Temperature</th>
<th>Reduced Magnetisation</th>
<th>BP(4, beta H=0.08)</th>
<th>BP(4, beta H=0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

FIG. 4. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in presence of little external magnetic fields, for four nearest neighbours, with $\beta H = 2m$.
D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, T_c, for the two dimensional Ising model in absence of external magnetic field i.e. for H equal to zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function of reduced temperature as, $\left[77\right], \left[78\right], \left[79\right], \left[76\right],$

$$\frac{M}{M_{max}} = \left[1 - \left(sinh\frac{0.8813736}{T/T_c}\right)^{-4}\right]^{1/8}.$$

Graphically, the Onsager solution appears as in fig. 5.

FIG. 5. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional Ising model, due to Onsager, in absence of external magnetic field.
E. Spin-Glass

In the case coupling between (among) the spins, not necessarily n.n, for the Ising model is (are) random, we get Spin-Glass. When a lattice of spins randomly coupled and in an external magnetic field, goes over to the Spin-Glass phase, magnetisation increases steeply like $\frac{1}{T-T_c}$ i.e. like the branch of rectangular hyperbola, up to the the phase transition temperature, followed by very little increase,\cite{81, 82}, in magnetisation, as the ambient temperature continues to drop.

Theoretical study of Spin Glass started with the paper by Edwards, Anderson,\cite{83}. They were trying to explain two experimental results concerning continuous disordered freezing (phase transition) and sharp cusp in static magnetic susceptibility. This was followed by a paper by Sherrington, Kickpatrick,\cite{84}, who dealt with Ising model with interactions being present among all neighbours. The interaction is random, follows Gaussian distribution and does not distinguish one pair of neighbours from another pair of neighbours, irrespective of the distance between two neighbours. In presence of external magnetic field, they predicted in their next paper,\cite{85}, below spin-glass transition temperature a spin-glass phase with non-zero magnetisation. Almeida et al,\cite{86}, Gray and Moore,\cite{87}, finally Parisi,\cite{88, 89}, improved and gave final touch,\cite{90}, to their line of work. Parisi and collaborators,\cite{91}-\cite{95}, wrote a series of papers in postscript, all revolving around a consistent assumption of constant magnetisation in the spin-glass phase in presence of little constant external magnetic field.

In another sequence of theoretical work, by Fisher et al,\cite{96}-\cite{98}, concluded that for Ising model with nearest neighbour or, short range interaction of random type spin-glass phase does not exist in presence of external magnetic field.

For recent series of experiments on spin-glass, the references,\cite{99, 100}, are the places to look into.

For an in depth account, accessible to a commoner, the series of articles by late P. W. Anderson in Physics Today,\cite{101}-\cite{107}, is probably the best place to look into. For a book to enter into the subject of spin-glass, one may start at\cite{108}.

Here, in our work to follow, spin-glass refers to spin-glass phase of a system with infinite range random interactions.
III. THE GRAPHICAL LAW ANALYSIS

