The Neutron Enigma Il

By Norbert Buchholz

Abstract

We had already dealt with the neutron enigma in an earlier paper® and calculated values that were in
excellent agreement with the decay times determined experimentally for the two measurement methods
solely on the basis of the underlying masses or mass differences. However, this approach was formal, as
no knowledge of the decay mechanisms was available and consequently the individual calculation steps
could not be justified.

The solution approach presented here was based on the neutron decay mechanism described in a
recent publication®for calculating the decay curve. In combination with the specific structure of the two
competing measurement methods, it was possible to predict that, in contrast to the bottle method,
energy is continuously extracted from the system in the beam method, which leads to an increase in the
lifetime of the neutrons, since energy and decay time are indirectly proportional, as already explained in
the paper® cited at the beginning.

The energy loss during the beam experiment could be quantified on the basis of a simple calculation
model. From the resulting residual energy, it was possible to calculate the decay time, which
corresponds to that measured by Greene3 within the standard deviation.

From the knowledge of the overall mechanism outlined above, some experimental modifications for the
beam method can be proposed, which should lead to an approximation of the decay times for both
methods:

- A reduction in diameter for the beam tube
- Anincrease in the suction voltage to remove the proton
- A reduction in the particle density in the beam tube

If these experimental changes lead in the direction we predicted, we can consider the neutron enigma
solved.

A Introduction

The confusing fact that different results far beyond the standard deviation were obtained when
determining the decay time of the neutron using two different measurement methods, the bottle
method and the beam method, appeared in popular science publications (see e.g. Ref 4) as the neutron
enigma. For a more detailed description of the two methods, please refer to Ref 4 and 5.

In an earlier paper (Ref 5) we had calculated the decay times essentially from the rest mass of the proton
divided by the rest mass difference of neutron and proton.
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2Bottle method: TN1 =878.5+0.8 s
3Beam method: TN2 = 887.7 2.2 s

This model was not based on any knowledge of the internal processes involved in the decay of the
neutron. Thus, although the mass loss of me/kee’? assumed quite arbitrarily in the second equation leads
to an excellent result for the beam method, it could not be derived from any model. Nor were we able to
justify the occurrence of the dimension factor fps to the 6th power.

What was ultimately impressive about these calculations was the excellent agreement with the
measured values of Greene® and Serebrov?.

B Calculation of the potential energy in the beam experiment

In this paper we want to tackle the neutron enigma once again on the basis of our newly gained
knowledge of the internal structure of the neutron.(Ref 1) The decisive difference between the bottle and
beam methods is that in the bottle experiment the decay products are in a thermodynamic equilibrium
until the particles are counted, whereas in the beam method the decay products electron and proton are
continuously removed from equilibrium, with the proton being extracted and counted at the outer wall
of the beam tube, which is connected as a cathode (see Fig. 1)
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Fig. 1 (Ref. 4)

This has energetic consequences from the perspective of the oscillation model we developed in Ref. 1.
According to this model, the decay of the neutron is based on the jumps of the electron from the
potential space to the outer surface of the neutron. Due to the changing energy and mass at constant
elementary particle density, the jump produces a periodic change in size, which is represented as a
harmonic oscillation of the neutron surface. The electron is ejected from the neutron by the outwardly
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directed counter-amplitude. Since the oscillation energy is a directed energy of the same magnitude in all
spatial directions, only 1/6 of the total energy is transferred to the object in the case of a targeted
acceleration in one spatial direction.

The decay reaction is summarized as follows according to our model:
I NG/G» /[\P5/6+ e_1/6

A neutron with the full vibrational energy (6/6) releases 1/6 of this as kinetic energy to the electron. If
the resulting protons are only removed from the equilibrium in the above-mentioned form, there are no
differences to the bottle experiment. The fact is, however, that energy can be transferred from another
N®®to this proton by impact contact before it is removed from equilibrium

I N®6+ P56 > N6+ NP6 (f;=1;0.98;0.96 ......... 0)

This process continuously removes energy from the system of neutrons. However, as we were able to
show in our earlier work (Ref 5), lower energy in the system means a lower decay rate, i.e. a longer mean
decay time, which would explain exactly why the decay times in the beam experiment are significantly
higher than in the bottle experiment.

In the following, we want to quantify this time change by means of a simple thought experiment.

