A distinct aspect of eleven is defined. Aspect is utilized to index one hundred thirty-seven. Index is used to generate a plausible value for the fine structure constant.

Eleven is the only prime equal to a prime plus the square of a greater prime.

\[11 = 2 + 3^2 \]
\[P_S = P_\text{<} + P_\text{>}^2 \]
\[P_\text{<} < P_\text{> } \]

(P_S) Prime sum

(P_\text{<}) Prime lesser

(P_\text{>) Prime greater

Odd + (\text{odd})^2 = \text{even} \\
Odd + (\text{even})^2 = \text{odd} \\
Even + (\text{odd})^2 = \text{odd} \\
2 is the only even prime. \\
2 is the least of primes.
Must be

$$2 + P_2^2 = P_s$$

If; \(n > 3 \) (n)atural number

$$\frac{2 + n^2}{3} = (w)hole number, \text{ except when } n \text{ is a multiple of 3}$$

$$\frac{2 + n^2}{3} = w, if \ \frac{n}{3} \neq w$$

$$\frac{2 + n^2}{3} \neq w, if \ \frac{n}{3} = w$$

$$\frac{2 + 4^2}{3} = 6 \quad \frac{2 + 5^2}{3} = 9 \quad \frac{2 + 6^2}{3} = 12.66\ldots$$

$$\frac{2 + 7^2}{3} = 17 \quad \frac{2 + 8^2}{3} = 22 \quad \frac{2 + 9^2}{3} = 27.66\ldots$$

$$\vdots \quad \vdots \quad \vdots$$

If; \(n > 3 \)

and; \(n \) is prime, \(\frac{n}{3} \neq w \)

then; \(2 + n^2 \) is not prime, \(\frac{2 + n^2}{3} = w \)

If, \(n > 3 \)

and; \(2 + n^2 \) is prime, \(\frac{2 + n^2}{3} \neq w \)

then; \(n \) is not prime, \(\frac{n}{3} = w \)
Eleven is the only prime equal to a prime plus the square of a greater prime.

If; \(P_s = P_< + P_>^2 \)
and; \(P_s^i + P_<^v = P_{i_v} = 11^i + 2^v \)

positive \((i)\)nteger

positi(v)e integer

\((P)\)rimed_{i_v}

then;

\[
P_{11} = 13 \quad P_{24} = 137 \quad P_{37} = 1459
\]

\[
P_{14} = 19 \quad P_{212} = 4217
\]

\[
P_{15} = 43
\]

\[
P_{17} = 139
\]

The least prime were (i) and (v) are both even is 137.

when; \(P_s = P_< + P_>^2 \) and; below

\[
\left[\sqrt{P_s^2 + P_>^4} + \frac{1}{(P_< + P_>)^2 + (P_< + P_>)^4 + 4 \sqrt{(P_> P_<)^2 + P_>^4}}} \right]^2 = x
\]
\[
\left[\sqrt{11^2 + 2^4} + \frac{1}{(2+3)^2 + (2+3)^4 + \frac{1}{\sqrt[4]{(2+3)^2 + 2^4}}} \right]^2 = x
\]

\[
\left[\sqrt{11^2 + 2^4} + \frac{1}{\sqrt[4]{5^2 + 5^4 + \frac{1}{\sqrt{3^4 + 2^4}}}} \right]^2 = x
\]

then

\[
\left[\sqrt{137} + \frac{1}{\frac{1}{650 + \frac{1}{\sqrt[4]{97}}}} \right]^2 = 137.03599917\ldots
\]

The simple equation

\[2+3^2=11\]

may have an understated impact.