For the purpose of exploring graphical law, we assort the letters according to the number of head entries, in the descending order, denoted by f and the respective rank, $[\Pi]$, denoted by k. k is a positive integer starting from one. Moreover, minimum number of head entries is one. The limiting rank is maximum rank, here it is twenty four. As a result both $\frac{lnf}{lnf_{max}}$ and $\frac{lnk}{lnk_{lim}}$ varies from zero to one. Then we tabulate in the adjoining table [IV], and plot $\frac{lnf}{lnf_{max}}$ against $\frac{lnk}{lnk_{lim}}$ in the figure fig.6. We then ignore the letter with the highest number of head entries, tabulate in the adjoining table [IV] and redo the plot, normalising the $lnfs$ with $lnf_{n_{-max}}$, and starting from $k = 2$ in the figure fig.7. Normalising the $lnfs$ with $lnf_{2n_{-max}}$, we tabulate in the adjoining table [IV], and starting from $k = 3$ we draw in the figure fig.8. Normalising the $lnfs$ with $lnf_{3n_{-max}}$ we record in the adjoining table [IV], and plot starting from $k = 4$ in the figure fig.9. In this way we obtain up to the figure fig.12.
<table>
<thead>
<tr>
<th>k</th>
<th>ln k/ln k_{lim}</th>
<th>f</th>
<th>ln f</th>
<th>ln f/n_{max}</th>
<th>ln f/n_{next-n_{max}}</th>
<th>ln f/n_{2n_{max}}</th>
<th>ln f/n_{3n_{max}}</th>
<th>ln f/n_{4n_{max}}</th>
<th>ln f/n_{5n_{max}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1566</td>
<td>7.356</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>2</td>
<td>0.69</td>
<td>0.217</td>
<td>1540</td>
<td>7.340</td>
<td>0.998</td>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>0.346</td>
<td>1476</td>
<td>7.297</td>
<td>0.992</td>
<td>0.994</td>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>0.437</td>
<td>1343</td>
<td>7.203</td>
<td>0.979</td>
<td>0.981</td>
<td>0.987</td>
<td>1</td>
<td>Blank</td>
</tr>
<tr>
<td>5</td>
<td>1.61</td>
<td>0.506</td>
<td>1201</td>
<td>7.091</td>
<td>0.964</td>
<td>0.966</td>
<td>0.972</td>
<td>0.984</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1.79</td>
<td>0.563</td>
<td>1164</td>
<td>7.060</td>
<td>0.960</td>
<td>0.962</td>
<td>0.968</td>
<td>0.980</td>
<td>0.996</td>
</tr>
<tr>
<td>7</td>
<td>1.95</td>
<td>0.613</td>
<td>1124</td>
<td>7.025</td>
<td>0.955</td>
<td>0.957</td>
<td>0.963</td>
<td>0.975</td>
<td>0.991</td>
</tr>
<tr>
<td>8</td>
<td>2.08</td>
<td>0.654</td>
<td>1057</td>
<td>6.963</td>
<td>0.947</td>
<td>0.949</td>
<td>0.954</td>
<td>0.967</td>
<td>0.982</td>
</tr>
<tr>
<td>9</td>
<td>2.20</td>
<td>0.692</td>
<td>904</td>
<td>6.807</td>
<td>0.925</td>
<td>0.927</td>
<td>0.933</td>
<td>0.945</td>
<td>0.960</td>
</tr>
<tr>
<td>10</td>
<td>2.30</td>
<td>0.723</td>
<td>896</td>
<td>6.798</td>
<td>0.924</td>
<td>0.926</td>
<td>0.932</td>
<td>0.944</td>
<td>0.959</td>
</tr>
<tr>
<td>11</td>
<td>2.40</td>
<td>0.755</td>
<td>860</td>
<td>6.757</td>
<td>0.919</td>
<td>0.921</td>
<td>0.926</td>
<td>0.938</td>
<td>0.953</td>
</tr>
<tr>
<td>12</td>
<td>2.48</td>
<td>0.780</td>
<td>736</td>
<td>6.601</td>
<td>0.897</td>
<td>0.899</td>
<td>0.905</td>
<td>0.916</td>
<td>0.931</td>
</tr>
<tr>
<td>13</td>
<td>2.56</td>
<td>0.805</td>
<td>717</td>
<td>6.575</td>
<td>0.894</td>
<td>0.896</td>
<td>0.901</td>
<td>0.913</td>
<td>0.927</td>
</tr>
<tr>
<td>14</td>
<td>2.64</td>
<td>0.830</td>
<td>672</td>
<td>6.510</td>
<td>0.885</td>
<td>0.887</td>
<td>0.892</td>
<td>0.904</td>
<td>0.918</td>
</tr>
<tr>
<td>15</td>
<td>2.71</td>
<td>0.852</td>
<td>621</td>
<td>6.431</td>
<td>0.874</td>
<td>0.876</td>
<td>0.881</td>
<td>0.893</td>
<td>0.907</td>
</tr>
<tr>
<td>16</td>
<td>2.77</td>
<td>0.871</td>
<td>604</td>
<td>6.404</td>
<td>0.871</td>
<td>0.872</td>
<td>0.878</td>
<td>0.889</td>
<td>0.903</td>
</tr>
<tr>
<td>17</td>
<td>2.83</td>
<td>0.890</td>
<td>466</td>
<td>6.144</td>
<td>0.835</td>
<td>0.837</td>
<td>0.842</td>
<td>0.853</td>
<td>0.866</td>
</tr>
<tr>
<td>18</td>
<td>2.89</td>
<td>0.909</td>
<td>445</td>
<td>6.098</td>
<td>0.829</td>
<td>0.831</td>
<td>0.836</td>
<td>0.847</td>
<td>0.860</td>
</tr>
<tr>
<td>19</td>
<td>2.94</td>
<td>0.925</td>
<td>378</td>
<td>5.935</td>
<td>0.807</td>
<td>0.809</td>
<td>0.813</td>
<td>0.824</td>
<td>0.837</td>
</tr>
<tr>
<td>20</td>
<td>3.00</td>
<td>0.943</td>
<td>273</td>
<td>5.609</td>
<td>0.763</td>
<td>0.764</td>
<td>0.769</td>
<td>0.779</td>
<td>0.791</td>
</tr>
<tr>
<td>21</td>
<td>3.04</td>
<td>0.956</td>
<td>132</td>
<td>4.883</td>
<td>0.664</td>
<td>0.665</td>
<td>0.669</td>
<td>0.678</td>
<td>0.689</td>
</tr>
<tr>
<td>22</td>
<td>3.09</td>
<td>0.972</td>
<td>66</td>
<td>4.190</td>
<td>0.570</td>
<td>0.571</td>
<td>0.574</td>
<td>0.582</td>
<td>0.591</td>
</tr>
<tr>
<td>23</td>
<td>3.14</td>
<td>0.987</td>
<td>15</td>
<td>2.708</td>
<td>0.368</td>
<td>0.369</td>
<td>0.371</td>
<td>0.376</td>
<td>0.382</td>
</tr>
<tr>
<td>24</td>
<td>3.18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE IV. Head entries of the Langenscheidt’s Pocket Chinese dictionary: ranking, natural logarithms, normalisations
FIG. 6. The vertical axis is $\frac{\ln f}{\ln f_{\text{max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{\text{lim}}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve BP(4, $\beta H = 0.05$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.025$ or, $\beta H = 0.05$. The uppermost curve is the Onsager solution.