We assume 100 neutrons that decay continuously, whereby one N®%is removed from the original system
by the decay and another by the energy transfer according to reaction equation Il. We are therefore
dealing with a two-stage process per cycle. However, the equilibrium of reaction equation Il is only
initially on the far right-hand side. As the decay time increases, the composition of the reaction mixture
and thus the reaction efficiency changes in the direction shown by the reaction arrow above. It is
therefore necessary to introduce an efficiency factor (fu), which very simply goes from 1 at the beginning
to 0 at the end of the process. Since the decay process we postulate is a two-stage process, we have to
count the factor in steps of two (see equation Il or Il in brackets).

In addition, we must take into account a back reaction according to equation Ill, whose factor is of course
a mirror image (fu2 = 1-ful).

[l N6 + P%6 > N®64 P56 (f,, =0; 0.02; 0.06......... 1)

There are now two ways to combine the two reactions Il and Ill. Either leave the reaction equations as
shown above and multiply the factors fu; and fu, (see orange curve in Fig. 14 a). Or you mirror equation
Il and thus also the factor fu,, which then becomes fu1, and obtain fu1? as the total factor (see orange
curve in Fig. 14 b). Although the course of the corresponding curves is very different, the calculations
lead to exactly the same result in all cases, i.e. they are just different representations of the same
process.



furx f2
888,8 s

fu1 x 2
884,55

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 1 3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

2Bottle method: TN1 = 878.5 +0.8 s
3Beam method: TN2 =887.7 +2.2 s

The conversion of energy into time is carried out below, but the time results are already shown in the
diagrams above, so they will be discussed briefly here.

The calculations with equally weighted consideration of the back-and-forth reaction (fu1 x fu; or fu1?) lead
to a value of 888.8 s, which is only 1.1 s above the result given by Greene et al. (Ref 3) for the beam
experiment and thus within the error limit of £2.2 s given there.

To check our calculation, we also tested how the decay time shifts if we include the back reaction (see Eq.
Il above) too strongly (fu1 x fux? or fui3) or not at all (fu1) in the calculation. When overestimating the back
reaction, we obtain a value of 884.5 s, as expected, which lies between the results of the bottle and
beam experiment, and when ignoring the back reaction, we also obtain a value of 897.8 s, as expected,
which is still approx. 10 s above that of the beam experiment, i.e. these calculations always tend to
provide the correct results.

Table 3 shows the entire calculation for the resulting energy term using fu:2 as an example.

The sum of all energy contributions of the N¥® (column V) and the N*¢ (column VI) is divided by the sum
of all neutrons included in this calculation, i.e. by the sum of all contributions from columns Il and IV.
This gives the average potential energy for a neutron after a complete decay process.



I I i v \% VI

0 1 100 0 782333 0
1 09604 98,0396 0,9604 766996144 626,127018
2 09216 95,1568 1,8432 751266378 120166318
3 08836 94,3492 2,6508 73812,4927 172817316
4 DB4E4 92,6144 3,3856 724553014 220727181
5 0,81 90,95 405 711531864  2640,3732
& 07744 29,3536 46454 599042609  3029,1926
7 0739 87,8228 5,772 GBT706,6746 337524448
B8 07056 86,3552 56448 575585227 3680,09349
9 05724 84,9484 60516 664579366 394530431
10 0,64 836 B4 £5403,0388 41724416
11 05084 82,3076 6,6924 643919516 4363,07003
12 05776 81,0688 5,9312 6§3422,7975 451875425
13 05476 79,8812 7,1188 6524936988 454105895
14 05184 78,7424 72576 61602,778 473154877
15 0,49 77,65 735 607481575 47917884
16 DAG24 76,6016 7,3884 599279505 482334249
17 04356 75,5948 7,4052 591403067 482777571
18 04096 74,6272 7,3728 583833213 4806,65272
19 03844 73,6964 7,3036 576551257 47615382
20 0,36 72,8 72 589538424 45939968
21 03364 71,9356 7,0644 552775938 450559319
22 03136 71,1008 56,8992 556245022 4497,89204
23 02916 70,2932 6,7068  54992,69 437245802
24 02704 59,5104 5,4895 54380,2798 4230,85578
25 0,25 68,75 625 537853938 4074 65
26 02304 58,0096 59904 532061544 390540534
27 02116 57,2868 57132 526406841 372468646
28 01936 56,5792 5,4208 520871053 3534,05804
29 01764 55,8844 51156 515435403 333508473
30 0,16 65,2 48 510081116 3129,3312
31 D144 54,5236 44764 504789416 2918,36212
32 01296 53,8528 41472 499541526 270374216
33 01156 53,1852 38148 494318671 2487,03597
32 01024 62,5184 3,4816 48910,2074 2269,80823
35 0,09 61,85 315 A48387,2961  2053,6236
36 00784 51,1776 2,8224 AT861,2553 1840,04875
37 00676 50,4988 25012 473302077 1630,64233
38 00576 59,8112 2,1888 467922755 142697503
39 00484 59,1124 1,8876 462455812 1230,60949
40 0,04 58,4 16 45688,24727 10431104
41 00324 57,6716 1,3284 451183958  B66,04241
42 00256 56,3248 1,0752 445341496 700,970189
43 00196 56,1572 0,8428 439336307 549,458403
44 00144 55,3664 0,6336 433149618 413071718
45 0,01 54,55 045 426762652  293,3748
45 00064 53,7056 0,2044 420156632 191932314
a7 00036 52,8308 0,1692 413312783 110,308925
48 00016 51,9232 0,0768 406212328 50,0692992
49 00004 50,9804 0,0196 398836493 12,7781024

Tab. 3 Calculation of the average potential energy

I Number of protons

I fu?

. 100-1-1v

IV: fu’x1

V: 1l X Epot max (782,33 keV)

VI: IV X Epot max X 5/6 (651,944 keV)

(V+VI)/(H1+IV) = Eporx /N =2926153,57/3775 = 775, 414 keV/Neutron



C The conversion of energy into time

The conversion of energy into time is also carried out over a length using the equation shown in the
legend under D below. However, the energies calculated above must be subjected to a correction before
they can be included in the calculation of time.

Ecor= 2 Epot foa2? (Table 4 point C)

-2 782530 1467800,062 4,90518E-16 3,86843E-21 877,65

-1 782430 1467612,491 490581E-16 3,86914E-21 877,80

1] 782330 1467424,92 4,91E-16 3,8698E-21 877,95 soll

1 782130 1467049,778 4,90769E-16 3,87112E-21 878,25

2 781930 1466674,64 4,91E-16 3,87244E-21 878,55 878,5 bottl

3 781730 1466299,494  49102E-16 3,87376E-21 878,85

4 781530 1465924351 491146E-16 3,87508E-21 879,15

5 781330 1465549,209  491272E-16 3,8764E-21 879,45

13 778730 1460672,361 4,92912E-16 3,89367E-21 883,37

19 778530 1460297,219 4,93038E-16 3,895E-21 883,67

20 778330 1459922,077 4,93165E-16 3,89634E-21 883,97
21 778130 1459546,93 4,93E-16 3,89767E-21 884,28 cal ful"3
22 777930 1459171,792  493419E-16 3,89901E-21 884,58

23 777730 1458796,65  4,93546E-16 3,90034E-21 834,88

24 777530 1458421508 4,93673E-16 3,90168E-21 885,19

30 776330 1456170655 4,94436E-16 3,90973E-21 837,01

31 776130 1455795513 4,94563E-16 3,91107E-21 887,32
32 775930 1455420,37 4,95E-16 3,91241E-21 887,62 887,7 beam
33 775730 1455045,228 494818E-16 3,91376E-21 887,93

34 775530 1454670,086 4,94946E-16 3,9151E-21 888,23

35 775330 1454294944 4 95073E-16 3,91645E-21 888,54
36 775130 1453919,8 4,95E-16 3,9178E-21 888,84 cal ful"2
37 774930 1453544659 495329E-16 3,91915E-21 889,15

38 774730 1453169517 4,95457E-16 3,9205E-21 889,46

63 769730 1443790963 4,98675E-16 3,95449E-21 897,17

64 769530 144341582 498805E-16 3,95586E-21 897,48
65 769330 1443040,68 4,99E-16 3,95723E-21 897,79 ful

66 769130 1442665536 4,99064E-16 3,9586E-21 898,10

67 768930 1442290,394  499194E-16 3,95997E-21 898,41

Tab. 4 A B C D E F

A consecutive number

B E,_[eV]
C Ep =2f0, Epy [6V]
D S, =WeoEt[m]
3
E tper =i0%|[s] *ftime1=1m4/3/5
time,

F o, =t [S]

*The length-time conversion factors fime1,2 Were discussed in detail in Ref 1, last chapter.