FIG. 7. The vertical axis is $\frac{\ln f}{\ln f_{n-\text{max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{\text{lim}}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve BP(4, $\beta H = 0.05$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.025$ or, $\beta H = 0.05$. The uppermost curve is the Onsager solution.
FIG. 8. The vertical axis is $\frac{\ln f}{\ln f_{2n_{-max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{lim}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve, BP($4, \beta H = 0.05$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.025$ or, $\beta H = 0.05$. The uppermost curve is the Onsager solution.

FIG. 9. The vertical axis is $\frac{\ln f}{\ln f_{3n_{-max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{lim}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve, BP($4, \beta H = 0.06$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.03$ or, $\beta H = 0.03$. The uppermost curve is the Onsager solution.
FIG. 10. The vertical axis is $\frac{\ln f}{\ln f_{4n-\text{max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{\text{lim}}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve, BP(4, $\beta H = 0.1$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.05$ or, $\beta H = 0.05$. The uppermost curve is the Onsager solution.

FIG. 11. The vertical axis is $\frac{\ln f}{\ln f_{5n-\text{max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{\text{lim}}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the fit curve, BP(4, $\beta H = 0.1$), being the Bethe-Peierls curve with four nearest neighbours, in presence of little magnetic field, $m=0.05$ or, $\beta H = 0.05$. The uppermost curve is the Onsager solution.
FIG. 12. The vertical axis is $\frac{\ln f}{\ln f_{5n, \text{max}}}$ and the horizontal axis is $\frac{\ln k}{\ln k_{\text{lim}}}$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary, with the reference curve being the Onsager solution.
A. tentative conclusion

Matching of the plots in the figures fig.6-12, with comparator curves i.e. the magnetisation curves of Bethe-Peierls approximations, is with dispersion and dispersion does not reduce over higher orders of normalisations. On the top of it, on successive higher normalisations, the head entries of the Langenscheidt’s Pocket Chinese Dictionary,[2], do not go over to Onsager solution in the normalised \(\ln f \) vs \(\frac{\ln k}{\ln \text{lim}} \) graphs.

To explore for possible existence of spin-glass transition, in presence of little external magnetic field, \(\frac{\ln f}{\ln f_{r_{\text{rmax}}}} \) are drawn against \(\ln k \) in the figures fig.13-fig.15, where \(r \) varies from zero to two.
FIG. 13. The vertical axis is $\frac{\ln f}{\ln f_{\text{max}}}$ and the horizontal axis is $\ln k$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary.\(^2\).

FIG. 14. The vertical axis is $\frac{\ln f}{\ln f_{n=\text{max}}}$ and the horizontal axis is $\ln k$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary.\(^2\).
FIG. 15. The vertical axis is $\ln \left(\frac{\text{inf}}{\text{inf}_{\text{max}}} \right)$ and the horizontal axis is $\ln k$. The + points represent the head entries of the Langenscheidt’s Pocket Chinese Dictionary\cite{2}.
B. conclusion

In the figures Fig. 13-Fig.15, the points has a smoothed transition, [95]. Above the transition point(s), the lines are almost horizontal and below the transition point(s), points-line rises straight. Hence, the head entries of the Langenscheidt’s Pocket Chinese Dictionary,[2], is suited to be described by a Spin-Glass magnetisation curve, [80], in the presence of little external magnetic field.

Moreover, the associated correspondence is,

\[
\frac{\ln f}{\ln f_{2n-max}} \leftrightarrow \frac{M}{M_{max}},
\]

\[
\ln k \leftrightarrow T.
\]

k corresponds to temperature in an exponential scale, [109].

IV. ACKNOWLEDGMENT

We have used gnuplot for plotting the figures in this paper.

[41] Anindya Kumar Biswas, "Along the side of the Onsager’s solution, the Ekagi language”, viXra: 2205.0065[Condensed Matter].

[64] Anindya Kumar Biswas, "Khasi-Jaintia Jaids(Surnames) and the Graphical law", viXra:2307.0135[Social Science].

[76] Kerson Huang, Statistical Mechanics, second edition, John Wiley and Sons(Asia) Pte Ltd.