The two factors 2 and fus,% are not unknown, as they already played a role in the calculation of the natural
constants a, g0 and o (see Ref. 7), but there always in the constellation 2/fp42% or fp42%/2. A more detailed
explanation for the occurrence of these factors in this case in multiplicative form cannot yet be given at
this point.

The further calculations of columns E and F are discussed in detail in the last section.

The decay times from the calculations in Table 4 have already been discussed above using the curves.
Here we will only briefly discuss the value that is actually to be expected, which results from the
difference in mass or energy between the neutron on the one side and the proton plus electron on the
other (782.33 keV). The calculated value (see Table 4, black line) of 877.95 is only 0.6 s below the value
measured by Serebrov? and thus within the specified standard deviation of 0.8 s.

Conclusion: The bottle experiment reflects the actual decay time of the neutron very accurately.

The detailed explanation given above for the different measured values in the measurement methods
mentioned also makes it clear why the standard deviation in the beam experiments is significantly larger
than in the bottle experiment, as the former measurement method uses an system of imbalance that
reacts very sensitively to the exact performance of the experiment.

We can go even further and specifically change the experimental procedure in the beam experiment so
that, ideally, the measurement results of both methods match.

For this purpose, the secondary reaction in B-decay must be eliminated as far as possible in accordance
with reaction equation I, i.e. contact of the proton generated by the decay with an initial neutron before
reaching the cathode must be prevented. This leads to the physical requirements mentioned below,
which can be largely realized by the experimental changes shown on the right.

Physical requirement (proton) Experimental change

short transit path Reduction of the tube diameter
short runtime Increase in suction voltage
large free path Reduction in particle density

It would of course be of great interest to us if the beam experiments were carried out under the
conditions, we have specified in order to verify or falsify our hypothesis presented here.

D Quantization and dequantization

The last step in calculating the decay time of the neutron by means of the time quantum number Nimax,
i.e. the conversion of the period time tyer With a duration of approx. 10 s into time periods
corresponding to the macroscopically determined decay times (Table 4 column F), must also be explained
in more detail.

As repeatedly pointed out in earlier works, minimal sizes are indispensable in a projection. Time and
length and their combinations are of course the decisive variables in our system.



tyn =4,4077488-107[s]

Snin = 13214098 107" [m]

Consequently, each quantity is "granular" and can only be represented in multiples of the minimum
guantities (quantization).

ti = Nitmin

Si = Ni Smin

Of particular importance are the maximum n; per unit size, which we will refer to below as the time or
length quantum number.

These correspond approximately to the pixel numbers in electronic photography, which are known to
indicate the number of the smallest, no longer resolved areas (pixels) per sensor chip and thus reflect its
resolution and quality.

te

n,, =5 =2,2687310° t, =15
N, =—t =7567674-10* s =1m
" smin

In addition to the time and length quantum numbers, we have become familiar with the combination of
these two as an important quantization variable when calculating the gravitational constant (Ref7).

. :E—tE ~1,716903.10%
3
G=— Yo f,=667377-10" "
6met "N, kgs

In order to make the calculation step described above for the calculation of the decay times (see Table 4,
column F) plausible, we refer back to the calculation of the electric field constants in Ref 7.

We had solved the electrostatic force equation according to goand replaced the respective lengths and
times with the corresponding minimum values as the decisive step.
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*In these equations, the factor fps,2/2, which leads to the correct result but is uninteresting in this
context, was not taken into account

We also achieve this substitution if we extend the numerator and denominator by the respective unit
values and divide each of them by the corresponding quantum numbers (see equation system above



right). The result is identical, but it becomes much clearer that we have quantized the definition equation
for go here.

By multiplying by the length or time quantum number, we can of course reverse the process. We
therefore carry out a dequantization.

This is precisely the last step in calculating the decay times from the periodic times in Table 4 F.
tDN :tperntmax [S]

We must therefore get used to the idea of a lack of quantization of time inside the neutron, which is
another surprise when dealing with its inner life. Of course, everyone is free to consider this last step
nonsensical and to regard the excellent agreement between the measured and calculated decay times of
the neutron as pure coincidence. However, we are convinced that these values are very real and that the
guantization of time is suspended inside the neutron. However, this also means that time has an infinite
resolution in this area. The fact that the jumps nevertheless occur in the minimum time tmin, as
postulated at the beginning, is obviously related to the fact that the oscillations induced by this have an
external effect on our projection of time and space, which in turn makes quantization indispensable.



